4 in G(2,4)
with fiber a Schubert problem in G(2,5).
4=2 on Gr(2,4)
from Theorem 23
| Fiber | 2˙ 2 = 2 |
˙ 3 = 2 |
˙ 4 = 3 |
| Galois Group | S2WrS2 | S2WrS2 | S3WrS2 |
| Number | 11 | 4 | 4 |
˙
4=3 in
G(2,5) with fiber
4=2 in G(2,4).
Thisa gives five enriched Schubert problems, each of which has
Galois group S2WrS3, which has order 48.
4=2 in G(2,4)
with fiber
2˙
2=2 in G(2,5).
One family has two members and the other has three, and both have Galois group
S2WrS2, which has order 8.
4=2 on Gr(2,4)
from Theorem 23
with Galois group S2WrS2 of order 8
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4=2 on Gr(2,4)
from Theorem 23
with Galois group S3WrS2 of order 72
| These have the same Galois group, S3WrS2, which has order 72 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Fiber | Schubert Problem | (6) | (4,2) | (3,3) | (3,2,1) | (3,1,1,1) | (2,2,2) | (2,2,1,1) | (2,1,1,1,1) | (1,1,1,1,1,1) |
˙ ˙ ˙ ˙![]() |
| 8356 | 12384 | 2802 | 8299 | 2814 | 4074 | 6050 | 3994 | 692 |
˙ ˙ ˙1˙ ˙![]() |
| 8274 | 12438 | 2720 | 8196 | 2708 | 4137 | 6306 | 4015 | 677 |
1˙ ˙ ˙ ˙ ˙![]() |
| 8236 | 12482 | 2815 | 8249 | 2746 | 4138 | 6202 | 4045 | 629 |
1˙ ˙ ˙1˙ ˙ ˙![]() |
| 8332 | 12512 | 2685 | 8133 | 2779 | 4107 | 6239 | 4158 | 652 |
˙
4=3 on Gr(2,5)
from Theorem 24 with fiber
4=2 on Gr(2,4)
| These have the same Galois group, S2WrS3, which has order 48. | ||||||||
|---|---|---|---|---|---|---|---|---|
| Schubert Problem | (6) | (4,2) | (4,1,1) | (3,3) | (2,2,2) | (2,2,1,1) | (2,1,1,1,1) | (1,1,1,1,1,1) |
| 8200 | 6219 | 6186 | 8445 | 7101 | 9317 | 3059 | 980 |
| 8259 | 6196 | 6185 | 8207 | 7153 | 9290 | 3220 | 995 |
| 8309 | 6304 | 6033 | 8385 | 7366 | 9201 | 2929 | 1008 |
| 8306 | 6217 | 6129 | 8357 | 7285 | 9208 | 2954 | 1049 |
| 8358 | 6104 | 6175 | 8303 | 7109 | 9396 | 3031 | 1019 |
2˙
2=2 on Gr(2,5)
from Theorem 25 with fiber
4=2 on Gr(2,4)
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Last modified: Sun Feb 3 15:12:19 CST 2019 |