Enriched Schubert Galois groups in the Grassmannian G(4,9)

Abraham Martín del Campo, Frank Sottile, and Robert Williams.

Fibered Schubert problems of Type II (from Section 3.2)

Type II fibrations are not as well understood as those of type I. Consequently, their classification in G(4,9) is not as simple as the classificatiomn for type I. There are 29 Type II fibrations.


Return to the top
Schubert problems having a Type II fibration over 4=2 on Gr(2,4) from Theorem 23 with Galois group S2WrS2 of order 8
In the field 'fiber' below, a '1' indicates an empty or zero partition.
These have fiber a version of ˙˙˙
FiberSchubert Problem (4) (2,2) (2,1,1) (1,1,1,1)
˙˙˙       12480 18649 12223 6206
˙˙˙1˙        12551 18437 12440 6120
˙˙˙       12544 18589 12220 6157
˙˙˙1˙        12688 18542 12240 6047
˙˙˙       12531 18623 12324 6055
˙˙˙1˙        12601 18597 12266 6063
˙˙˙        12473 18555 12182 6344
˙˙1˙˙         12571 18463 12386 6134
˙˙˙        12549 18597 12186 6191
˙˙˙        12255 18731 12373 6225
˙˙1˙˙         12458 18587 12374 6167
These have fiber a version of ˙˙˙
FiberSchubert Problem (4) (2,2) (2,1,1) (1,1,1,1)
˙˙˙        12549 18499 12222 6279
˙˙˙1˙         12309 18648 12503 6097
˙˙˙         12405 18663 12391 6129
˙˙1˙˙          12579 18661 12241 6110

Return to the top
Schubert problem having a Type II fibration over 4=2 on Gr(2,4) from Theorem 23 with Galois group S3WrS2 of order 72
In the field 'fiber' below, a '1' indicates an empty or zero partition.
These have the same Galois group, S3WrS2, which has order 72
FiberSchubert Problem (6) (4,2) (3,3) (3,2,1) (3,1,1,1) (2,2,2) (2,2,1,1) (2,1,1,1,1) (1,1,1,1,1,1)
˙˙˙˙        8356 12384 2802 8299 2814 4074 6050 3994 692
˙˙˙1˙˙         8274 12438 2720 8196 2708 4137 6306 4015 677
˙˙˙˙         8236 12482 2815 8249 2746 4138 6202 4045 629
˙˙1˙˙˙          8332 12512 2685 8133 2779 4107 6239 4158 652

Return to the top
Schubert problem having a Type II fibration over ˙4=3 on Gr(2,5) from Theorem 24 with fiber 4=2 on Gr(2,4)
These have the same Galois group, S2WrS3, which has order 48.
Schubert Problem (6) (4,2) (4,1,1) (3,3) (2,2,2) (2,2,1,1) (2,1,1,1,1) (1,1,1,1,1,1)
       8200 6219 6186 8445 7101 9317 3059 980
       8259 6196 6185 8207 7153 9290 3220 995
        8309 6304 6033 8385 7366 9201 2929 1008
        8306 6217 6129 8357 7285 9208 2954 1049
         8358 6104 6175 8303 7109 9396 3031 1019

Return to the top
Schubert problems having a Type II fibration over 2˙2=2 on Gr(2,5) from Theorem 25 with fiber 4=2 on Gr(2,4)
These have the same Galois group, S2[S2], which has order 8
These form one sporadic family
Schubert Problem (4) (2,2) (2,1,1) (1,1,1,1)
      12645 18520 12292 6149
       12377 18634 12328 6280
These have the same Galois group, S2[S2], which has order 8
These form another sporadic family
Schubert Problem (4) (2,2) (2,1,1) (1,1,1,1)
      12464 18623 12399 6080
       12408 18734 12261 6150
        12563 18661 12196 6109

Work of Sottile supported by the National Science Foundation under Grant DMS-1501370.

Last modified: Sun Feb 3 15:12:19 CST 2019