Pencils of Quadrics

Michael DiPasquale, Frank Sottile, and Lanyin (Larry) Sun.  
Return to Semialgebraic Splines.



    We display cell complexes Δ that subdivide the unit circle with three faces, three edges, and one vertex (at the origin). In these cell complexes the curves underlying the edges form a pencil of quadrics. Such a pencil defines a zero-scheme in CP2 of degree four. In our paper we show that when the curves are members of a pencil of curves. the dimensions of the spline modules (their Hilbert functions) do not depend upon the actual edges, but only on their number and degrees.     In particular, the geometry of the curves has no effect. The eight cell complexes below illustrate this. Each pencil in the first four defines four reduced points, either four real points in the finite part of CP2 or four real points with two at infinity, and then the same with two real and two complex, the second pair being either in the finite part of CP2 or at infinity. The others involve one or more double points.

Four real finite points

Four real points, two at infinity

Two real two complex, all finite

Two complex points at infinity

Two real and one double point

Two real and one double point at infinity

Two real double points

Two real and one triple point at infinity


The following table gives the Hilbert function for all these cell complexes given by three quadrics in a pencil.
They were generated with the Macaulay2 file pencil.m2.
r\d01234567 8910111213141516 1718192021222324 2526272829303132 3334353637383940
013713223449 6788112139169202238 277319364412463517574 6346977638329049791057 113812221309139914921588 1687178918942002211322272344
113610152130 42577596120147177 210246285327372420471 525582642705771840912 987106511461230131714071500 159616951797190220102121
213610152128 3646587391112136 163193226262301343388 436487541598658721787 85692810031081116212461333 142315161612171118131918
313610152128 364555667893111132 156183213246282321363 408456507561618678741 8078769481023110111821266 13531443153616321731
413610152128 364555667891105 121139160184211241274 310349391436484535589 6467067698359049761051 112912101294138114711564
513610152128 364555667891105 120136153171192216243 273306342381423468516 567621678738801867936 100810831161124213261413
613610152128 364555667891105 120136153171190210232 256283313346382421463 508556607661718778841 9079761048112312011282
713610152128 364555667891105 120136153171190210231253276300327357390426465507552600651705762822885951102010921167
813610152128 364555667891105 12013615317119021023125327630032535137940944247851755960465270375781487493710031072
913610152128 364555667891105 120136153171190210231253276300325351378406435465498534573615660708759813870930993
1013610152128 364555667891105 120136153171190210231253276300325351378406435465496528562598637679724772823877934
1113610152128 364555667891105 120136153171190210231253276300325351378406435465496528561595630666705747792840891
1213610152128 364555667891105 120136153171190210231253276300325351378406435465496528561595630666703741781823868

Last modified: Thu Feb 18 23:05:59 CST 2016