Fiber | ˙4 = 2 | ˙3 = 2 | 2˙2 = 2 | ˙4 = 3 | 6 = 5 |
Galois Group | S2WrS2 | S2WrS2 | S2WrS2 | S3WrS2 | S5WrS2 |
Number | 21 | 20 | 26 | 21 | 9 |
Base | ˙3 = 2 | ˙4 = 3 |
Galois Group | S2WrS2 | S2WrS3 |
Number | 8 | 15 |
|
|
|
These are all fibered over 4=2 in Gr(2,4) with fiber ˙4=3 in Gr(2,5). | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
These have the same Galois group, S3WrS2, which has order 72 | ||||||||||||||||||||||||||||||||
Schubert Problem | (6) | (4,2) | (3,3) | (3,2,1) | (3,1,1,1) | (2,2,2) | (2,2,1,1) | (2,1,1,1,1) | (1,1,1,1,1,1) | |||||||||||||||||||||||
8294 | 12324 | 2747 | 8240 | 2797 | 4165 | 6222 | 4061 | 665 | ||||||||||||||||||||||||
8286 | 12526 | 2659 | 8105 | 2627 | 4270 | 6251 | 4095 | 666 | ||||||||||||||||||||||||
8122 | 12511 | 2638 | 8291 | 2683 | 4211 | 6210 | 4167 | 686 | ||||||||||||||||||||||||
8341 | 12545 | 2740 | 8130 | 2673 | 4116 | 6120 | 4163 | 674 | ||||||||||||||||||||||||
8316 | 12325 | 2654 | 8159 | 2794 | 4182 | 6255 | 4125 | 681 | ||||||||||||||||||||||||
8453 | 12221 | 2727 | 8258 | 2704 | 4196 | 6206 | 4089 | 689 | ||||||||||||||||||||||||
8028 | 12345 | 2762 | 8194 | 2746 | 4227 | 6314 | 4276 | 673 | ||||||||||||||||||||||||
8301 | 12519 | 2708 | 8118 | 2768 | 4107 | 6168 | 4109 | 683 | ||||||||||||||||||||||||
8207 | 12497 | 2740 | 8167 | 2779 | 4112 | 6148 | 4199 | 711 | ||||||||||||||||||||||||
8309 | 12266 | 2735 | 8242 | 2766 | 4172 | 6273 | 4080 | 676 | ||||||||||||||||||||||||
8219 | 12346 | 2736 | 8189 | 2780 | 4184 | 6257 | 4154 | 685 | ||||||||||||||||||||||||
8306 | 12550 | 2638 | 8324 | 2704 | 4157 | 6096 | 4097 | 695 | ||||||||||||||||||||||||
8450 | 12251 | 2824 | 8306 | 2640 | 4190 | 6106 | 4156 | 665 | ||||||||||||||||||||||||
8409 | 12403 | 2682 | 8130 | 2785 | 4108 | 6182 | 4091 | 712 | ||||||||||||||||||||||||
8224 | 12412 | 2787 | 8231 | 2719 | 4166 | 6153 | 4237 | 633 | ||||||||||||||||||||||||
8367 | 12332 | 2783 | 8283 | 2749 | 4225 | 6066 | 4135 | 645 | ||||||||||||||||||||||||
8358 | 12458 | 2732 | 8171 | 2761 | 4140 | 6156 | 4066 | 724 | ||||||||||||||||||||||||
8309 | 12425 | 2782 | 8290 | 2809 | 4076 | 6222 | 4005 | 696 | ||||||||||||||||||||||||
8286 | 12437 | 2697 | 8316 | 2727 | 4186 | 6152 | 4077 | 685 | ||||||||||||||||||||||||
8321 | 12482 | 2678 | 8115 | 2751 | 4178 | 6084 | 4267 | 675 | ||||||||||||||||||||||||
8275 | 12451 | 2703 | 8194 | 2667 | 4105 | 6299 | 4172 | 691 |
These are all fibered over 4=2 in Gr(2,4) with fiber 6=5 in Gr(2,5). These all have Galois group S5WrS2, which has order 28800 | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Schubert Problem | (10) | (8,2) | (6,4) | (6,2,2) | (5,5) | (5,4,1) | (5,3,2) | (5,3,1,1) | (5,2,2,1) | (5,2,1,1,1) | (5,1,1,1,1,1) | (4,4,2) | (4,4,1,1) | (4,3,2,1) | (4,3,1,1,1) | (4,2,2,2) | (4,2,2,1,1) | (4,2,1,1,1,1) | (4,1,1,1,1,1,1) | (3,3,2,2) | (3,3,2,1,1) | (3,3,1,1,1,1) | (3,2,2,2,1) | (3,2,2,1,1,1) | (3,2,1,1,1,1,1) | (3,1,1,1,1,1,1,1) | (2,2,2,2,2) | (2,2,2,2,1,1) | (2,2,2,1,1,1,1) | (2,2,1,1,1,1,1,1) | (2,1,1,1,1,1,1,1,1) | (1,1,1,1,1,1,1,1,1,1) |
5103 | 6058 | 4135 | 4139 | 908 | 2539 | 1599 | 1673 | 1207 | 831 | 78 | 3035 | 1528 | 2067 | 2072 | 2116 | 1536 | 1030 | 97 | 668 | 1384 | 677 | 1065 | 1747 | 709 | 60 | 214 | 391 | 541 | 233 | 27 | 7 | |
4976 | 6209 | 4226 | 4061 | 1018 | 2383 | 1636 | 1641 | 1321 | 798 | 85 | 3150 | 1542 | 2007 | 2040 | 2068 | 1521 | 1053 | 103 | 678 | 1388 | 680 | 1017 | 1735 | 752 | 74 | 206 | 371 | 550 | 192 | 28 | 1 | |
4887 | 6269 | 4163 | 4063 | 971 | 2488 | 1634 | 1673 | 1286 | 875 | 67 | 3123 | 1567 | 2051 | 2116 | 1980 | 1551 | 1020 | 115 | 654 | 1400 | 665 | 1026 | 1708 | 804 | 59 | 208 | 350 | 538 | 218 | 33 | 3 | |
5004 | 6135 | 4231 | 4184 | 951 | 2373 | 1620 | 1655 | 1252 | 809 | 91 | 3055 | 1552 | 2042 | 2081 | 2046 | 1570 | 1098 | 103 | 713 | 1345 | 663 | 1018 | 1739 | 757 | 61 | 221 | 362 | 502 | 223 | 40 | 1 | |
5073 | 6114 | 4102 | 4203 | 960 | 2428 | 1636 | 1698 | 1283 | 796 | 84 | 3028 | 1533 | 2027 | 2095 | 2049 | 1612 | 1037 | 113 | 707 | 1390 | 727 | 1004 | 1711 | 715 | 67 | 208 | 400 | 484 | 223 | 45 | 0 | |
5066 | 6080 | 4186 | 4149 | 987 | 2496 | 1577 | 1606 | 1232 | 818 | 80 | 3174 | 1571 | 2062 | 2071 | 2137 | 1535 | 992 | 98 | 636 | 1334 | 678 | 1062 | 1763 | 742 | 73 | 221 | 345 | 530 | 213 | 30 | 2 | |
4913 | 6278 | 4133 | 4242 | 1014 | 2466 | 1624 | 1598 | 1236 | 790 | 91 | 3088 | 1511 | 2061 | 2093 | 2053 | 1511 | 1036 | 110 | 707 | 1304 | 733 | 1019 | 1797 | 763 | 72 | 207 | 362 | 521 | 223 | 32 | 0 | |
4936 | 6333 | 4178 | 4114 | 993 | 2478 | 1647 | 1683 | 1241 | 816 | 71 | 3121 | 1556 | 2083 | 2022 | 1990 | 1467 | 1008 | 108 | 701 | 1374 | 693 | 1044 | 1684 | 771 | 55 | 201 | 391 | 512 | 220 | 46 | 1 | |
5086 | 6158 | 4126 | 4160 | 983 | 2440 | 1672 | 1684 | 1300 | 827 | 90 | 3057 | 1553 | 1980 | 2082 | 2044 | 1525 | 1078 | 81 | 649 | 1325 | 739 | 1017 | 1728 | 790 | 66 | 199 | 419 | 488 | 206 | 35 | 2 |
These all fibered over ˙3=2 in G(2,5) with fiber 4=2 in G(2,4), and have 4 solutions | ||||
---|---|---|---|---|
These have the same Galois group, S2[S2], which has order 8 | ||||
Schubert Problem | (4) | (2,2) | (2,1,1) | (1,1,1,1) |
12491 | 18442 | 12357 | 6267 | |
12503 | 18562 | 12329 | 6177 | |
12572 | 18495 | 12235 | 6238 | |
12496 | 18561 | 12390 | 6089 | |
12563 | 18476 | 12376 | 6151 | |
12356 | 18652 | 12401 | 6210 | |
12482 | 18385 | 12354 | 6303 | |
12385 | 18567 | 12368 | 6289 |
These all fibered over ˙4=3 in G(2,5) with fiber 4=2 in G(2,4), and have 6 solutions | ||||||||
---|---|---|---|---|---|---|---|---|
These have the same Galois group, S2WrS3, which has order 48. | ||||||||
Schubert Problem | (6) | (4,2) | (4,1,1) | (3,3) | (2,2,2) | (2,2,1,1) | (2,1,1,1,1) | (1,1,1,1,1,1) |
8245 | 6251 | 6309 | 8215 | 7184 | 9215 | 3162 | 965 | |
8329 | 6246 | 6075 | 8370 | 7217 | 9116 | 3089 | 1048 | |
8192 | 6236 | 6188 | 8208 | 7167 | 9271 | 3163 | 1062 | |
8111 | 6140 | 6173 | 8539 | 7190 | 9328 | 3020 | 1066 | |
8268 | 6133 | 6295 | 8286 | 7149 | 9151 | 3149 | 1021 | |
8380 | 6158 | 6113 | 8340 | 7291 | 9164 | 3068 | 1028 | |
8256 | 6168 | 6204 | 8082 | 7264 | 9407 | 3071 | 1049 | |
8300 | 6323 | 6180 | 8212 | 7259 | 9258 | 3074 | 997 | |
8219 | 6241 | 6183 | 8331 | 7201 | 9327 | 3071 | 953 | |
8467 | 6076 | 6177 | 8296 | 7194 | 9273 | 3058 | 1041 | |
8240 | 6070 | 6176 | 8372 | 7275 | 9322 | 3057 | 1005 | |
8319 | 6225 | 6163 | 8084 | 7309 | 9345 | 3067 | 1050 | |
8240 | 6238 | 6265 | 8346 | 7181 | 9167 | 3089 | 995 | |
8256 | 6269 | 6266 | 8283 | 7116 | 9150 | 3129 | 1052 | |
8266 | 6124 | 6242 | 8202 | 7257 | 9303 | 3105 | 1033 |
Last modified: Sun Feb 3 15:14:54 CST 2019 |