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Preface

Understanding, finding, or even deciding on the existence of real solutions to
a system of equations is a very difficult problem with many applications outside of
mathematics. While it is hopeless to expect much in general, we know a surprising
amount about these questions for systems which possess additional structure coming
from geometry. Such equations from geometry for which we have information about
their real solutions are the subject of this book.

This book focuses on equations from toric varieties and Grassmannians. Not
only is much known in these cases, but they encompass some of the most common
applications. The results may be grouped into three themes:

(I) Upper bounds on the number of real solutions.
(II) Geometric problems that can have all solutions be real.
(III) Lower bounds on the number of real solutions.

Upper bounds (I) bound the complexity of the set of real solutions—they are one of
the sources for the theory of o-minimal structures which are an important topic in
real algebraic geometry. The existence (II) of geometric problems that can have all
solutions be real was initially surprising, but this phenomenon now appears to be
ubiquitous. Lower bounds (III) give existence proofs of real solutions. Their most
spectacular manifestation is the nontriviality of the Welschinger invariant, which
was computed via tropical geometry. One of the most surprising manifestations of
this phenomenon is when the upper bound equals the lower bound, which is the
subject of the Shapiro Conjecture and the focus of the last five chapters.

I thank the Institut Henri Poincaré, where a preliminary version of these notes
was produced during a course I taught in November 2005. These notes were revised
and expanded during courses at Texas A&M University in 2007 and in 2010 and at
a lecture series at the Centre Interfacultaire Bernoulli at EPFL in 2008 and were
completed in 2011 while in residence at the Institut Mittag-Leffler with material
from a lecture at the January 2009 Joint Mathematics Meetings on the Theorem
of Mukhin, Tarasov, and Varchenko and from lectures at the GAeL conference in
Leiden in June 2009. I also thank Prof. Dr. Peter Gritzmann of the Technische
Universität München, whose hospitality enabled the completion of the first version
of these notes. During this period, this research was supported by NSF grants
DMS-1001615, DMS-0701059, and CAREER grant DMS-0538734. The point of
view in these notes was developed through the encouragement and inspiration of
Bernd Sturmfels, Askold Khovanskii, Maurice Rojas, and Marie-Françoise Roy and
through my interactions with the many people whose work is mentioned here, in-
cluding my collaborators from whom I have learned a great deal.

Frank Sottile
04.25.11, Djursholm, Sweden
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CHAPTER 1

Overview

In mathematics and its applications, we are often faced with a system of multi-
variate polynomial equations whose solutions we need to study or to find. Systems
that arise naturally typically possess some geometric or combinatorial structure that
may be exploited to better understand their solutions. Such structured systems are
studied in enumerative algebraic geometry, which has given us the deep and pow-
erful tools of intersection theory [54] to count and analyze their complex solutions.
A companion to this theoretical work are algorithms, both symbolic (based on
Gröbner bases [154] or resultants) and numerical (many based on numerical homo-
topy continuation [137]) for solving and analyzing systems of polynomial equations.
An elegant and elementary introduction into algebraic geometry, algorithms, and
its applications is given in the two-volume series [31, 30].

Despite these successes, this line of research largely sidesteps the often pri-
mary goal of formulating problems as solutions to systems of equations—namely to
determine or study their real solutions. This deficiency is particularly acute in ap-
plications, from control [25], to kinematics [22], statistics [114], and computational
biology [110], for it is typically the real solutions that are needed in applications.
One reason that traditional algebraic geometry ignores the real solutions is that
there are few elegant theorems or general results available to study real solutions.
Nevertheless, the demonstrated importance of understanding the real solutions to
systems of equations demands our attention.

In the 19th century and earlier, many elegant and powerful methods were de-
veloped to study the real roots of univariate polynomials (Sturm sequences, Budan-
Fourier Theorem, Routh-Hurwitz criterion), which are now standard tools in some
applications of mathematics. These and other results lead to a rich algorithmic
theory of real algebraic geometry, which is developed in [4]. In contrast, it has
only been in the past few decades that serious attention has been paid toward
understanding the real solutions to systems of multivariate polynomial equations.

This recent work has concentrated on systems possessing some, often geomet-
ric, structure. The reason for this is two-fold: Not only do systems from nature
typically possess some special structure that should be exploited in their study, but
it is highly unlikely that any results of substance hold for general or unstructured
systems. From this work, a story has emerged of bounds (both upper and lower)
on the number of real solutions to certain classes of systems, as well as the dis-
covery and study of systems that have only real solutions. This overview chapter
will sketch this emerging landscape and the subsequent chapters will treat these
ongoing developments in more detail.

We will use the notations N, Z, Q, R, and C, to denote the natural numbers,
integers, rational numbers, real numbers, and complex numbers. We write R>

for the positive real numbers, and R∗ (or TR) and C∗ (or T) for the nonzero real
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2 1. OVERVIEW

and complex numbers, respectively. For a positive integer n, write [n] for the set
{1, . . . , n}, and let Zn be the free abelian group of rank n (a lattice), and Qn,
Rn, and Cn, vector spaces of dimension n over the indicated fields. Likewise Pn

and RPn are complex and projective spaces of dimension n, and Rn
>, (R

∗)n, and
(C∗)n = Tn for the groups of n-tuples of positive, nonzero real, and nonzero complex
numbers, respectively. These groups, vector spaces, and projective spaces, all have
distinguished ordered bases. We will use ZA,RA,TA,PA, . . . to denote the groups
and spaces with distinguished bases indexed by the elements of a set A.

1.1. Introduction

Our goal is to say something meaningful about the real solutions to a system
of multivariate polynomial equations. For example, consider a system

(1.1) f1(x1, . . . , xn) = f2(x1, . . . , xn) = · · · = fN (x1, . . . , xn) = 0 ,

of N real polynomials in n variables. Let r be its number of real solutions and
let d be its number of complex solutions. We always assume that our systems
are generic in the sense that all of their solutions are nondegenerate. Specifically,
the differentials dfi of the polynomials at each solution span Cn, so that each
solution has algebraic multiplicity 1. Our systems will come in families whose
generic member is nondegenerate and has d complex solutions. Since every real
number is complex, and since nonreal solutions come in complex conjugate pairs,
we have the following trivial inequality,

(1.2) d ≥ r ≥ d mod 2 ∈ {0, 1} .

We can say nothing more unless the equations have some structure, and a partic-
ularly fruitful class of structures are those which come from geometry. The main
point of this book is that we can identify structures in equations that will allow us
to do better than this trivial inequality (1.2).

Our discussion will have three themes:

(I) Sometimes, there is a smaller bound on r than d.
(II) For many problems from enumerative geometry, the upper bound is sharp.
(III) The lower bound on r may be significantly larger than d mod 2.

A major theme will be the Shapiro Conjecture (Mukhin, Tarasov, and Varchenko
Theorem [104]) and its generalizations, which is a situation where the upper bound
of d is also the lower bound—all solutions to our system are real. This also occurs
in Example 9.7.

We will not describe how to actually find the solutions to a system (1.1) and
there will be little discussion of algorithms and no complexity analysis. The book of
Basu, Pollack, and Roy [4] is an excellent place to learn about algorithms for com-
puting real algebraic varieties and finding real solutions. We remark that some tech-
niques employed to study real solutions underlie numerical algorithms to compute
the solutions [137]. Also, ideas from toric geometry [52, 61], Gröbner bases [154],
combinatorial commutative algebra [100], and Schubert Calculus [53] permeate
this book. Other background material may be found in [31, 30].
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1.2. Polyhedral bounds

When N = n, the most fundamental bound on the number of complex solutions
is due to Bézout: d is at most the product of the degrees of the polynomials fi.
When the polynomials have a sparse, or polyhedral structure, the smaller BKK
bound applies.

Integer vectors a = (a1, . . . , an) ∈ Zn are exponents for (Laurent) monomials

Zn ∋ a ↔ xa := xa1
1 xa2

2 · · ·xan
n ∈ C[x1, . . . , xn, x

−1
1 , . . . , x−1

n ] .

We will often identify a monomial with its exponent vector and thus will just call
elements of Zn monomials. Let A ⊂ Zn be a finite set of monomials. A linear
combination ∑

a∈A
cax

a ca ∈ R

of monomials from A is a sparse polynomial with support A. Sparse polynomials
naturally define functions on the complex torus Tn := (C∗)n. A system (1.1) of
N = n polynomials in n variables, where each polynomial has support A, will be
called a system (of polynomials) with support A. These are often called unmixed
systems in contrast to mixed systems where each polynomial may have different
support. While sparse systems occur naturally—multilinear or multihomogeneous
polynomials are an example—they also occur in problem formulations for the simple
reason that we humans seek simple formulations of problems, and this often means
polynomials with few terms.

A fundamental result about unmixed systems is the Kushnirenko bound on
their number of complex solutions. The Newton polytope of a polynomial f with
support A is the convex hull ∆A of the set A of monomials of f . Write volume(∆)
for the Euclidean volume of a polytope ∆.

Theorem 1.1 (Kushnirenko [10]). A system of n polynomials in n variables
with support A has at most n! volume(∆A) isolated solutions in (C∗)n, and exactly
this number when the polynomials are generic polynomials with support A.

Bernstein generalized this to mixed systems. The Minkowski sum P +Q of two
polytopes in Rn is their pointwise sum as sets of vectors in Rn. Let P1, . . . , Pn ⊂ Rn

be polytopes. The volume

volume(t1P1 + t2P2 + · · · + tnPn)

is a homogeneous polynomial of degree n in the variables t1, . . . , tn [63, Exercise
15.2.6]. The mixed volume MV(P1, . . . , Pn) of P1, . . . , Pn is the coefficient of the
monomial t1 · · · tn in this polynomial.

Theorem 1.2 (Bernstein [11]). A system of n polynomials in n variables where
the polynomials have supports A1, . . . ,An has at most MV(∆A1

, . . . ,∆An
) isolated

solutions in (C∗)n, and exactly this number when the polynomials are generic for
their given support.

Since MV(P1, . . . , Pn) = n! volume(P ) when P1 = · · · = Pn = P , this general-
izes Kushnirenko’s Theorem. We will prove these theorems in Chapters 3 and 4.

The bound of Theorem 1.1 and its generalization Theorem 1.2 is often called
the BKK bound for Bernstein, Khovanskii, and Kushnirenko [10].
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1.3. Upper bounds

While the number of complex roots of a univariate polynomial is typically equal
to its degree, the number of real roots depends upon the length of the expression
for the polynomial. Indeed, by Descartes’s rule of signs [34] (see Section 2.1), a
univariate polynomial with m+1 terms has at most m positive roots, and thus at
most 2m nonzero real roots. For example, the polynomial xd − a with a 6= 0 has
0, 1, or 2 real roots, but always has d complex roots. Khovanskii generalized this
type of bound to multivariate polynomials with his fundamental fewnomial bound.

Theorem 1.3 (Khovanskii [83]). A system of n polynomials in n variables
having a total of 1+l+n distinct monomials has at most

2(
l+n

2 )(n+ 1)l+n

nondegenerate positive solutions.

There are two reasons for this restriction to positive solutions. Most funda-
mentally is that Khovanskii’s proof requires this restriction. This restriction also
excludes the following type of trivial zeroes: Under the substitution xi 7→ x2

i , each
positive solution becomes 2n real solutions, one in each of the 2n orthants. More
subtle substitutions lead to similar trivial zeroes which differ from the positive
solutions only by some sign patterns.

This is the first of many results verifying the principle of Bernstein and Kush-
nirenko that the topological complexity of a set defined by real polynomials should
depend on the number of terms in the polynomials and not on the degrees of the
polynomials. Khovanskii’s work was also a motivation for the notion of o-minimal
structures [160, 113]. The main point of Khovanskii’s theorem is the existence of
such a bound and not the actual bound itself.

Nevertheless, it raises interesting questions about such bounds. For each l, n ≥
1, we define the Khovanskii number X(l, n) to be the maximum number of nonde-
generate positive solutions to a system of n polynomials in n variables with 1+l+n
monomials. Khovanskii’s Theorem gives a bound on X(l, n), but that bound is
enormous. For example, when l = n = 2, the bound is 5184. Because of this,
Khovanskii’s bound was expected to be far from sharp. Despite this expectation,
the first nontrivial improvement was only given in 2003.

Theorem 1.4 (Li, Rojas, and Wang [94]). Two trinomials in two variables
have at most five nondegenerate positive solutions.

This bound is sharp. Haas [64] had shown that the system of two trinomials
in x and y

(1.3) 10x106 + 11y53 − 11y = 10y106 + 11x53 − 11x = 0 ,

has five positive solutions.
Since we may multiply one of the trinomials in (1.3) by an arbitrary monomial

without changing the solutions, we can assume that the two trinomials (1.3) share
a common monomial, and so there are at most 3+3− 1 = 5 = 2+2+1 monomials
between the two trinomials, and so two trinomials give a fewnomial system with
l = n = 2. While five is less than 5184, Theorem 1.4 does not quite show that
X(2, 2) = 5 as two trinomials do not constitute a general fewnomial system with
l = n = 2. Nevertheless, Theorem 1.4 gave strong evidence that Khovanskii’s
fewnomial bound may be improved. Such an improved bound was given in [17].
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Theorem 1.5. X(l, n) < e2+3
4 2(

l

2)nl.

For small values of l, it is not hard to improve this. For example, when l = 0,
the support A of the system is a simplex, and there will be at most one positive
real solution, so X(0, n) = 1. Theorem 1.5 was inspired by the sharp bound of
Theorem 1.7 when l = 1 [15]. A set A of exponents is primitive if A affinely spans
the full integer lattice Zn. That is, the differences of vectors in A generate Zn.

Theorem 1.6. If l = 1 and the set A of exponents is primitive, then there can
be at most 2n+1 nondegenerate nonzero real solutions, and this is sharp in that
for any n there exist systems with n+2 monomials and 2n+1 nondegenerate real
solutions whose exponent vectors affinely span Zn.

Observe that this bound is for all nonzero real solutions, not just positive
solutions. We will discuss this in Section 5.3. Further analysis by Bihan gives the
sharp bound on X(1, n).

Theorem 1.7 (Bihan [15]). X(1, n) = n+ 1.

These fewnomial bounds are discussed and proven in Chapters 5 and 6.
In contrast to these results establishing absolute upper bounds on the number

of real solutions which improve the trivial bound of the number d of complex roots,
there are a surprising number of problems that come from geometry for which all
solutions can be real. For example, Sturmfels [153] proved the following. (Regular
triangulations are defined in Section 4.2, and we give his proof in Section 4.4.)

Theorem 1.8. Suppose that a lattice polytope ∆ ⊂ Zn admits a regular trian-
gulation with each simplex having minimal volume 1

n! . Then there is a system of
sparse polynomials with support ∆ ∩ Zn having all solutions real.

For many problems from enumerative geometry, it is similarly possible that all
solutions can be real. This will be discussed in Chapter 9.

1.4. The Wronski map and the Shapiro Conjecture

The Wronskian of univariate polynomials f1(t), . . . , fm(t) is the determinant

Wr(f1, f2, . . . , fm) := det
(
( d
dt )

i−1fj(t)
)
i,j=1,...,m

.

When the polynomials fi have degree m+p−1 and are linearly independent, the
Wronskian has degree at mostmp. For example, ifm = 2, then Wr(f, g) = f ′g−fg′,
which has degree 2p as the coefficients of t2p+1 in this expression cancel. Up to
a scalar, the Wronskian depends only upon the linear span of the polynomials
f1, . . . , fm. Removing these ambiguities gives the Wronski map,

(1.4) Wr : Gr(m,Cm+p−1[t]) −→ P(Cmp[t]) ≃ Pmp ,

where Gr(m,Cm+p−1[t]) is the Grassmannian of m-dimensional subspaces of the
linear space Cm+p−1[t] of complex polynomials of degree m+p−1 in the variable
t, and P(Cmp[t]) is the projective space of complex polynomials of degree at most
mp, which has dimension mp, equal to the dimension of the Grassmannian.

Work of Schubert in 1886 [130], combined with a result of Eisenbud and Harris
in 1983 [40] shows that the Wronski map is surjective and the general polynomial
Φ ∈ Pmp has

(1.5) #m,p :=
1!2! · · · (m−1)! · (mp)!

m!(m+1)! · · · (m+p−1)!
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preimages under the Wronski map. These results concern the complex Grassman-
nian and complex projective space.

Boris Shapiro and Michael Shapiro made a conjecture in 1993/4 about the
Wronski map from the real Grassmannian to real projective space.

Theorem 1.9. If the polynomial Φ ∈ Pmp has only real zeroes, then every point
in Wr−1(Φ) is real. Moreover, if Φ has mp simple real zeroes then there are #m,p

real points in Wr−1(Φ).

This was proven when min(m, p) = 2 by Eremenko and Gabrielov [46], who
subsequently found a second, elementary proof [42], which we present in Chapter 11.
It was finally settled by Mukhin, Tarasov, and Varchenko [104], who showed that
every point in the fiber is real. We sketch their proof in Chapter 12. The second
statement, about there being the expected number of real roots, follows from this
by an argument of Eremenko and Gabrielov that we reproduce in Chapter 13 (The-
orem 13.2). It also follows from a second proof of Mukhin, Tarasov, and Varchenko,
in which they directly show transversality [106], which is equivalent to the second
statement. This Shapiro Conjecture has appealing geometric interpretations, enjoys
links to several areas of mathematics, and has many theoretically satisfying gener-
alizations which we will discuss in Chapters 10, 11, 13, and 14. We now mention
two of its interpretations.

Example 1.10 (The problem of four lines). A geometric interpretation of the
Wronski map and the Shapiro Conjecture when m = p = 2 is a variant of the classi-
cal problem of the lines in space which meet four given lines. Points in Gr(2,C3[t])
correspond to lines in C3 as follows. The moment curve γ in C3 is the curve with
parameterization

γ(t) := (t, t2, t3) .

A cubic polynomial f is the composition of γ and an affine-linear map C3 → C, and
so a two-dimensional space of cubic polynomials is a two-dimensional space of affine-
linear maps whose common kernel is the corresponding line in C3. (This description
is not exact, as some points in Gr(2,C3[t]) correspond to lines at infinity.)

Given a polynomial Φ(t) of degree four with distinct real roots, points in the
fiber Wr−1(Φ) correspond to the lines in space which meet the four lines tangent
to the moment curve γ at its points coming from the roots of Φ. There will be two
such lines, and the Shapiro Conjecture asserts that both will be real.

It is not hard to see this directly. Any fractional linear change of parameteriza-
tion of the moment curve is realized by a projective linear transformation of three-
dimensional space which stabilizes the image of the moment curve. Thus we may
assume that the polynomial Φ(t) is equal to (t3− t)(t− s), which has roots −1, 0, 1,
and s, where s ∈ (0, 1). Applying an affine transformation to three-dimensional
space, the moment curve becomes the curve with parameterization

(1.6) γ : t 7−→ (6t2 − 1, 7
2 t

3 + 3
2 t,

3
2 t− 1

2 t
3) .

Then the lines tangent to γ at the roots −1, 0, 1 of Φ have parameterizations

(5− s, −5 + s, −1) , (−1, s, s) , (5 + s , 5 + s , 1) s ∈ R .

These lie on a hyperboloid of one sheet, which is defined by

(1.7) 1− x2
1 + x2

2 − x2
3 = 0 .
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We display this geometric configuration in Figure 1.1. There, ℓ(i) is the line tangent
to γ at the point γ(i). The hyperboloid has two rulings. One ruling contains our

ℓ(−1) ℓ(0)

ℓ(1)

γ

ℓ(−1)
γ

Figure 1.1. hyperboloid containing three lines tangent to γ.

three tangent lines and the other ruling (which is drawn on hyperboloid) consists
of the lines which meet our three tangent lines.

Now consider the fourth line ℓ(s) which is tangent to γ at the point γ(s). This
has the parameterization

ℓ(s) =
(
6s2 − 1 , 7

2s
3 + 3

2s ,
3
2s− 1

2s
3
)

+ t
(
12s , 21

2 s2 + 3
2 ,

3
2 − 3

2s
2
)
.

We compute the intersection of the fourth line with the hyperboloid. Substituting
its parameterization into (1.7) and dividing by −12 gives the equation

(s3 − s)(s3 − s+ t(6s2 − 2) + 9st2) = 0 .

The first (nonconstant) factor s3 − s vanishes when ℓ(s) is equal to one of ℓ(−1),
ℓ(−0), or ℓ(1)–for these values of s every point of ℓ(s) lies on the hyperboloid. The
second factor has solutions

t = − 3s2 − 1±
√
3s2 + 1

9s
.

Since 3s2 +1 > 0 for all s, both solutions will be real. In fact, for s 6=
√

−1/3, this
will have exactly two solutions.

We may also see this geometrically. Consider the fourth line ℓ(s) for 0 < s < 1.
In Figure 1.2, we look down the throat of the hyperboloid at the interesting part of
this configuration. This picture demonstrates that ℓ(s) must meet the hyperboloid
in two real points. Through each point, there is a real line in the second ruling which
meets all four tangent lines, and this proves the Shapiro Conjecture for m = p = 2.

Example 1.11 (Rational functions with real critical points). When m = 2, the
Shapiro Conjecture may be interpreted in terms of rational functions. A rational
function ρ(t) = f(t)/g(t) is a quotient of two univariate polynomials, f and g. This
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ℓ(1)

ℓ(−1)

ℓ(−1)

ℓ(0)

γ

ℓ(s)

Q

γ(s)

✻

Figure 1.2. The fourth tangent line meets hyperboloid in two real points.

defines a map ρ : P1 → P1 whose critical points are those t for which ρ′(t) = 0. Since
ρ′(t) = (f ′g−g′f)/g2, we see that the critical points are the roots of the Wronskian
of f and g. Composing the rational function ρ : P1 → P1 with an automorphism
of the target P1 gives an equivalent rational function, and the equivalence class of
ρ is determined by the linear span of its numerator and denominator. Thus the
Shapiro Conjecture asserts that a rational function having only real critical points
is equivalent to a real rational function.

Eremenko and Gabrielov [46] proved exactly this statement in 2002, thereby
establishing the Shapiro Conjecture in the case m = 2.

Theorem 1.12. A rational function with only real critical points is equivalent
to a real rational function.

In Chapter 11 we will present an elementary proof of this result that Eremenko
and Gabrielov gave in 2005 [42].

1.5. Lower bounds

We begin with perhaps the most exciting recent development in real algebraic
geometry. This starts with the fundamental observation of Euclid that two points
determine a line. Slightly less elementary is that five points in the plane with no
three collinear determine a conic. In general, if you have n general points in the
plane and you want to pass a rational curve of degree d through all of them, there
may be no solution to this interpolation problem (if n is too big), or an infinite
number of solutions (if n is too small), or a finite number of solutions (if n is just
right). It turns out that “n just right” means n = 3d−1 (n = 2 for lines where
d = 1, and n = 5 for conics where d = 2).

A harder question is, if n = 3d−1, how many rational curves of degree d
interpolate the points? Call this number Nd, so that N1 = 1 and N2 = 1 because
the line and conic of the previous paragraph are unique. It has long been known
that N3 = 12 (see Example 9.3 for a proof), and in 1873 Zeuthen [164] showed
that N4 = 620. That was where matters stood until 1989, when Ran [118] gave
a recursion for these numbers. In the 1990’s, Kontsevich and Manin [88] used
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associativity in quantum cohomology of P2 to give the elegant recursion

(1.8) Nd =
∑

a+b=d

NaNb

(
a2b2

(
3d− 4

3a− 2

)
− a3b

(
3d− 4

3a− 1

))
,

which begins with the Euclidean declaration that two points determine a line (N1 =
1). These numbers grow quite fast, for example N5 = 87304.

The number of real rational curves which interpolate a given 3d − 1 points in
the real plane RP2 will depend rather subtly on the configuration of the points. To
say anything about the real rational curves would seem impossible. However this is
exactly what Welschinger [162] did, by finding an invariant which does not depend
upon the choice of points.

A rational curve in the plane is necessarily singular—typically it has
(
d−1
2

)

ordinary double points. Real curves have three types of ordinary double points.
Only two types are visible in RP2, and we are familiar with them from rational
cubics, which typically have an ordinary double point. The curve on the left below
has a node with two real branches, and the curve on the right has a solitary point
‘•’, where two complex conjugate branches meet.

The third type of ordinary double point is a pair of complex conjugate ordinary
double points, which are not visible in RP2.

Theorem 1.13 (Welschinger [162]). The sum,

(1.9)
∑

(−1)#{solitary points in C} ,

over all real rational curves C of degree d interpolating 3d−1 general points in RP2

does not depend upon the choice of points.

Set Wd to be the sum (1.9). The absolute value of this Welschinger invariant
is then a lower bound on the number of real rational curves of degree d interpo-
lating 3d−1 points in RP2. Since N1 = N2 = 1, we have W1 = W2 = 1. Prior to
Welschinger’s discovery, Kharlamov [33, Proposition 4.7.3] (see also Example 9.3)
showed that W3 = 8. The question remained whether any other Welschinger invari-
ants were nontrivial. This was settled in the affirmative by Itenberg, Kharlamov,
and Shustin [77, 78], who used Mikhalkin’s Tropical Correspondence Theorem [99]
to show

(1) If d > 0, then Wd ≥ d!
3 . (Hence Wd is positive.)

(2) lim
d→∞

logNd

logWd
= 1. (In fact for d large, logNd ∼ 3d log d ∼ logWd.)

In particular, there are always quite a few real rational curves of degree d interpo-
lating 3d−1 points in RP2. Since then, Itenberg, Kharlamov, and Shustin [79] gave
a recursive formula for the Welschinger invariant which is based upon Gathmann
and Markwig’s [60] tropicalization of the Caporaso-Harris [26] formula. This shows
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that W4 = 240 and W5 = 18264. Solomon [136] has also found an intersection-
theoretic interpretation for these invariants.

These ideas have also found an application. Gahleitner, Jüttler, and Schi-
cho [58] proposed a method to compute an approximate parameterization of a
plane curve using rational cubics. Later, Fiedler-Le Touzé [49] used the result of
Kharlamov (that W3 = 8), and an analysis of pencils of plane cubics to prove that
this method works.

While the story of this interpolation problem is fairly well-known, it was not
the first instance of lower bounds in enumerative real algebraic geometry. In their
investigation of the Shapiro Conjecture, Eremenko and Gabrielov found a similar
invariant σm,p which gives a lower bound on the number of real points in the inverse

image Wr−1(Φ) under the Wronski map of a real polynomial Φ ∈ RPmp). Assume
that p ≤ m. If m+ p is odd, set σm,p to be

(1.10)
1!2! · · · (m−1)!(p−1)!(p−2)! · · · (p−m+1)!(mp

2 )!

(p−m+2)!(p−m+4)! · · · (p+m−2)!
(
p−m+1

2

)
!
(
p−m+3

2

)
! · · ·

(
p+m−1

2

)
!
.

If m+ p is even, then set σm,p = 0. If p > m, then set σm,p := σp,m.

Theorem 1.14 (Eremenko-Gabrielov [45]). If a polynomial Φ(t) ∈ RPmp of
degree mp is a regular value of the Wronski map, then there are at least σm,p real
m-dimensional subspaces of polynomials of degree m+p−1 with Wronskian Φ.

Remark 1.15. The number of complex points in Wr−1(Φ) is #m,p (1.5). It
is instructive to compare these numbers. We show them for m+p = 11 and m =
2, . . . , 5.

m 2 3 4 5
σm,p 14 110 286 286
#m,p 4862 23371634 13672405890 396499770810

We also have σ7,6 ≈ 3.4 · 104 and #7,6 ≈ 9.5 · 1018. Despite this disparity in their
magnitudes, the asymptotic ratio of log(σm,p)/ log(#m,p) appears to be close to
1/2. We display this ratio in the table below, for different values of m and p.

log(σm,p)

log(#m,p)

m

2 m+p−1
10 2m+p−1

10 3m+p−1
10 4m+p−1

10 5m+p−1
10

m
+
p
−
1

100 0.47388 0.45419 0.43414 0.41585 0.39920 0.38840
1000 0.49627 0.47677 0.46358 0.45185 0.44144 0.43510
10000 0.49951 0.48468 0.47510 0.46660 0.45909 0.45459

100000 0.49994 0.48860 0.48111 0.47445 0.46860 0.46511
1000000 0.49999 0.49092 0.48479 0.47932 0.47453 0.47168

10000000 0.50000 0.49246 0.48726 0.48263 0.47857 0.47616

Thus, the lower bound on the number of real points in a fiber of the Wronski map
appears asymptotic to the square root of the number of complex solutions.

It is interesting to compare this to the the result of Shub and Smale [132]
that the expected number of real solutions to a system of n Gaussian random
polynomials in n variables of degrees d1, . . . , dn is

√
d1 · · · dn, which is the square

root of the number of complex solutions to such a system of polynomials. Thus 1
2

is the ratio of the logarithm of the expected number of complex solutions to the
logarithm of the expected number of real solutions.
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The idea behind the proof of Theorem 1.14 is to compute the topological de-
gree of the real Wronski map, which is the restriction of the Wronski map to real
subspaces of polynomials,

WrR := Wr|Gr(m,Rm+p−1[t]) : Gr(m,Rm+p−1[t]) −→ RPmp .

This maps the Grassmannian of real subspaces of polynomials of degree m+P−1
to the space of real polynomials of degree mp. Recall that the topological degree
(or mapping degree) of a map f : X → Y between two oriented manifolds X and
Y of the same dimension is the number d such that f∗[X] = d[Y ], where [X] and
[Y ] are the fundamental cycles of X and Y in homology, respectively, and f∗ is the
functorial map in homology. When f is differentiable, this mapping degree may be
computed as follows. Let y ∈ Y be a regular value of f so that the derivative map
on tangent spaces dfx : TxX → TyY is an isomorphism at any point x in the fiber
f−1(y) above y. Since X and Y are oriented, the isomorphism dfx either preserves
the orientation of the tangent spaces or it reverses the orientation. Let P be the
number of points x ∈ f−1(y) at which dfx preserves the orientation and R be the
number of points where the orientation is reversed. Then the mapping degree of f
is the difference P −R.

There is a slight problem in computing the mapping degree of WrR, as neither
the real Grassmannian GrR nor the real projective space RPmp are orientable when
m+p is odd, and thus the mapping degree of WrR is not defined when m+p is odd.
Eremenko and Gabrielov get around this by computing the degree of the restriction
of the Wronski map to open cells of GrR and RPmp, where WrR is a proper map.
They also show that it is the degree of a lift of the Wronski map to oriented double
covers of both spaces. The degree bears a resemblance to the Welschinger invariant
as it has the form |∑±1|, the sum over all real points in Wr−1

R
(Φ), for Φ a regular

value of the Wronski map. This resemblance is no accident. Solomon [136] showed
how to orient a moduli space of rational curves with marked points so that the
Welschinger invariant is indeed the degree of a map.

While both of these examples of geometric problems possessing a lower bound
on their numbers of real solutions are quite interesting, they are rather special. The
existence of lower bounds for more general geometric problems or for more general
systems of polynomials would be quite important in applications, as these lower
bounds guarantee the existence of real solutions.

With Soprunova, we [138] set out to develop a theory of lower bounds for sparse
polynomial systems, using the approach of Eremenko and Gabrielov via mapping
degree. This is a first step toward practical applications of these ideas. Chapters 7
and 8 will elaborate this theory. Here is an outline:

(i) Realize the solutions to a system of polynomials as the fibers of a map
from a toric variety.

(ii) Characterize when a toric variety (or its double cover) is orientable, thus
determining when the degree of this map (or a lift to double covers) exists.

(iii) Develop a method to compute the degree in some (admittedly special)
cases.

(iv) Give a nice family of examples to which this theory applies.
(v) Use the sagbi degeneration of a Grassmannian to a toric variety [154,

Ch. 11] and the systems of (iv) to reprove the result of Eremenko and
Gabrielov.
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Example 1.16. We close this overview with one example from this theory. Let
t, x, y, z be indeterminates, and consider a sparse polynomial of the form

(1.11) c4 txyz + c3(txz + xyz) + c2(tx+ xz + yz) + c1(x+ z) + c0 ,

where the coefficients c0, . . . , c4 are real numbers.

Theorem 1.17. A system involving four polynomials of the form (1.11) has
six solutions, at least two of which are real.

We make some remarks to illustrate the ingredients of this theory. First, the
monomials in the sparse system (1.11) are the integer points in the order polytope
of the poset P ,

P :=
t y

x z
.

That is, each monomial corresponds to an order ideal of P (a subset which is closed
upwards). The number of complex roots is the number of linear extensions of the
poset P . There are six, as each is a permutation of the word txyz where t precedes
x and y precedes z.

One result (ii) characterizes polytopes whose associated polynomial systems
will have a lower bound, and many order polytopes satisfy these conditions. An-
other result (iv) computes that lower bound for certain families of polynomials with
support an order polytope. Polynomials in these families have the form (1.11) in
that monomials with the same total degree have the same coefficient. For such
polynomials, the lower bound is the absolute value of the sum of the signs of the
permutations underlying the linear extensions. We list these for P .

permutation txyz tyxz ytxz tyzx ytzx yztx sum
sign + − + + − + 2

This shows that the lower bound in Theorem 1.17 is two.
Table 1.1 records the frequency of the different numbers of real solutions in

each of 10,000,000 instances of this polynomial system, where the coefficients were
chosen uniformly from [−200, 200]. This computation took 13 gigahertz-hours.

Table 1.1. Observed frequencies of numbers of real solutions.

number of real solutions 0 2 4 6

frequency 0 9519429 0 480571

The apparent gap in the numbers of real solutions in Table (1.1) (four does not
seem a possible number of real solutions) is proven for the system of Example 1.16
in Section 8.3. This is the first instance we have seen of this phenomena of gaps
in the numbers of real solutions. More are found in [138], [123], and some are
presented in Chapters 8, 13, and 14. Many examples of lower bounds continue to
be found, e.g. [3].



CHAPTER 2

Real Solutions to Univariate Polynomials

Before we study the real solutions to systems of multivariate polynomials, we
will review some of what is known for univariate polynomials. The strength and
precision of results concerning real roots of univariate polynomials forms the gold
standard in this subject of real solutions to systems of polynomials. We will dis-
cuss two results about univariate polynomials: Descartes’s rule of signs and Sturm’s
Theorem. Descartes’s rule of signs, or rather its generalization in the Budan-Fourier
Theorem, gives a bound for the number of roots in an interval, counted with mul-
tiplicity. Sturm’s theorem is topological—it simply counts the number of roots of a
univariate polynomial in an interval without multiplicity. From Sturm’s Theorem
we obtain a simple and very useful symbolic algorithm to count the number of real
solutions to a system of multivariate polynomials in many cases. We underscore
the topological nature of Sturm’s Theorem by presenting a new proof due to Burda
and Khovanskii [24]. These and other fundamental results about real roots of uni-
variate polynomials were established in the 19th century. In contrast, the main
results about real solutions to multivariate polynomials have only been established
in recent decades.

2.1. Descartes’s rule of signs

Descartes’s rule of signs [34] is fundamental for real algebraic geometry. Sup-
pose that we write the terms of a univariate polynomial f in increasing order of
their exponents,

(2.1) f = c0t
a0 + c1t

a1 + · · ·+ cmtam ,

where ci 6= 0 and a0 < a1 < · · · < am.

Theorem 2.1 (Descartes’s rule of signs). The number, r, of positive roots of
f , counted with multiplicity, is at most the variation in sign of its coefficients,

r ≤ #{i | 1 ≤ i ≤ m and ci−1ci < 0} ,
and the difference between the variation and r is even.

This has an immediate corollary, giving a bound on the numbers of real roots
of a univariate polynomial.

Corollary 2.2 (Descartes’ bound). A univariate polynomial (2.1) with m+1
terms has at most m positive roots, 2m nonzero roots, and 2m+1 real roots.

These bounds are sharp, and realized by the following polynomial,

(2.2) x(x2 − 1)(x2 − 2) · · · (x2 −m) .

13
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We will prove a generalization of Descartes’ rule of signs, the Budan-Fourier
Theorem, which provides a similar estimate for any interval in R. We first formalize
this notion of variation in sign that appears in Descartes’s rule.

The variation var(c) in a finite sequence c of real numbers is the number of times
that consecutive elements of the sequence have opposite signs, after we remove any
0s in the sequence. For example, the first sequence below has variation four, while
the second has variation three.

8,−4,−2,−1, 2, 3,−5, 7, 11, 12 − 1, 0, 1, 0, 1,−1, 1, 1, 0, 1 .

Given a sequence F = (f0, . . . , fk) of polynomials and a real number a ∈ R,
var(F, a) is the variation in the sequence f0(a), f1(a), . . . , fk(a). This notion also
makes sense when a = ±∞: We set var(F,∞) to be the variation in the sequence
of leading coefficients of the fi(t), which are the signs of fi(a) for a ≫ 0, and set
var(F,−∞) to be the variation in the leading coefficients of fi(−t).

Let δf be the sequence of derivatives of a polynomial f(t) of degree k,

δf := (f(t), f ′(t), f ′′(t), . . . , f (k)(t)) .

For a, b ∈ R∪ {±∞}, let r(f, a, b) be the number of roots of f in the interval (a, b],
counted with multiplicity. Budan [23] and Fourier [50] generalized Descartes’s rule.

Theorem 2.3 (Budan-Fourier). Let f ∈ R[t] be a univariate polynomial and
a < b two numbers in R ∪ {±∞}. Then

var(δf, a) − var(δf, b) ≥ r(f, a, b) ,

and the difference is even.

We deduce Descartes’s rule of signs from the Budan-Fourier Theorem once we
observe that for the polynomial f(t) (2.1), var(δf, 0) = var(c0, c1, . . . , cm), while
var(δf,∞) = 0, as the leading coefficients of δf all have the same sign.

Example 2.4. The the sextic f = 5t6 − 4t5 − 27t4 + 55t2 − 6 whose graph is
displayed below

−1 1 2
−20

20

40

60

f

t

has four real zeroes at approximately −0.3393, 0.3404, 1.598, and 2.256. If we
evaluate the derivatives of f at 0 we obtain

δf(0) = −6, 0, 110, 0, −648, −480, 3600 ,

which has 3 variations in sign. If we evaluate the derivatives of f at 2, we obtain

δf(2) = −26, −4, 574, 2544, 5592, 6720, 3600 ,
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which has one sign variation. Thus, by the Budan-Fourier Theorem, f has either
zero or two roots in the interval (0, 2), counted with multiplicity. This agrees with
our observation that f has two roots in the interval [0, 2].

Proof of Budan-Fourier Theorem. The variation var(δf, t) is constant
except possibly when t passes a root c of some polynomial in the sequence δf of
derivatives of f . Suppose that c is a root of some derivative of f and let ǫ > 0 be a
positive number such that no derivative f (i) has a root in the interval [c− ǫ, c+ ǫ],
except possibly at c. Let m be the order of vanishing of f at c. We will prove that

(2.3)
(1) var(δf, c) = var(δf, c+ ǫ), and

(2) var(δf, c− ǫ) ≥ var(δf, c) +m, and the difference is even.

We deduce the Budan-Fourier theorem from these conditions. As t ranges from
a to b, r(f, a, t) and var(δf, t) can only change when t passes a root c of f or one of
its derivatives. At such a point, r(f, a, t) jumps by the multiplicity m of the point
c as a root of f , while var(δf, t) drops by m, plus a nonnegative even integer. Thus
the sum r(f, a, t) + var(δf, t) can only change at roots c of f or of its derivatives,
where it drops by a nonnegative even integer. The Budan-Fourier Theorem follows,
as this sum equals var(δf, a) when t = a.

We prove our claim about the behavior of var(δf, t) in a neighborhood of a root
c of some derivative f (i) by induction on the degree of f . When f has degree 1,
then we are in one of the following two cases, depending upon the sign of f ′

f(t)

f ′(t)

c− ǫ

c c+ ǫ

f(t)

f ′(t)

c− ǫ c

c+ ǫ

In both cases, var(δf, c − ǫ) = 1, but var(δf, c) = var(δf, c + ǫ) = 0, which proves
the claim when f is linear.

Now suppose that the degree of f is greater than 1 and let m be the order of
vanishing of f at c. We first treat the case when f(c) = 0, and hence m > 0 so that
f ′ vanishes at c to order m−1. By our induction hypothesis for f ′,

var(δf ′, c) = var(δf ′, c+ ǫ) , and

var(δf ′, c− ǫ) ≥ var(δf ′, c) + (m− 1) ,

and the difference is even. By Lagrange’s Mean Value Theorem applied to the
intervals [c− ǫ, c] and [c, c+ ǫ], f and f ′ must have opposite signs at c− ǫ, but the
same signs at c+ ǫ, and so

var(δf, c) = var(δf ′, c) = var(δf ′, c+ ǫ) = var(δf, c+ ǫ) ,

var(δf, c− ǫ) = var(δf ′, c− ǫ) + 1

≥ var(δf ′, c) + (m− 1) + 1 = var(δf, c) +m,

and the difference is even. This proves the claim when f(c) = 0.
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Now suppose that f(c) 6= 0 so that m = 0. Let n be the order of vanishing of
f ′ at c. We apply our induction hypothesis to f ′ to obtain that

var(δf ′, c) = var(δf ′, c+ ǫ), and var(δf ′, c− ǫ) ≥ var(δf ′, c) + n ,

and the difference is even. We have f(c) 6= 0, but f ′(c) = · · · = f (n)(c) = 0, and
f (n+1)(c) 6= 0. Multiplying f by −1 if necessary, we may assume that f (n+1)(c) > 0.
There are four cases: n even or odd, and f(c) positive or negative.

Suppose that n is even. Then both f ′(c − ǫ) and f ′(c + ǫ) are positive and so
for each t ∈ {c− ǫ, c, c+ ǫ} the first nonzero term in the sequence

(2.4) f ′(t), f ′′(t), . . . , f (k)(t)

is positive. When f(c) is positive, this implies that var(δf, t) = var(δf ′, t) and
when f(c) is negative, that var(δf, t) = var(δf ′, t) + 1. This proves the claim as it
implies that var(δf, c) = var(δf, c+ ǫ) and also that

var(δf, c− ǫ) − var(δf, c) = var(δf ′, c− ǫ) − var(δf ′, c) ,

but this last difference exceeds n by an even number, and so is even as n is even.
Now suppose that n is odd. Then f ′(c − ǫ) < 0 < f ′(c + ǫ) and so the first

nonzero term in the sequence (2.4) has sign −,+,+ at t = c−ǫ, c, c+ǫ, respectively.
If f(c) is positive, then var(δf, c−ǫ) = var(δf ′, c−ǫ)+1 and the other two variations
are unchanged, but if f(c) is negative, then the variation at t = c− ǫ is unchanged,
but it increases by 1 at t = c and t = c + ǫ. This again implies the claim, as
var(δf, c) = var(δf, c+ ǫ), but

var(δf, c− ǫ)− var(δf, c) = var(δf ′, c− ǫ)− var(δf ′, c) ± 1 .

The difference var(δf ′, c− ǫ)− var(δf ′, c) equals the order n of the vanishing of f ′

at c plus a nonnegative even number. Adding or subtracting 1 gives a nonnegative
even number. This completes the proof of the Budan-Fourier Theorem.

2.2. Sturm’s Theorem

The Sylvester sequence of univariate polynomials f, g is

f0 := f, f1 := g, f2, . . . , fk ,

where fk is a greatest common divisor of f and g, and

−fi+1 := remainder(fi−1, fi) ,

the usual remainder from the Euclidean algorithm. Note the sign. We remark that
we have polynomials q1, q2, . . . , qk−1 such that

(2.5) fi−1(t) = qi(t)fi(t) − fi+1(t) ,

and the degree of fi+1 is less than the degree of fi. The Sturm sequence of a
univariate polynomial f is the Sylvester sequence of the polynomials f, f ′.

Theorem 2.5 (Sturm’s Theorem). Let f be a univariate polynomial and a, b ∈
R ∪ {±∞} with a < b and f(a), f(b) 6= 0. Then the number of zeroes of f in the
interval (a, b) is the difference

var(F, a) − var(F, b) ,

where F is the Sturm sequence of f .
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Example 2.6. The sextic f of Example 2.4 has Sturm sequence

f = 5t6 − 4t5 − 27t4 + 55t2 − 6

f1 := f ′(t) = 30t5 − 20t4 − 108t3 + 110t

f2 = 84
9 t4 + 12

5 t3 − 110
3 t2 − 22

9 t+ 6

f3 = 559584
36125 t3 + 143748

1445 t2 − 605394
7225 t− 126792

7225

f4 = 229905821875
724847808 t2 + 1540527685625

4349086848 t+ 7904908625
120807968

f5 = − 280364022223059296
58526435357253125 t+ 174201756039315072

292632176786265625

f6 = − 17007035533771824564661037625
162663080627869030112013128 .

The Sturm sequence at t = 0,

−6, 0, 6, − 126792
7225 , 174201756039315072

292632176786265625 , − 17007035533771824564661037625
162663080627869030112013128 ,

has four variations in sign, while the Sturm sequence at t = 2,

−26 , −4 , 1114
45 , 3210228

36125 , − 1076053821625
2174543424 , and

− 2629438466191277888
292632176786265625 , − 17007035533771824564661037625

162663080627869030112013128 ,

has two variations in sign. Thus by Sturm’s Theorem, we see that f has two roots
in the interval [0, 2], which we have already seen by other methods.

Sturm’s Theorem may be used to isolate real solutions to a univariate polyno-
mial f by finding intervals that contain a unique root of f . When (a, b) = (−∞,∞),
Sturm’s Theorem gives the total number of real roots of a f . In this way, it leads
to an algorithm to investigate the number of real roots of systems of polynomials.
This algorithm has been used in an essential way to get information on real solu-
tions which helped to formulate many results discussed in later chapters, and to
count the numbers of real solutions reported in the tables of Chapters 13 and 14.

Suppose that we have a system of real multivariate polynomials

(2.6) f1(x1, . . . , xn) = f2(x1, . . . , xn) = · · · = fN (x1, . . . , xn) = 0 ,

whose number of real roots we wish to determine. Let I ⊂ R[x1, . . . , xn] be the
ideal generated by the polynomials f1, f2, . . . , fN . If (2.6) has finitely many complex
zeroes, then the dimension of the quotient ring R[x1, . . . , xn]/I (the degree of I)
is finite. Thus, for each variable xi, there is a univariate polynomial g(xi) ∈ I of
minimal degree, called an eliminant for I. The significance of eliminants comes
from the following observation.

Lemma 2.7. The roots of an eliminant g(xi) ∈ I form the set of ith coordinates
of solutions to (2.6).

The algorithm for counting the number of real solutions to (2.6) is a consequence
of Sturm sequences and the Shape Lemma [8].

Theorem 2.8 (Shape Lemma). Suppose that I has an eliminant g(xi) whose
degree is equal to the degree of I and is square-free. Then the number of real
solutions to (2.6) is equal to the number of real roots of g.

Suppose that the coefficients of the polynomials fi in the system (2.6) lie in a
computable subfield of R, for example, Q (e.g. if the coefficients are integers). Then
we may compute a Gröbner basis for I. From this, we may compute the degree of
I, and we may also use the Gröbner basis to compute an eliminant g(xi). Since
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Buchberger’s algorithm does not enlarge the field of the coefficients, g(xi) ∈ Q[xi]
has rational coefficients, and so we may use Sturm sequences to compute the number
of its real roots. We state this more precisely.

Algorithm 2.9. Given: I = 〈f1, . . . , fN 〉 ⊂ Q[x1, . . . , xn]

(1) Compute a Gröbner basis G of I.
(2) Use G to compute the degree d of I.
(3) Use G to compute an eliminant g(xi) ∈ I ∩Q[xi] for I.
(4) If deg(g) = d and g is square-free, then use Sturm sequences to compute

the number r of real roots of g(xi), and output “The ideal I has r real
solutions.”

(5) Otherwise output “The ideal I does not satisfy the hypotheses of the
Shape Lemma for the variable xi.”

If this algorithm halts with a failure (step 5), it may be called again to compute
an eliminant for a different variable. Another strategy is to apply a random linear
transformation before eliminating. An even more sophisticated form of elimination
is Roullier’s rational univariate representation [122].

Proof of Sturm’s Theorem. Let f(t) be a real univariate polynomial with
Sturm sequence F . We prove Sturm’s Theorem by looking at the variation var(F, t)
as t increases from a to b. This variation can only change when t passes a number
c where some member fi of the Sturm sequence has a root, for then the sign of fi
could change. We will show that if i > 0, then this has no effect on the variation
of the sequence, but when c is a root of f = f0, then the variation decreases by
exactly 1 as t passes c. Since multiplying a sequence by a nonzero number does
not change its variation, we will at times make an assumption on the sign of some
value fj(c) to reduce the number of cases to examine.

Observe first that by (2.5), if fi(c) = fi+1(c) = 0, then fi−1 also vanishes at
c, as do all the other polynomials fj . In particular f(c) = f ′(c) = 0, so f has a
multiple root at c. Suppose first that this does not happen, either that f(c) 6= 0 or
that c is a simple root of f .

Suppose that fi(c) = 0 for some i > 0. Together with (2.5), this implies
that fi−1(c) and fi+1(c) have opposite signs. Then, whatever the sign of fi(t)
for t near c, there is exactly one variation in sign coming from the subsequence
fi−1(t), fi(t), fi+1(t), and so the vanishing of fi at c has no effect on the variation
as t passes c. This argument works equally well for any Sylvester sequence.

Now we consider the effect on the variation when c is a simple root of f . In
this case f ′(c) 6= 0, so we may assume that f ′(c) > 0.

c
f

f ′

But then f(t) is negative for t to the left of c and positive for t to the right of c.
In particular, the variation var(F, t) decreases by exactly 1 when t passes a simple
root of f and does not change when f does not vanish.

We are left with the case when c is a multiple root of f . Suppose that its
multiplicity is m+1. Then (t−c)m divides every polynomial in the Sturm sequence
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of f . Consider the sequence of quotients,

G = (g0, . . . , gk) :=
(
f/(t− c)m, f ′/(t− c)m, f2/(t− c)m, · · · , fk/(t− c)m

)
.

Note that var(G, t) = var(F, t) when t 6= c, as multiplying a sequence by a nonzero
number does not change its variation. Observe also that G is a Sylvester sequence.
Since g1(c) 6= 0, not all polynomials gi vanish at c. But we showed in this case
that there is no contribution to a change in the variation by any polynomial gi with
i > 0.

It remains to examine the contribution of g0 to the variation as t passes c. If
we write f(t) = (t− c)m+1h(t) with h(c) 6= 0, then

f ′(t) = (m+ 1)(t− c)mh(t) + (t− c)m+1h′(t) .

In particular,

g0(t) = (t− c)h(t) and g1(t) = (m+ 1)h(t) + (t− c)h′(t) .

If we assume that h(c) > 0, then g1(c) > 0 and g0(t) changes from negative to
positive as t passes c. Once again we see that the variation var(F, t) decreases by
1 when t passes a root of f . This completes the proof of Sturm’s Theorem.

2.3. A topological proof of Sturm’s Theorem

We present a second, very elementary, proof of Sturm’s Theorem due to Burda
and Khovanskii [24] whose virtue is in its tight connection to topology. We first
recall the definition of the degree of a continuous function ρ : RP1 → RP1 from
topology. Since RP1 is isomorphic to the quotient R/Z, we may pull ρ back to
the interval [0, 1] to obtain a map [0, 1] → RP1. This map lifts to the universal
cover of RP1 to obtain a map ρ̃ : [0, 1] → R. Then the mapping degree, mdeg(ρ),
of ρ is simply ρ̃(1)− ρ̃(0), which is an integer. We call this the mapping degree to
distinguish it from the usual algebraic degree of a polynomial or rational function.

The key ingredient in this proof is a formula to compute the mapping degree of
a rational function ρ : RP1 → RP1. Any rational function ρ = f/g where f, g ∈ R[t]
are polynomials has a continued fraction expansion of the form

(2.7) ρ = q0 +
1

q1 +
1

q2 +
1

. . .

+
1

qk

where q0, . . . , qk are polynomials. Indeed, this continued fraction is constructed
recursively. If we divide f by g with remainder h, so that f = q0g + h with the
degree of h less than the degree of g, then

ρ = q0 +
h

g
= q0 +

1

g

h

.
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We may now divide g by h with remainder, g = q1h+ k and obtain

ρ = q0 +
1

q1 +
1

h

k

.

As the degrees of the numerator and denominator drop with each step, this process
terminates with an expansion (2.7) of ρ.

For example, if f = 4t4 − 18t2 − 6t and g = 4t3 + 8t2 − 1, then

f

g
= t− 2 +

1

−2t+ 1 +
1

−2t− 3 +
1

t+ 1

This continued fraction expansion is just the Euclidean algorithm in disguise.
Suppose that q = c0 + c1t+ · · ·+ cdt

d is a real polynomial of degree d. Define

[q(t)] := sign(cd) · (d mod 2) ∈ {±1, 0} .
Theorem 2.10. Suppose that ρ is a rational function with continued fraction

expansion (2.7). Then the mapping degree of ρ is

[q1(t)]− [q2(t)] + · · ·+ (−1)k−1[qk(t)] .

We may use this to count the roots of a real polynomial f by the following
lemma.

Lemma 2.11. The number of roots of a polynomial f , counted without multi-
plicity, is the mapping degree of the rational function f/f ′.

Proof of Sturm’s Theorem from Lemma 2.11. Let f0, f1, . . . , fk be the
Sturm sequence for f . Then f0 = f , f1 = f ′, and for i > 1, we have −fi+1 :=
remainder(fi−1, fi). That is, deg(fi) < deg(fi−1) and there are univariate polyno-
mials g1, g2, . . . , gk with

fi−1 = gifi − fi+1 for i = 1, 2, . . . , k−1 .

We relate these polynomials to those obtained from the Euclidean algorithm applied
to f, f ′ and thus to the continued fraction expansion of f/f ′. It is clear that the fi
differ only by a sign from the remainders in the Euclidean algorithm. Set r0 := f
and r1 = f ′, and for i > 1, ri := remainder(ri−2, ri−1). Then deg(ri) < deg(ri−1),
and there are univariate polynomials q1, q2, . . . , qk with

ri−i = qiri + ri+1 for i = 1, . . . , k−1 .

We leave the proof of the following lemma as an exercise for the reader.

Lemma 2.12. We have gi = (−1)i−1qi and fi = (−1)⌊
i
2 ⌋ri, for i = 1, 2, . . . , k.

Write F for the Sturm sequence (f0, f1, f2, . . . , fk) of f and f top for the lead-
ing coefficient of fi. Then var(F,∞) is the variation in the leading coefficients

(f top
0 , f top

1 , . . . , f top
k ) of the polynomials in F . Similarly, var(F,−∞) is the varia-

tion in the sequence

((−1)deg(f0)f top
0 , (−1)deg(f1)f top

1 , . . . , (−1)deg(fk)f top
k ) .
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Note that the variation in a sequence (c0, c1, . . . , ck) is just the sum of the variations
in each length two subsequence (ci−1, ci) for i = 1, . . . , k. Thus

(2.8) var(F,−∞)− var(F,∞)

=

k∑

i=1

(
var

(
(−1)deg(fi−1)f top

i−1, (−1)deg(fi)f top
i

)
− var(f top

i−1, f
top
i )

)
.

Since fi−1 = gifi − fi+1 and deg(fi+1) < deg(fi) < deg(fi−1), we have

f top
i−1 = gtopi f top

i and deg(fi−1) = deg(gi) + deg(fi) .

Thus we have

var(f top
i−1, f

top
i ) = var(gtopi , 1) , and

var
(
(−1)deg(fi−1)f top

i−1, (−1)deg(fi)f top
i

)
= var((−1)deg(gi)gtopi , 1) .

Thus the summands in (2.8) are

var((−1)deg(gi)gtopi , 1) − var(gtopi , 1) = sign(gtopi )(deg(gi) mod 2)

= [gi(t)] = (−1)i−1[qi(t)] ,

This proves that

var(F,−∞)− var(F,∞) = [g1(t)] + [g2(t)] + · · ·+ [gk(t)]

= [q1(t)]− [q2(t)] + · · ·+ (−1)k−1[qk(t)] .

But this proves Sturm’s Theorem, as this is the number of roots of f , by Theo-
rem 2.10 and Lemma 2.11.

The key to the proof of Lemma 2.11 is an alternative formula for the mapping
degree of a continuous function ρ : RP1 → RP1. Suppose that p ∈ RP1 is a point
with finitely many inverse images ρ−1(p). To each inverse image q of p we associate
an index that records the behavior of ρ(t) as t increases past q. The index is +1 if
ρ(t) increases when t passes q, it is −1 if ρ(t) decreases when t passes q, and it is 0
if ρ(t) stays on the same side of p as t passes q. Here, increase/decrease are taken
with respect to the orientation of RP1.) For example, here is a graph of a function
ρ in relation to the value p with the indices of inverse images indicated.

ρ

p
0

−1 0 +1

With this definition, the mapping degree of ρ is the sum of the indices of the points
in a fiber ρ−1(p), whenever the fiber is finite. That is,

mdeg(ρ) =
∑

a∈ρ−1(p)

index of a .
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Proof of Lemma 2.11. The zeroes of the rational function ρ := f/f ′ coincide
with the zeroes of f . Suppose f(a) = 0 so that a lies in ρ−1(0). The lemma will
follow once we show that a has index +1.

Since f(a) = 0, we may write f(t) = (t− a)dh(t), where h is a polynomial with
h(a) 6= 0. We see that f ′(t) = d(t− a)d−1h(t) + (t− a)dh′(t), and so

ρ(t) =
f(t)

f ′(t)
=

(t− a)h(t)

dh(t) + (t− a)h′(t)
≈ t− a

d
,

the last approximation being valid for t near a as h(t) 6= 0. Since d is positive, we
see that the index of the point a in the fiber ρ−1(0) is +1.

Proof of Theorem 2.10. Suppose first that ρ and ρ′ are rational functions
with no common poles. Then

mdeg(ρ+ ρ′) = mdeg(ρ) + mdeg(ρ′) .

To see this, note that (ρ + ρ′)−1(∞) is just the union of the sets ρ−1(∞) and
ρ′−1(∞), and the index of a pole of ρ equals the index of the same pole of (ρ+ ρ′).

Next, observe that mdeg(ρ) = −mdeg(1/ρ). For this, consider the behavior
of ρ and 1/ρ near the level set 1. If ρ > 1 than 1/ρ < 1 and vice-versa. The two
functions have index 0 at the same points, and opposite index at the remaining
points in the fiber ρ−1(1) = (1/ρ)−1(1).

Now consider the mapping degree of ρ = f/g as we construct its continued
fraction expansion. At the first step f = f0g + h, so that ρ = f0 + h/g. Since f0 is
a polynomial, its only pole is at ∞, but as the degree of h is less than the degree
of g, h/g does not have a pole at ∞. Thus the mapping degree of ρ is

mdeg(f0 + h/g) = mdeg(f0) + mdeg(h/g) = mdeg(f0)−mdeg(g/h) .

The theorem follows by induction, as mdeg(f0) = [f0(t)].

We close this chapter with an application of this method. Suppose that we
are given two polynomials f and g, and we wish to count the zeroes a of f where
g(a) > 0. If g = (x − b)(x − c) with b < c, then this will count the zeroes of f in
the interval [b, c], which we may do with either of the main results of this chapter.
If g has more roots, it is not a priori clear how to use the methods in the first two
sections of this chapter to solve this problem.

A first step toward solving this problem is to compute the mapping degree of
the rational function

ρ :=
f

gf ′ .

We consider the indices of its zeroes. First, the zeroes of ρ are those zeroes of f
that are not zeroes of g, together with a zero at infinity if deg(g) > 1. If f(a) = 0
but g(a) 6= 0, then f = (t− a)dh(t) with h(a) 6= 0. For t near a,

ρ(t) ≈ t− a

d · g(a) ,

and so the preimage a ∈ ρ−1(0) has index sign(g(a)). If deg(g) = e > 1 and
deg(f) = d then the asymptotic expansion of ρ for t near infinity is

ρ(t) ≈ 1

dgete−1
,
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where ge is the leading coefficient of g. Thus the index of∞ ∈ ρ−1(0) is sign(ge)(e−1
mod 2) = [g′(t)]. We summarize this discussion.

Lemma 2.13. If deg(g) > 1, then
∑

{a|f(a)=0}
sign(g(a)) = mdeg(ρ) − [g′(t)] ,

and if deg(g) = 1, the correction term −[g′(t)] is omitted.

Since mdeg(ρ) = −mdeg(1/ρ), we have the alternative expression for this sum.

Lemma 2.14. Let q1, q2, . . . , qk be the successive quotients in the Euclidean
algorithm applied to the division of f ′g by f . Then

∑

{a|f(a)=0}
sign(g(a)) = [q2(t)]− [q3(t)] + · · ·+ (−1)k[qk(t)] .

Proof. We have

mdeg
f

f ′g
= −mdeg

f ′g

f
= −[q1(t)] + [q2(t)]− · · ·+ (−1)k[qk(t)] ,

by Theorem 2.10. Note that we have f ′g = q1f +r1. If we suppose that deg(f) = d
and deg(g) = e, then deg(q1) = e− 1. Also, the leading term of q is dge, where ge
is the leading term of g, which shows that [q1(t)] = [g′(t)]. Thus the lemma follows
from Lemma 2.13, when deg(g) ≥ 2.

But it also follows when deg(g) < 2 as [q1(t)] = 0 in that case.

Now we may solve our problem. For simplicity, suppose that deg g > 1. Note
that

1
2

(
sign(g2(a)) + sign(g(a))

)
=

{
1 if g(a) > 0
0 otherwise

.

And thus

#{a | f(a) = 0, g(a) > 0} =
1

2
mdeg

(
f

g2f ′

)
+

1

2
mdeg

(
f

gf ′

)
,

which solves the problem.





CHAPTER 3

Sparse Polynomial Systems

Consider a system of n polynomials in n variables

(3.1) f1(x1, . . . , xn) = f2(x1, . . . , xn) = · · · = fn(x1, . . . , xn) = 0 ,

where the polynomial fi has total degree di. By Bézout’s Theorem [14], this system
has at most d1d2 · · · dn isolated complex solutions, and exactly that number if the
polynomials are generic among all polynomials with the given degrees.

Polynomials in nature (e.g. from applications) are not necessarily generic—often
they have additional structure which we would like our count of solutions to reflect.
The goal of this chapter and the next is to explain and present the basic polyhedral
bounds of Kushnirenko and Bernstein, which count the number of solutions to a
system (3.1) when the extra structure comes from geometric combinatorics—the
collection of monomials which appear in the polynomials.

Example 3.1. Consider the system of two polynomials in the variables (x, y),

(3.2) f := x2y + 2xy2 + xy − 1 = 0 and g := x2y − xy2 − xy + 2 = 0 .

These equations have the algebraic consequences,

f · (y − x+ 1) + g · (x+ 2y + 1) = 3x+ 3y + 1 , and

f · (3y3 − 3xy2 + 5y2 − 2xy + 2y − 3)

+ g · (6y3 + 3xy2 + 7y2 + 2xy + 2y + 3) = 9y3 + 9y2 + 2y + 9 .

The reader may check that f and g are algebraic consequences of the linear poly-
nomial and the cubic polynomial in y, which shows that the original system (3.1)
has three solutions—the cubic in y has three solutions, and for each, the linear
polynomial gives the corresponding x-coordinate of the solution to the system.

Both polynomials f and g have degree three, but they only have three common
solutions, which is fewer than the nine predicted by Bézout’s Theorem. The key
idea behind this deficit of 6 = 9 − 3 is illustrated by plotting exponent vectors of
the monomials which occur in the polynomials f and g.

(3.3)

x2y ↔ (2, 1)

xy2 ↔ (1, 2)

xy ↔ (1, 1)

1 ↔ (0, 0)

1

1

2

2

3

3
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The Newton polytope of f (and of g) is the convex hull of these exponent vectors.
This triangle has area 3

2 and is covered by three lattice triangles. Kushnirenko’s
Theorem implies that this number of lattice triangles equals the number of solutions
to (3.2).

3.1. Polyhedral bounds

The polynomial system in Example 3.1 is a sparse system whose support is
the set of integer points in the triangle of (3.3). More generally, let A ⊂ Zn be
a finite set of exponent vectors that affinely spans Rn. That is, the differences of
the vectors in A linearly span Rn. This is necessary for the system (3.1) to have
finitely many solutions for general polynomials fi.

A sparse polynomial f with support A is a linear combination

(3.4) f =
∑

a∈A
cax

a ca ∈ R

of monomials with exponents from A. While sparse polynomials occur naturally—
multilinear or multihomogeneous polynomials are an example—they also occur due
to human psychology. The difficulty of reasoning with polynomials having thou-
sands of terms, leads us to seek compact problem formulations with fewer terms.

Before we recall Kushnirenko’s Theorem from Chapter 1, we make some defi-
nitions. A sum of the form

∑
a∈A λa · a where each λa ≥ 0 and

∑
a∈A λa = 1 is a

convex combination of the points in A. Write ∆A ⊂ Rn for the convex hull of the
vectors in A. That is, is it the set of convex combinations of vectors in A,

∆A :=
{∑

a∈A
λa · a | λa ≥ 0 and

∑

a∈A
λa = 1

}
.

Write volume(∆) for the Euclidean volume of a polytope ∆, and recall that T :=
C∗ := C \ {0}. General principles in algebraic geometry imply that when the
system (3.1) of sparse polynomials with support A are general, then the number
d(A) of its solutions in Tn is constant. There are at least two relevant notions
of general. One implies that the number of solutions in Tn is d(A), counted with
multiplicity, and another is that the solutions occur without multiplicity.

Theorem 3.2 (Kushnirenko’s Theorem). A system (3.1) of n polynomials in n
variables with support A has at most n! volume(∆A) isolated solutions in Tn, and
exactly this number if the polynomials are generic given their support A.

Thus d(A) = n! volume(∆A). This chapter gives an algebraic-geometric proof
of this result due to Khovanskii and the next chapter will present a more algorithmic
proof. These proofs introduce useful geometry of sparse systems of polynomials.

We may also consider a system of polynomials (3.1) in which each polynomial fi
may have a different support Ai. We follow Bernstein’s exposition [11] to motivate
his bound for the number of solutions in Tn to such a mixed system.

When the coefficients of the polynomials f1, . . . , fn do not lie on some discrim-
inant hypersurface in the space of all possible coefficients, the number d(f1, . . . , fn)
of solutions in Tn (counted with multiplicity) to a mixed system f1 = · · · = fn = 0
is constant and so it depends upon the supports. Write d(A1, . . . ,An) for this
number. This number is invariant under translating any support Ai by a vector
a ∈ Zn, as that corresponds to multiplying fi by the invertible monomial xa. This
number is also invariant under an invertible change of coordinates on Tn—these are



3.2. GEOMETRIC INTERPRETATION OF SPARSE POLYNOMIAL SYSTEMS 27

monomial substitutions coming from the automorphisms GL(n,Z) of the lattice Zn

of characters of Tn. If we replace f1 in (3.1) by the product f1 · f ′
1, then we have

(3.5) d(f1 · f ′
1, f2, . . . , fn) = d(f1, f2, . . . , fn) + d(f ′

1, f2, . . . , fn) .

The support of f1 · f ′
1 is a subset of the pointwise sum A1 +A′

1 of their supports,
and its convex hull equals the Minkowski sum of the convex hulls,

∆A1+A′
1

= ∆A1
+∆A′

1
:= {a+ b | a ∈ ∆A1

, b ∈ ∆A′
1
} .

It is natural to expect that the function d(A1, . . . ,An) is also multilinear,

(3.6) d(A1 +A′
1, . . . ,An) = d(A1, . . . ,An) + d(A′

1, . . . ,An) .

Lastly, if all the supports were equal, Ai = A, then this number should reduce to
the number in Kushnirenko’s Theorem, d(A, . . . ,A) = d(A) = n! volume(∆A).

There is a unique function of the convex hulls of the supports (A1, . . . ,An) sat-
isfying these properties, namely Minkowski’s mixed volume. Minkowski (see [48])
showed that given convex bodiesK1, . . . ,Kn in Rn and positive numbers λ1, . . . , λn,
volume(λ1K1+ · · ·+λnKn) is a homogeneous polynomial of degree n in λ1 . . . , λn,
so there exist coefficients V (Ki1 , . . . ,Kin) for i1, . . . , in ∈ [n] such that

(3.7) volume(λ1K1 + · · ·+ λnKn) =
∑

i1,...,in∈[n]

V (Ki1 , . . . ,Kin)λi1 · · ·λin .

The mixed volume, MV(K1, . . . ,Kn) of K1, . . . ,Kn is is n!V (K1, . . . ,Kn) (the n!
is due to the normalized volume in Kushnirenko’s Theorem). Since (3.7) is a sym-
metric form in λ1, . . . , λn, mixed volume is multilinear, an so the algebraic identity

n!a1 · · · an =
n∑

k=1

(−1)n−k
∑

1≤i1<i2<···<ik≤n

(ai1 + · · ·+ aik)
n ,

implies the following formula for mixed volume
n∑

k=1

(−1)n−k
∑

1≤i1<i2<···<ik≤n

volume(Ki1 +Ki2 + · · ·+Kik) .

Theorem 3.3 (Bernstein’s Theorem). A system of n polynomials in n variables
where the polynomials have support A1, . . . ,An has at most MV(∆A1

, . . . ,∆An
)

isolated solutions in Tn, and exactly this number when the polynomials are generic
for their given support.

The gap in the argument for Theorem 3.3 was that the function d(A1, . . . ,An)
is multilinear. In Section 3.4 we present Bernstein’s elegant proof of this multilin-
earity, which also characterizes when the system has finitely many solutions.

3.2. Geometric interpretation of sparse polynomial systems

Consider the map

(3.8) ϕA : Tn ∋ x 7−→ [xa | a ∈ A] ∈ PA ,

where PA is the projective space with homogeneous coordinates [za | a ∈ A] indexed
by A. That is, PA is the quotient (CA \ {0})/T, where T acts by scalars. Write
[ya | a ∈ A] for the image of the vector (ya | a ∈ A) ∈ CA \ {0} and note that
[ya | a ∈ A] = [tya | a ∈ A] for any t ∈ T. We use a different notation for points
y ∈ PA than for the coordinate functions za as they are elements of dual vector
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spaces. While this may seem to be a pedantic distinction, it will be important in
our study of toric degenerations in Chapter 4, as the points y and coordinates z
transform differently under group actions.

This parameterization map (3.8) factors

Tn −→ TA −։ TA/δ(T) ⊂ PA ,

where TA = (C∗)|A| is the torus with coordinates indexed by A and δ(T) ⊂ TA is
the diagonal torus. The quotient torus TA/δ(T) consists of those points [za | a ∈
A] ∈ PA with no coordinate equal to zero. Notice that ϕA is a homomorphism into
this dense torus. Its kernel has the following description which we will explain in
Section 3.3. As A affinely spans Rn, its integer affine span ZA (the subgroup of Zn

spanned by differences of vectors in A) is a full rank subgroup of Zn, and so the
quotient group Zn/ZA is finite. The kernel of the map ϕA is identified with the
group of homomorphisms Zn/ZA → T, whose order is equal to |Zn/ZA|, which is
the index of ZA in the lattice Zn, called its lattice index and written [Zn : ZA].

Example 3.4. Suppose that A consists of the seven exponent vectors (0, 0),
(1, 0), (0, 1), (1, 1), (−1, 0), (0,−1), and (−1,−1). The convex hull ∆A of these
points is the hexagon,

1

1

−1

−1

and the map ϕA is

ϕA : (x, y) ∈ T2 7−→ [1, x, y, xy, x−1, y−1, x−1y−1] ∈ PA ≃ P6 .

Given a linear form Λ on PA,

Λ =
∑

a∈A
caza ,

its pullback ϕ∗
A(Λ) along ϕA is a polynomial with support A,

ϕ∗
A(Λ) =

∑

a∈A
cax

a .

This simple observation provides a bijective correspondence between linear
forms on PA and sparse polynomials with support A. The zero set of a sparse
polynomial on Tn is mapped to a hyperplane section H ∩ ϕA(Tn) of ϕA(Tn) (the
hyperplane H ⊂ PA is where the corresponding linear form vanishes). This leads
to the following geometric formulation of systems of polynomials with support A.

Lemma 3.5. The map ϕA gives a bijective correspondence between zero sets of
sparse polynomials with support A and pullbacks ϕ−1

A (H ∩ ϕA(Tn)) of hyperplane
sections. This extends to systems of polynomials. The solution set of a system of
polynomials (3.1) with support A is the pullback ϕ−1

A (L) = ϕ−1
A (L ∩ ϕA(Tn)) of a
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linear section of ϕA(Tn), where L has codimension equal to the dimension of the
linear span of the polynomials fi. When ZA = Zn this gives a bijection between
solutions to the system and points in the linear section.

Example 3.6. Consider the polynomial system of Example 3.1. Let a, b, c, d
be the exponent vectors (2, 1), (1, 2), (1, 1), and (0, 0), respectively. Then the map
ϕA is

(x, y) 7−→ [x2y , xy2 , xy , 1] ∈ PA ≃ P3 .

Its image consists of those points [za, zb, zc, zd] with zazbzd = z3c 6= 0, which defines
(part of) a cubic surface. The polynomial system (3.2) corresponds to the two
linear forms

za + 2zb + zc − zd = za − zb − zc + 2zd = 0 ,

which defines a line ℓ in P3. We show ℓ and (part of) the cubic surface. This is in
the affine part of PA where zc 6= 0 in the box [−4, 4]3. The best view is from the
+−+-orthant.

ℓ

za

zb

zd

solution ✲

From this, we see that there is one real solution to the system (3.2).

This description gives an interpretation for the number d(A) of solutions to a
general sparse system with support A. The degree, deg(X), of a subvariety X of Pm

dimension n is the number of points in a linear section L∩X ofX by a general linear
subspace L of codimension n. Define the toric variety XA parameterized by the
monomials A to be the closure of the image of ϕA. Since ϕA is a homomorphism,
we have the product

(3.9) d(A) = | ker(ϕA)| · deg(XA) .

Indeed, if L is a general linear subspace of PA of codimension n, then Bertini’s
theorem implies that L∩ϕA(Tn) = L∩XA and this intersection is transverse. The
number of points in such a linear section is the degree deg(XA) of XA, and each
point pulls back under ϕA to | ker(ϕA)| solutions to the sparse system corresponding
to the linear section. When the intersection is zero-dimensional but not transverse,
d(A) will be the sum of the solutions counted with algebraic multiplicities.

3.3. Proof of Kushnirenko’s Theorem

We prove Kushnirenko’s Theorem by showing that

n! · volume(∆A) = | ker(ϕA)| · deg(XA) = d(A) .

This proof is due to Khovanskii [85].
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We first determine the kernel of the map ϕA, which is the composition

Tn −→ TA −→ TA/δ(T) ⊂ PA

x 7−→ (xa | a ∈ A) 7−→ [xa | a ∈ A] .

To facilitate this computation, we assume that 0 ∈ A. This is no loss of generality,
for if 0 6∈ A, then we simply translate A so that one of its exponent vectors is the
origin. This has the effect of multiplying each point in ϕA(Tn) by a scalar, and so
it does not change the projective variety XA. It also multiplies each polynomial
in (3.1) by a common monomial, which affects neither the solutions in Tn nor their
number d(A). By the relation (3.9), this translation does not change the cardinality
of the kernel of ϕA.

Since 0 ∈ A, the z0-coordinate of ϕA is constant (x0 = 1) and so the map which
sends x ∈ Tn to (xa | a ∈ A) maps Tn into 1× TN ⊂ TA, where |A| = N + 1. The
composition of the two maps

1× TN −→ TA −→ TA/δ(T)
(
⊂ PA)

is an isomorphism. Thus it is sufficient to compute the kernel of the map

Tn −→ TA ,

x 7−→ (xa | a ∈ A) ,

which is {x ∈ Tn | xa = 1 for all a ∈ A}. Identifying Tn with Hom(Zn,T), this
is exactly those homomorphisms Zn → T which are trivial on ZA, or simply the
group Hom(Zn/ZA,T). Since ZA ⊂ Zn has full rank n, the quotient group Zn/ZA
is a finite abelian group, and so its dual group Hom(Zn/ZA,T) is also finite with
cardinality equal to that of Zn/ZA. Thus

(3.10) | ker(ϕA)| = [Zn : ZA] = |Zn/ZA| .
The homogeneous coordinate ring C[X] of a projective variety X ⊂ PA is

the quotient of the homogeneous coordinate ring C[za | a ∈ A] of PA by the
homogeneous ideal IX of polynomials vanishing on X, which is naturally graded
by the degree of the polynomials. Write Cd[X] for the dth graded piece of C[X].

The Hilbert polynomial hX(d) of a projective variety X is the polynomial
which is eventually equal to the dimension of the dth graded piece Cd[X] of the
homogeneous coordinate ring of X,

hX(d) = dim(Cd[X]) , for all d sufficiently large.

The Hilbert polynomial encodes many numerical invariants of X. For example, the
degree of the Hilbert polynomial is the dimension n of X and its leading coefficient
is deg(X)/n!. For a discussion of Hilbert polynomials, see Section 9.3 of [31].

We determine the Hilbert polynomial of the toric variety XA. For this, it is
helpful to consider a homogeneous version of the parameterization map ϕA. We
lift A ⊂ Zn to a homogenized set of exponent vectors A+ ⊂ 1× Zn by prepending
a component of 1 to each vector in A. That is,

A+ := {(1, a) | a ∈ A} .
Figure 3.1 shows lifted hexagon, where the first coordinate is vertical.

The map ϕA+ on T1+n has the same image in PA as does ϕA. The advantage
of ϕA+ is that its image in CA is stable under multiplication by scalars—this is
due to the new first coordinate of A+. If t is the first coordinate of T1+n, then



3.3. PROOF OF KUSHNIRENKO’S THEOREM 31

Figure 3.1. Lifted hexagon.

the pullback of the coordinate ring of PA to the ring of Laurent polynomials (the
coordinate ring of T1+n) is

SA := C[txa | a ∈ A] ≃ C[NA+] .

This is also the homogeneous coordinate ring of the toric variety XA = ϕA+(T1+n).
The grading on SA is given by the exponent of the variable t. It follows that

the dth graded piece of SA has a basis of monomials

{tdxa | (d, a) ∈ NA+} .
This index set is NA+ ∩ d∆A+ , which is equal to dA+, the set of d-fold sums of
vectors in A+. If we set t = 1, which amounts to projecting the set dA+ to the last
n coordinates, we see that this set is in bijection with the set dA of d-fold sums
of vectors in A. If we let HA(d) be the dimension of the dth graded piece of the
homogeneous coordinate ring of XA (also called the Hilbert function of XA), then
these arguments show that

HA(d) = |dA| .
We will estimate this Hilbert function, which will enable us to determine the leading
coefficient of the Hilbert polynomial, as the Hilbert function and Hilbert polynomial
agree for d sufficiently large.

An upper bound on the values of the Hilbert function is given by the observation
that dA is a subset of the set of integer points in the dth dilation d∆A of the polytope
∆A, that is, dA ⊂ ZA ∩ d∆A. More generally, let M ≃ Zn be a lattice in Rn and
∆ be a polytope with vertices in M . Ehrhart [38] (see also the book [7]) showed
that the counting function

P∆ : N ∋ d 7−→ |d∆ ∩M |
for the points of M contained in positive integer multiples of the polytope ∆ is a
polynomial in d. This polynomial is called the Ehrhart polynomial of the polytope
∆, and its degree is the dimension of the affine span of ∆. When ∆ has dimension
n, its leading coefficient is the volume of ∆, normalized so that a fundamental
parallelepiped of the lattice M has volume 1. That is, it is the Euclidean volume
divided by the lattice index [Zn : ZA]. When M = Zn, this is the ordinary
Euclidean volume of ∆.

Now suppose that ∆ = ∆A, the convex hull of A. Since dA ⊂ d∆A ∩ ZA, if
M = ZA, we have the upper bound for HA(d),

(3.11) P∆A
(d) ≥ HA(d) .
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We now give a lower bound for HA(d). Let B be the set of points b in ZA
which may be written as

b =
∑

a∈A
βaa ,

where βa is a rational number in [0, 1). Fix an expression for each b ∈ B as an
integer linear combination of elements of A, and let −ν with ν ≥ 0 be an integer
lower bound for the coefficients in these expressions for the finitely many elements
of B. Since 0 ∈ A, we may further assume that there is an integer µ ≥ 0 such that
for each such expression b =

∑
a∈A baa, we have µ =

∑
a∈A ba, and thus

(3.12) (µ, b) =
∑

a∈A
ba(1, a) , where − ν ≤ ba ∈ Z and µ, ν ∈ N .

For d ≥ ν|A|+ µ we claim that translation by the vector ν
∑

a∈A(1, a) + (µ, 0)
defines a map

ZA+ ∩ (d− ν|A| − µ)∆A+ −→ NA+ ∩ d∆A+ .

Indeed, a point v ∈ ZA+∩(d−ν|A|−µ)∆A+ is a nonnegative rational combination
of the vectors in A+,

v =
∑

a∈A
αa(1, a) , αa ∈ Q≥ with d− ν|A| − µ =

∑

a∈A
αa .

Writing αa = βa + γa, where βa ∈ [0, 1) and γa ∈ N, we have

v =
∑

a∈A
βa(1, a) +

∑

a∈A
γa(1, a) = (β, b) +

∑

a∈A
γa(1, a) ,

where (β, b) =
∑

a∈A βa(1, a). Then b ∈ B and β ∈ N, as β = d−∑
a γa. Using the

fixed expression (3.12), we have

v = (β, 0) + (0, b) +
∑

a∈A
γa(1, a)

= β(1, 0) + −µ(1, 0) + (µ, b) +
∑

a∈A
γa(1, a)

= β(1, 0) + −µ(1, 0) +
∑

a∈A
ba(1, a) +

∑

a∈A
γa(1, a) .

Thus

v + ν
∑

a∈A
(1, a) + (µ, 0) = β(1, 0) +

∑

a∈A
(ba + ν) · (1, a) +

∑

a∈A
γa(1, a) ,

which is a nonnegative integer linear combination of vectors (1, a) ∈ A+ that lies
in NA+ ∩ d∆A+ . This proves the claim.

The claim shows that

HA(d) ≥ P∆A
(d− ν|A| − µ) .

If we combine this estimate with (3.11), and use that the Hilbert function equals
the Hilbert polynomial for d sufficiently large, then we have shown that the Hilbert
polynomial hA of XA has the same degree and leading coefficient as the Ehrhart
polynomial P∆A

.
Thus the Hilbert polynomial has degree n and its leading coefficient is the

normalized volume of the polytope ∆A with respect to the lattice ZA, which is
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volume(∆A)/[Zn : ZA]. Since the degree of XA is n! times this leading coefficient,
we conclude that the degree of XA is

n!
volume(∆A)

[Zn : ZA]
.

Recall (3.10) that the kernel of ϕA has order [Zn : ZA]. Then the formula (3.9)
for the number d(A) of solutions to a sparse system (3.1) with support A becomes

d(A) = | ker(ϕA)| · deg(XA) = [Zn : ZA] · n! volume(∆A)

[Zn : ZA]
= n! volume(∆A) ,

which proves Kushnirenko’s Theorem.

3.4. Facial systems and degeneracies

An element ω ∈ Zn gives a linear function 〈ω, ·〉 on Zn,

Zn ∋ a 7−→ 〈ω, a〉 := ωTa ∈ Z .

Let m(ω,A) be the minimum value of 〈ω, ·〉 on a finite set A ⊂ Zn, and set

Aω := {a ∈ A | 〈ω, a〉 = m(ω,A)}
to be the subset of A where 〈ω, ·〉 achieves its minimum value. This consists of all
elements of A lying in the face of its convex hull along which the linear function
〈ω, ·〉 is minimized.

The initial form with respect to ω of a polynomial f with support A (3.4) is

inω(f) :=
∑

a∈Aω

cax
a .

This is essentially a polynomial in fewer than n variables. To see this, note that
the element ω ∈ Zn defines a map ω : T → Tn via

T ∋ t 7−→ tω := (tω1 , tω2 , . . . , tωn) ∈ Tn .

We compute inω(f)(t
ω · x), which is

∑

a∈Aω

ca(t
ω · x)a =

∑

a∈Aω

cat
〈ω,a〉 · xa = tm(ω,A)

∑

a∈Aω

cax
a = tm(ω,A) inω(f)(x) .

Thus inω(f) is a semi-invariant of the subgroup ω(T) ⊂ Tn.
Multiplying f by x−a for any a ∈ Aω does not change the zero set of f , but it

translates A to the set A′ := A − a. Since m(ω,A′) = m(ω,A) − 〈ω, a〉 = 0, the
new initial form

inω(x
−af) = x−a inω(f)

is an invariant of the subgroup ω(T) ⊂ Tn, and thus it induces a well-defined
Laurent polynomial on the quotient torus Tn/ω(T) ≃ Tn−1.

Given a system F (3.1) of polynomials and a vector ω ∈ Zn, the corresponding
initial system, or facial system inω(F ) is

inω(f1) = inω(f2) = · · · = inω(fn) = 0 .

After possibly multiplying each polynomial by a monomial, this becomes a system
of n polynomials on Tn/ω(T) ≃ Tn−1, which we would expect to have no solutions.

These definitions make sense for any ω ∈ Qn, with the exception of the in-
terpretation of inω(F ) as a system on the quotient Tn/ω(T). For that, we must
replace ω ∈ Qn by the shortest integer vector in the ray R>ω generated by ω.
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We now state Bernstein’s characterization of which systems (3.1) do not have
the expected number of solutions in Tn, even when counted with multiplicity.

Theorem 3.7. Let F be a system of polynomials

(3.13) f1(x1, x2, . . . , xn) = f2(x1, x2, . . . , xn) = · · · = fn(x1, x2, . . . , xn) = 0 ,

where the support of fi is Ai ∈ Zn. If no facial system inω(F ) for ω 6= 0 has a
solution, then all solutions are isolated and d(f1, . . . , fn) = d(A1, . . . ,An). If some
facial system inω(F ) for ω 6= 0 has a solution, then d(f1, . . . , fn) is strictly smaller
than d(A1, . . . ,An), unless d(A1, . . . ,An) = 0, in which case d(f1, . . . , fn) = 0.

The multilinearity (3.6) of d(A1, . . . ,An) follows from this and the additiv-
ity (3.5) of d(f1, f2, . . . , fn). This is enough to imply Bernstein’s Theorem.

Our proof of Theorem 3.7 uses the field C{t} of Puiseaux series. Elements of
C{t} are formal Laurent series ∑

p≥p0

cpt
p/q ,

in fractional powers of the indeterminate t (here, p ∈ Z and q is a positive inte-
ger). The Newton-Puiseaux Theorem (see [131, Prop. II.8]) asserts that C{t} is
algebraically closed. Since it contains the ring C[t] of univariate polynomials, it
contains the algebraic closure of the field C(t) of rational functions in t.

The value of C{t} for us is this last fact. Given an algebraic curve C ⊂ Tn with
a dominant map to C∗, each component not mapping to a point gives an algebraic
function of t ∈ C∗. This function may be expanded as a vector-valued Puiseaux
series in t,

(3.14) x(t) = cωt
ω + higher order terms in t ,

where cω ∈ Tn and tω = (tω1 , . . . , tωn) with ω ∈ Qn.

Proof of Theorem 3.7. Suppose first that the system (3.13) has a positive-
dimensional set of solutions. Choose a curve C in this set of solutions. This projects
dominantly onto some coordinate, t, and so we may expand C as a vector Puiseaux
series in t (3.14). Since t is a coordinate, the exponent ω is nonzero. A polynomial
of the system evaluated on this series (3.14) must vanish identically. In particular,
the coefficient of the lowest power of t must vanish. Since the term involving the
lowest power of t in fi(x(t)) is

tm(ω,Ai) · inω(fi)(cω) ,
we see that the initial term inω(fi) vanishes at cω, and so cω is a common solution
to the facial system given by ω.

If the solutions to the system (3.13) are isolated, but there are fewer than
expected, d(f1, . . . , fn) < d(A1, . . . ,An), then we consider a family of systems
depending upon a parameter t. Let g1, . . . , gn be general polynomials with supports
A1, . . . ,An, so that d(g1, . . . , gn) = d(A1, . . . ,An). Then the system Ft involving
the polynomials (1− t)f1 + tg1, . . . , (1− t)fn + tgn defines an algebraic function of
t. Expand each branch as a vector Puiseaux series in t (3.14).

If ω = 0 for a branch, then x(0) = cω is a solution to the system (3.13).
There must be branches with ω 6= 0, for otherwise d(f1, . . . , fn) = d(g1, . . . , gn) =
d(A1, . . . ,An) as when t = 1 there are d(g1, . . . , gn) = d(A1, . . . ,An) solutions.
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For a branch with ω 6= 0, the coefficient cω will be a solution to the facial system
corresponding to ω.

For the second statement, suppose that cω ∈ Tn/ω(T) is a solution to a facial
system inω(F ) = 0 for ω nonzero, and suppose that ω ∈ Zn is primitive. Then
we may identify T × (Tn/ω(T)) with Tn, and consider its compactification C ×
(Tn/ω(T)). Translating the support of the polynomial fi if necessary, we may
assume that m(ω,Ai) = 0, and therefore F is a system on C × (Tn/ω(T)), with
inω(F ) equal to the restriction of F to {0} × (Tn/ω(T)), and therefore (0, cω) is a
solution to this extended system.

If we perturb the system F by a general system with support (A1, . . . ,An) to
obtain Ft as before, then for t general, Ft has d(A1, . . . ,An) solutions. Each of
these lie on a curve of solutions to Ft = 0, as does the solution (0, cω) to F0 = 0.
This shows that in the limit as t → 0, at least one curve of solutions to Ft = 0
leads to (0, cω), and therefore F0 = 0 has fewer than d(A1, . . . ,An) solutions in
Tn = T× (Tn/ω(T)).

When d(A1, . . . ,An) = 0, there will be no curves of solutions to Ft, and there-
fore no solutions in Tn to F0 = 0.





CHAPTER 4

Toric Degenerations and Kushnirenko’s Theorem

Our study of bounds for the number of real solutions to systems of sparse
polynomial equations will make use of geometric constructions involving toric vari-
eties. This chapter introduces the important toric degenerations (sometimes called
Gröbner degenerations) on the way to a second proof of Kushnirenko’s Theorem
for the number of solutions to a system

(4.1) f1(x1, . . . , xn) = f2(x1, . . . , xn) = · · · = fn(x1, . . . , xn) = 0 ,

of polynomials with support A. The fundamental case of Kushnirenko’s Theorem
is when the monomials A form a simplex (|A| = n+1)—this is also fundamental in
our study of real solutions. The general case uses toric degenerations. The idea is
to replace the toric variety XA by a simpler variety whose degree is evident, and
then argue that the passage from XA to this simpler variety preserves the degree.
We close with an application of toric degenerations to prove Theorem 1.8, showing
that some polynomial systems may have all their solutions be real.

4.1. Kushnirenko’s Theorem for a simplex

Suppose that |A| = n + 1. Since A affinely spans Rn, its convex hull ∆A is a
simplex with vertices A. Then XA = Pn = PA. By Lemma 3.5, the solutions to
a sparse system (4.1) with support A have the form ϕ−1

A (L), where L ⊂ Pn is the
codimension n plane cut out by the linear forms which define the polynomials of
the system. Thus L is a point β ∈ Pn (which lies in the dense torus as the equations
are general) and the solutions have the form ϕ−1

A (β). Since ϕA is a homomorphism
to the dense torus of PA, these solutions form a single coset of ker(ϕA).

We may determine these solutions explicitly. Assume that 0 ∈ A. Since |A| =
n+ 1, we may write the sparse system (4.1) as

(4.2) C · (xa1 , xa2 , . . . , xan)T = b ,

where A−{0} = {a1, a2, . . . , an}, C is the n by n matrix of coefficients, and b ∈ Cn.
If our system is generic, then C is invertible and row operations on C and hence
on the system (4.2) lead to an equivalent system of binomials

(4.2)
′

xai = βi for i = 1, . . . , n .

where β1, . . . , βn ∈ T, and so the system has the form ϕ−1
A (β). (In fact, the re-

quirements that C be invertible and that the resulting constants βi ∈ T are the
conditions for genericity of this system.)

Let A be the n by n matrix whose columns are the nonzero exponent vectors
in A. We use the integer linear algebra of the matrix A to solve the system (4.2)′.

37
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Example 4.1. Consider the system of equations whose support is the simplex
A = {(16, 14), (22, 18), (0, 0)},

(4.3)
23x16y14 − x22y18 = −27 , and

35x16y14 − x22y18 = 9 .

The difference of the two equations is the binomial,

12x16y14 = 36 or x16y14 = 3 .

Back substitution gives x22y18 = 96. Thus we have the equivalent binomial system

(4.4) x16y14 = 3 and x22y18 = 96 .

Under the invertible substitution (the inverse is given by u = x8y7 and v = (xy)−1),

(4.5) x = uv7 and y = u−1v−8 ,

our equations become triangular in u and v,

(4.6)
(uv7)16(u−1v−8)14 = u16v112u−14v−112 = u2 = 3 , and
(uv7)22(u−1v−8)18 = u22v154u−18v−144 = u4v10 = 96 .

While the solution is now immediate, we make one further simplifying substitution.
Write f for the first equation and g for the second. Replacing g by gf−2 yields a
diagonal system which is now completely trivial to solve

(4.7)
f : u2 = 3 ,

gf−2 : v10 = 32/3 .

The solutions are u = ±
√
3 and v = ζ

√
2, where ζ runs over all 10th roots of

1
3 . Substituting these into (4.5), gives the 20 solutions to our original system of

equations (4.3).

Underlying these simplifications is the relation between the integer linear al-
gebra of n by n matrices and (multiplicative) coordinate changes in Tn. Since
Tn = Hom(Zn,T), its automorphism group is GL(n,Z), the group of invertible n
by n integer matrices, which is the source of that relation.

Remark 4.2. The monomials in (4.4) correspond to the columns of the matrix

A =

(
16 22
14 18

)
,

and the coordinate change (4.5) corresponds to left multiplication (hence row op-
erations) by the matrix (

1 −1
7 −8

)
.

Indeed, (
1 −1
7 −8

)(
16 22
14 18

)
=

(
2 4
0 10

)
,

which corresponds to the exponent vectors in the triangular system (4.6). This
matrix is the Hermite normal form of the matrix A—the row reduced echelon form
over Z. This notion makes sense for matrices whose entries lie in any principal ideal
domain, such as the integers Z or univariate polynomials over a field.
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Multiplicative reductions using the equations (4.7) correspond to multiplicative
coordinate changes in the target torus T2 and are represented by column operations,
or right multiplication by integer matrices. Indeed

(
2 4
0 10

)(
1 −2
0 1

)
=

(
2 0
0 10

)
,

which is the Smith normal form of the integer matrix A.

This discussion leads to a determination of the solutions to a general sparse
system supported on a simplex.

Theorem 4.3 (Kushnirenko’s Theorem for a simplex). A general system (4.1)
of polynomials supported on a simplex A has n! volume(∆A) distinct nonzero com-
plex solutions which may be computed by Algorithm 4.4 using Gaussian elimination,
Smith normal form, and extraction of roots.

Algorithm 4.4. Given a general system (4.1) of polynomials supported on
a simplex A, first multiply each polynomial by a monomial x−a for some a ∈ A,
replacing A by its translation A− a so that 0 ∈ A.

Next, write the sparse system in the form (4.2), use Gaussian elimination on
the coefficient matrix C to convert it into diagonal form (4.2)′, written as

(4.8) xA = β := (β1, . . . , βn) ∈ Tn ,

where A is the matrix whose columns are the nonzero vectors in A.
Then, compute the Smith normal form of the matrix A, obtaining invertible

integer n by n matrices P,Q and integers d1, . . . , dn such that

PAQ = D := diag(d1, d2, . . . , dn) .

The solutions to (4.8) and thus to (4.1) are obtained as follows. Let q1, . . . , qn
be the columns of Q and ξ1, . . . , ξn be any of the d1d2 · · · dn choices of roots

(4.9) ξj := dj

√
βqj for j = 1, . . . , n .

Letting p1, . . . , pn be the columns of P , then x = (ξp1 , . . . , ξpn) =: ξP is a solution
to (4.8), and all solutions are obtained in this way.

Correctness of Algorithm 4.4. Rewrite (4.9) as ξD = βQ. Since ξD =
ξPAQ, the invertible monomial substitution x = ξP gives xAQ = βQ. Acting on
the vector of equations by the invertible multiplicative substitutions given by Q−1,
we obtain xA = β, which shows that the algorithm gives solutions to (4.8). The
correctness and root count follow as these transformations are invertible.

Proof of Theorem 4.3. By Algorithm 4.4, the equation (4.9) has d1d2 · · · dn
distinct solutions. This number is | detA|, as D = PAQ with P and Q invertible
integer matrices. But | detA| is the Euclidean volume of the parallelepiped spanned
by the vectors a1, . . . , an, which is n! times the volume of the simplex spanned by
0 and these vectors.

4.2. Regular subdivisions and toric degenerations

Let A ⊂ Zn be a finite set that spans Rn. Lemma 3.5 and the definition of toric
variety provide a correspondence between solutions to systems of polynomials with
support A and linear sections L ∩ XA of the toric variety XA by complementary
dimensional linear spaces L. In Section 3.3 we computed the degree of XA. Here,
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we replace XA by a simpler variety related to it, inω(XA), and in the next section
show how the passage XA Ã inω(XA) affects the linear section.

This passage to a simpler variety relies upon the choice of an auxiliary function
ω : A → Z, which gives weights for an action of T on the space CA,

t.(ya | a ∈ A) = (tω(a)ya | a ∈ A) ,

inducing an action on PA. Consider the family of varieties,

XA := {(t, y) ∈ T× PA | t.y ∈ XA} ⊂ C× PA .

This has a natural projection π : XA → C, with the fiber π−1(t) over a point t ∈ T

the translated toric variety t−1.XA. The fiber π−1(0) of XA over 0 ∈ C is called
the scheme-theoretic limit of the family t−1.XA, and we write

lim
t→0

t−1.XA := π−1(0) .

This passage to a scheme-theoretic limit of an action of T is a toric degeneration.
We identify this scheme-theoretic limit. Let IA be the ideal of the toric variety

XA, called a toric ideal. The function ω determines a linear function 〈ω, ·〉 on NA,

NA ∋ α 7−→ 〈ω, α〉 :=
∑

a∈A
ω(a)αa ∈ Z .

As in Section 3.4, this leads to the notion of the initial form inω(f) of a polynomial
f ∈ C[za | a ∈ A], which is the sum of the terms in f whose exponents achieve the
minimum value under 〈ω, ·〉. The initial ideal inω(IA) is

inω(IA) := {inω(f) | f ∈ IA} ,
and the initial scheme inω(XA) is the scheme associated to the initial ideal. We
state the fundamental result about toric degenerations.

Theorem 4.5. The initial scheme equals the toric degeneration,

inω(XA) = π−1(0) = lim
t→0

t−1.XA .

This is an example of a flat family over C [39, Ch. 15]. (This technical fact
implies that all fibers have the same Hilbert polynomial.) This result that the toric
degeneration is the initial scheme is true for any variety.

Example 4.6. Consider this for the toric variety of Example 3.6 associated to
the lattice triangle of Example 3.1. This cubic hypersurface has equation

f := zazbzd − z3c ,

where a, b, c, d are the lattice points (2, 1), (1, 2), (1, 1), and (0, 0), respectively.
This equation comes from the vector identity

1 · (2, 1) + 1 · (1, 2) + 1 · (0, 0) = (3, 3) = 3 · (1, 1) ,
so the polynomial f is zα − zβ where α = (1, 1, 0, 1) and β = (0, 0, 3, 0). Let ω take
the value 2 on c = (1, 1) and the value 1 on the remaining lattice points, which are
vertices of the triangle. Then

〈ω, α〉 = 1 + 1 + 1 = 3 < 6 = 2 · 3 = 〈ω, β〉 ,
and so inω(f) is the monomial zazbzd. The ideal of XA is generated by

t−3t〈ω,α〉zazbzd − t−3t〈ω,β〉z3c = zazbzd − t3z3c .

Specializing this at t = 0 gives zazbzd = inω(f).
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We first determine the toric ideal IA and then study the passage to the limit.
As in Section 3.3, replace A by its lift A+ and consider the cone over XA, which is
the closure of the image of the map from T1+n,

ϕA+(x0, x) := (x0x
a | a ∈ A) .

(Unlike in Section 3.3, we use x0 rather than t for the homogenizing variable.) This
induces an algebra map,

C[za | a ∈ A]
ϕ∗

A+−−−−−→ C[x±
0 , x

±
1 , . . . , x

±
n ]

whose image is isomorphic to the homogeneous coordinate ring C[XA] of the toric
variety XA. This identifies the toric ideal IA as the kernel of the map ϕ∗

A+ .

Let α = (αa | a ∈ A) ∈ NA, which is an exponent vector of a monomial zα in
C[za | a ∈ A]. The image of zα under ϕ∗

A+ is

ϕ∗
A+(zα) = ϕ∗

A+

(∏

a∈A
zαa
a

)
=

∏

a∈A
(x0, x

a)αa = x
∑

αa

0 xAα ,

where Aα is the product of the column vector α with the matrix A whose columns
are the exponents in A.

This computation determines some binomials that lie in IA, namely

(4.10) zα − zβ where
∑

a∈A
αa =

∑

a∈A
βa and Aα = Aβ .

Writing A+ for the (1+n) by |A| matrix whose columns are the lifted exponents,
the condition in (4.10) becomes A+α = A+β. These binomials span the ideal.

Lemma 4.7 ([154, Lemma 4.1]). The toric ideal IA is spanned as a complex
vector space by the homogeneous binomials (4.10).

A point (t, y) with t ∈ T lies in XA if and only if t.y ∈ XA. Then, for any
α, β ∈ NA with A+α = A+β, we have

0 = (t.y)α − (t.y)β = t〈ω,α〉yα − t〈ω,β〉yβ ,

and so we obtain a binomial t〈ω,α〉zα − t〈ω,β〉zβ vanishing on XA ∩ (T× PA). Since
t is invertible on T, we may multiply this by tc for any c ∈ Z to obtain another
vanishing binomial. Thus the ideal of XA ∩ (T× PA) is spanned by the binomials

(4.11) tct〈ω,α〉zα − tct〈ω,β〉zβ for c ∈ Z , α, β ∈ NA with A+α = A+β .

The ideal of XA is the intersection of this ideal with the ring C[t, za | a ∈ A], so
that it is spanned by those binomials (4.11) having nonnegative exponents of t.

Corollary 4.8. The ideal of XA is the linear span of binomials

tct〈ω,α〉zα − tct〈ω,β〉zβ

for c ≥ −min(〈ω, α〉, 〈ω, β〉) where A+α = A+β.

The ideal of the fiber π−1(0) of XA is obtained by setting t = 0 in every
polynomial in the ideal of XA. The binomials in Corollary 4.8 will vanish unless
c = −min(〈ω, α〉, 〈ω, β〉). In that case there are two possibilities. Suppose that
A+α = A+β, and we have 〈ω, α〉 ≤ 〈ω, β〉. Then this specialization gives

(4.12) zα if 〈ω, α〉 < 〈ω, β〉 and zα − zβ if 〈ω, α〉 = 〈ω, β〉 .
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In either case, this specialization is the initial form inω(z
α−zβ) of the corresponding

binomial. This completes the proof of Theorem 4.5.

We interpret the binomials in IA (4.10) in terms of the convex geometry of the
set A of exponents. This will facilitate our partial description (Theorem 4.9) of the
initial ideal inω(IA) in terms of the convex geometry of the function ω : A → Z.

Suppose that α, β ∈ NA are exponent vectors with A+α = A+β so that zα −
zβ ∈ IA. This product A+α is a nonnegative integer combination of the vectors in
A+. Thus the binomial zα − zβ corresponds to a vector in the cone NA+ with two
distinct representations as a nonnegative integer sum of vectors in A+. Dividing
the vector A+α by its first coordinate |α| := ∑

a∈A αa, we obtain a vector (1, x)
and a representation

x =
∑

a∈A

αa

|α|a

of x as a rational convex combination of vectors in A. Since A+α = A+β, this point
x is a rational convex combination of elements of A in two distinct ways. Thus x is
a rational point lying in the convex hull of two different subsets of A. We explain
below how any such point x gives rise to a binomial zα − zβ ∈ IA.

We remark that if A is a simplex, then points in its convex hull have unique
representations as convex combinations of points of A, so IA = 0 (which we already
saw as XA = PA is the full projective space).

The graph of the map ω : A → Z is a configuration of lattice points in R1+n.
Let Pω be the convex hull of this configuration,

(4.13) Pω := conv{(ω(a), a) | a ∈ A} .
The upper facets of the polytope Pω are those facets whose inward-pointing normal
vector has a negative first coordinate. Projecting these upper facets back to Rn

gives the facets in the regular polyhedral subdivision ∆ω of the convex hull ∆A of
A induced by the function ω. Faces of these facets give upper faces of Pω and faces
of the polyhedral subdivision ∆ω.

This construction induces a regular subdivision Sω of A, which is a collection
of subsets F of A, called faces, indexed by the faces of ∆ω. The subset F corre-
sponding to a face F of ∆ω consists of those points in A whose lift to Pω lies in the
upper face corresponding to F . The convex hull of F is the face F , but not every
element of A ∩ F need be contained in F . We show two different functions that
induce the same regular polyhedral subdivision of the 2 × 2 square, but different
regular subdivisions of A.

The difference is that the center point of A does not lie in any face of the subdivision
on the right as its lift does not lie on any upper face.
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We use the polytope Pω and the corresponding regular subdivision Sω to un-
derstand the elements (4.12) of the initial ideal of IA. Let x be a point of conv(A)
with more than one representation as a rational convex combination of points of
A, and consider two such representations. We may assume that one involves only
those points of A lying in some face F of the regular subdivision Sω. Thus we have
rational vectors λ = (λa | a ∈ A) and µ = (µb | b ∈ F) with

(4.14)
∑

a∈A
λa =

∑

b∈F
µb = 1 and

∑

a∈A
λa · a = x =

∑

b∈F
µb · b .

Extending µ by zero to get a vector in QA and multiplying λ and µ by a common
denominator, we obtain integer vectors α ∈ NA and β ∈ NF ⊂ NA with A+α =
A+β(= F+β) and so zα − zβ ∈ IA.

We may lift the expression (4.14) using the function ω to obtain points
(∑

a∈A
λaω(a) ,

∑

a∈A
λa · a

)
= (〈ω, λ〉 , x) and (〈ω, µ〉 , x)

of Pω. Since the lifted points (ω(b), b) for b ∈ F lie on an upper face of Pω, we have
the inequality 〈ω, λ〉 ≤ 〈ω, µ〉 with equality if and only if the support {a | λa 6= 0}
of λ is a subset of F . We obtain the same inequalities between 〈ω, α〉 and 〈ω, β〉,
and thus inω(z

α − zβ) is

zα if the support of α is not contained in a face of Sω,

zα − zβ if the support of α is contained in the face F of Sω.

In fact, all such monomials and binomials span the initial ideal. The complete
description of the initial ideal depends upon the arithmetic of rational convex co-
incidences (4.14) involving A. We offer a simpler partial description.

Theorem 4.9. The initial ideal inω(IA) is generated by monomials zα coming
from coincident rational convex representations (4.14) in which the support of α is
not a subset of any face of the subdivision Sω, and binomials zα− zβ in toric ideals
IF of faces F of the subdivision Sω. Given any set B ⊂ A which is not a subset of
a face of Sω, there is some α ∈ NA with support B such that zα ∈ inω(IA).

Proof. We need only show the last statement. The convex hull of B meets
some face F of ∆ω, and B is not a subset of the corresponding set F of Sω. If x is a
rational point common to F and to the convex hull of B, there is an expression (4.14)
with the support of λ contained in B (but not in F) and therefore a binomial zα−zβ

in IA with initial term zα where the support of α is a subset of B. Multiplying this
monomial by

∏
b∈B zb gives a monomial in inω(IA) with support B.

Example 4.10. Consider the polytope Pω and initial ideal for the lattice tri-
angle and function ω of Example 4.6. This involved the lattice points (2, 1), (1, 2),
(1, 1), and (0, 0), which we refer to as a, b, c, and d, respectively, and the function
ω took the value 1 at the vertices a, b, d and 2 at the center point c. Figure 4.1
shows two views of the upper hull of Pω and the corresponding subdivision. The
only subsets of {a, b, c, d} which are not faces of the subdivision Sω are the set of
vertices {a, b, d} and the whole set. Since the subdivision is a triangulation and
IF = 0 for a triangle F , Theorem 4.9 predicts that inω(IA) is a monomial ideal and
that it contains a monomial zαa

a zαb

b zαd

d with αa, αb, αd > 0. Indeed, we saw that
inω(IA) is generated by zazbzd.
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Figure 4.1. Two views of an upper hull

4.3. Kushnirenko’s Theorem via toric degenerations

Since π : XA → C is a flat family of projective varieties, every fiber has the
same degree, and so Kushnirenko’s Theorem follows if we can prove that the degree
of the limit scheme inω(XA) = π−1(0) is n! volume(∆A) divided by the degree
[Zn : ZA] of ϕA. We will prove this in the case when every facet F of the regular
subdivision Sω consists of n+1 vectors forming an n-dimensional simplex. Such
a regular subdivision is called a regular triangulation. This is not a restrictive
assumption, for every finite set A has at least one regular triangulation. One
way to ensure that Sω is a triangulation is to require that there are no affine
dependencies among subsets of n+2 lifted points in {(ω(a), a) | a ∈ A}. Figure 4.2
shows the upper facets and triangulation ∆ω induced by a function ω on A =

Figure 4.2. Upper facets and a regular triangulation.

{(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2)}. The decomposition of Figure 4.1 was also a
triangulation.

If ω induces a triangulation of A, then Theorem 4.9 implies that the initial
ideal inω(IA) is generated by monomials. Still, it can have complicated nonreduced
structure. For the function −ω of Example 4.6, in−ω(zazbzd − z3c ) = z3c , so that
the initial ideal is not reduced. While the scheme structure depends upon the
arithmetic of rational convex coincidences (4.14) involving A, the radical of the
initial ideal is easy to understand from the triangulation.

Theorem 4.11. If Sω is a triangulation of A then the radical of the initial ideal
is the intersection of ideals of coordinate subspaces, one for each facet simplex F of
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the triangulation Sω, √
inω(IA) =

⋂

F
〈za | a 6∈ F〉 .

Example 4.12. If ω is the function of Example 4.6, then the initial ideal of
zazbzd − z3c is generated by zazbzd and we have

〈zazbzd〉 = 〈za〉 ∩ 〈zb〉 ∩ 〈zd〉 .
We saw in Example 4.10 that the triangulation induced by ω has three facet trian-
gles, {b, c, d}, {a, c, d}, and {a, b, c}, which give the three ideals 〈za〉, 〈zb〉, and 〈zd〉,
respectively. Each of these cuts out a coordinate subspace of P3 that corresponds
to the appropriate triangle.

The ideal 〈za | a 6∈ F〉 defines the coordinate subspace PF of PA which is
spanned by the n+1 coordinates indexed by elements of F .

Corollary 4.13. The limit scheme inω(XA) is supported on the union of the
coordinate subspaces PF for F a facet of the triangulation Sω.

Proof of Theorem 4.11. If the set {a, b} for a, b ∈ A is not a face of the
triangulation Sω, then its convex hull a, b crosses a minimal face ∆F = convF
of the triangulation ∆ω. Any point in this intersection gives coincident convex
combinations (4.14) with one involving {a, b} and the other involving F . This
implies that there is a binomial zMa zNb − zγ , where M,N are positive integers and
the monomial zγ involves the variables in F . Since F is a face and {a, b} is not, the

initial term is zMa zNb , and so zazb lies in the radical
√
inω(IA) of the initial ideal.

This argument extends to any other nonface of the triangulation. Since
〈∏

b∈B
zb | B is not a face of Sω

〉
=

⋂

F
〈za | a 6∈ F〉 ,

this completes the proof.

By Corollary 4.13, the degree of the initial scheme is the sum of contributions
from each coordinate subspace PF of a facet F of the triangulation,

deg(inω(XA)) =
∑

F
multPF (inω(XA)) ,

where multPF (inω(XA)) is the algebraic multiplicity of inω(XA) along PF .
In [154, Chapter 8], and under the (mild) assumption that A is primitive

(ZA = Zn), Sturmfels shows that this multiplicity is n! volume(∆F ). Since these
facets cover ∆A, the degree of the limit scheme inω(XA) is n! volume(∆A). As the
family XA is flat, this is the degree of XA, which implies Kushnirenko’s Theorem.

Sturmfels’ result enables the determination of the limit scheme in an important
special case. A triangulation of a polytope in Rn is unimodular is every facet
has minimal volume 1/n!. Unimodular triangulations necessarily involve all of the
points of A, with F = ∆F ∩A for every face F , so there is essentially no difference
between the polyhedral subdivision ∆ω and the subdivision Sω.

Corollary 4.14. Suppose that ∆ω is a regular unimodular triangulation.
Then the limit scheme of the corresponding toric degeneration is a union of co-
ordinate n-planes, one for every facet F of Sω,

inω(XA) = lim
t→0

t−1.XA =
⋃

F
PF .
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Example 4.15. Consider the cubic hypersurface zazbzd−z3c and the function ω
of Example 4.6. Figure 4.3 shows the torus translates t−1.XA for t = 1 and t = 1/7
in the affine chart of PA where zc 6= 0 (where zc = 1) and in the box [−2.2, 2.2]3,
viewed from the + − +-orthant. This illustrates Corollary 4.14 as t−1.XA visibly

za

zb

zd

t = 1

za

zb

zd

t = 1/7

Figure 4.3. Toric degenerations of cubic surface

approaches the union of the coordinate planes as t → 0, which is the variety of the
initial ideal inω(IA) = 〈zazbzd〉.

Proof of Kushnirenko’s Theorem. This is adapted from [138] and does
not assume unimodularity. When A is primitive, it also determines that the al-
gebraic multiplicity of inω XA along PF is n! volume(∆F ). This proof only works
over C as it uses metric properties of C.

The main idea is to fix a general linear subspace L of codimension n in PA and
consider the linear sections L∩t−1.XA for t near 0 as in Figure 4.4. The subspace L

PF

PF ′

L

t−1.XA

π−1
F (pF )

pF
✏✏✏✶

pF ′

✂
✂
✂✂✌

y✟✟✟✙ ✓
✓✓✴

Figure 4.4. Points in L ∩ t−1.XA near PF for small t.

will meet each facet n-plane PF in a single point pF , and the points y of L∩t−1.XA
for t small will be clustered near the different points pF .
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We could determine the number of points y clustered near one of the points
pF , which is the algebraic multiplicity multPF (inω(XA)). It is in fact easier to
determine the total number of points in Tn of the form ϕ−1

A (t−1.y), for y some
point of L near a particular pF when t is small, and then sum over all facets F .
This is more direct, and it bypasses computing this algebraic multiplicity. This is
also where we avoid the assumption of primitivity, but must work over C.

In a neighborhood of PF the linear space L is isotopic to π−1
F (pF ), which is

a fiber of the coordinate projection πF : PA − → PF . In Figure 4.4, this isotopy
amounts to rotating the line L about pF until it becomes horizontal. Thus the
number of points in Tn coming from points in the linear section L ∩ t−1.XA near
pF is equal to the number of points in Tn coming from points in the linear section
π−1
F (pF ) ∩ t−1.XA near pF . But every point in this second linear section is near

pF , so this number is simply the degree of the map which is the composition of the
parameterization ϕA of XA, the map y 7→ t−1.y on PA, and this projection πF ,

Tn ϕA−−−→ XA
t−−→ t−1.XA

πF−−−→ PF .

Since multiplication by t is isotopic to the identity and it commutes with the pro-
jection πF , we may assume now that t = 1, and so this composition is just the
parameterization ϕF of PF by the monomials corresponding to integer points of F .
The degree is the order of the kernel of ϕF , which is n! volume(∆F ). Summing this
quantity over all facets F of the triangulation ∆ω shows that there are

∑

F
n! volume(∆F ) = n! volume(∆A)

points in Tn which are pullbacks under ϕA of the linear section L ∩ XA. This
completes our proof of Kushnirenko’s Theorem via toric degenerations.

This proof is algorithmic in that it (more-or-less) counts the solutions to the
system L ∩ t−1.XA, for t small, while also giving enough information on their
location and structure to determine them numerically. This proof also shows that
the intersection L ∩ XA is transverse when L is general, and thus gives a proof
of Bertini’s Theorem in this context. To see this, note that when t is small, the
intersection near pF may be deformed to the intersection of XA with the horizontal
subspaces π−1

F (pF ), and this is deformed to the system ϕ−1
F (pF ), which consists of

n! volume(∆F ) distinct points, so the general such intersection is transverse.

4.4. Polynomial systems with only real solutions

In the proof of Kushnirenko’s Theorem in Section 4.3, we studied the toric
degeneration for t small, using the arithmetic and geometry of its limit scheme
to compute the number of points in ϕ−1

A (t.L ∩XA)) = ϕ−1
A (t.(L ∩ t−1.XA)). This

method, using the structure of the limit scheme to obtain information aboutXA has
a long pedigree in constructions in real algebraic geometry. We give one example
which is a result of Sturmfels about the existence of real solutions to systems of
equations.

If the triangulation ∆ω is unimodular, in that each facet has minimal volume
1/n!, then near each point pF there will be exactly one point of L ∩ t−1.XA and
one corresponding solution in Tn. If both L and t are real, then each pF and each
nearby point in t−1.XA will be real. Since

t.(L ∩ t−1.XA) =
(
t.L

)
∩XA ,
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and the points in the left hand side are all real, so are the points in the right hand
side. This right hand side corresponds to a system of real polynomials with support
A. This proves a theorem of Sturmfels [153], and gives his argument in a nutshell.

Theorem 4.16. If a lattice polytope ∆ ⊂ Zn admits a regular unimodular
triangulation, then there exist real polynomial systems with support ∆ ∩ Zn having
all solutions real.

A more careful analysis, which begins by examining real solutions when |A| =
n+1, leads to the more refined result for not necessarily unimodular triangulations
that appears in Sturmfels’s paper.



CHAPTER 5

Fewnomial Upper Bounds

The oldest—by far—nontrivial bound on the number of real solutions to a sys-
tem of polynomials is Descartes’ bound (Corollary 2.2) for univariate polynomials.
That is, a univariate polynomial

c0x
a0 + c1x

a1 + · · ·+ cmxam

withm+1 terms has at mostm positive roots. This bound is tight as the polynomial

(5.1) (x− 1)(x− 2) · · · (x−m)

has m+ 1 distinct terms and m positive roots.
This chapter and the next will discuss fewnomial bounds, which are multivari-

ate generalizations of Descartes’ bound for systems of multivariate polynomials.
Unlike Descartes’ bound, these fewnomial bounds are not sharp and it is an impor-
tant problem to improve our understanding of them. There is also no satisfactory
generalization of Descartes’ rule of signs to multivariate polynomials.

5.1. Khovanskii’s fewnomial bound

An optimistic reading of Descartes’s bound suggests that the number of real
solutions to a system of polynomials depends not on the degree of the system, but
rather on the complexity of its description. Bernstein and Kushnirenko formulated
the principle that the topological complexity of a set in Rn defined by real polyno-
mials is controlled by the complexity of the description of the polynomials, rather
than by their degrees or Newton polytopes. This is exactly what Khovanskii proved
for systems of equations in 1980 with his celebrated fewnomial bound.

Theorem 5.1 (Khovanskii [83]). A system of n real polynomials in n variables
involving 1+l+n distinct monomials has fewer than

(5.2) 2(
l+n

2 ) · (n+ 1)l+n

nondegenerate positive solutions.

A solution x ∈ Rn to a system of polynomials is nondegenerate if the differ-
entials of the polynomials at x span Rn. Nondegenerate solutions are isolated,
occur with multiplicity 1, and there are finitely many of them. This bound, like
other bounds in this part of the subject, considers solutions in the positive orthant
Rn

> := {x ∈ Rn | xi > 0, i = 1, . . . , n}. The existence of a bound that is indepen-
dent of the degrees of the polynomials was revolutionary and is the main point of
Khovanskii’s result.

A consequence of Khovanskii’s fewnomial bound is that for each positive integer
l and n, there is a number X(l, n) which is equal to the maximum number of
positive solutions to a system of n polynomials in n variables having 1+l+n distinct

49
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monomials. A central question in this area is to determine this Khovanskii number
X(l, n) exactly, or give good bounds. Khovanskii’s Theorem shows that X(l, n) is
bounded above by the quantity (5.2).

We also have the bound of 2nX(l, n) for the number of nondegenerate nonzero
real solutions to a system of n polynomials in n variables having 1+l+n distinct
monomials. Given a system, replacing each variable by its square creates a new
system with one real solution in each orthant for each positive solution to the
original system. This occurs because the kernel kerϕA of the parameterization
map given by the exponents A of the system of polynomials contains the real roots
of unity {±1}n. More interesting is XR(l, n), which is the maximum number of
nondegenerate nonzero real solutions to a system of n polynomials in n variables
having 1+l+n distinct monomials, where the exponents A of the monomials affinely
span Zn (are primitive) or span a sublattice of odd index, so that ker(ϕA) ∩ Rn =
{1}. We have X(l, n) ≤ XR(l, n) ≤ 2nX(l, n), and the problem is to find good
bounds for XR(l, n). In particular, is XR(l, n) closer to X(l, n) or to 2nX(l, n)?

A complete proof of Theorem 5.1 may be found in Khovanskii’s book [84],
where much else is also developed. Chapter 1 of that book contains an accessible
sketch. Benedetti and Risler [9, §4.1] have a careful and self-contained exposition of
Khovanskii’s fewnomial bound. We give a sketch of the main ideas in the exposition
of Benedetti and Risler, to which we refer for further details (this is also faithful to
Khovanskii’s sketch). We remark that Sturmfels has also sketched ([156, pp. 39–
40] and in [155]) a version of the proof. This omits some contributions to the root
count and is therefore regrettably incorrect.

Khovanskii looks for solutions in the positive orthant Rn
>, proving a far more

general result involving solutions in Rn of polynomial functions in logarithms of the
coordinates and monomials. Set

(5.3) zi := log(xi) and yj := ez·aj = xaj ,

where i = 1, . . . , n, and the exponents aj ∈ Rn for j = 1, . . . , k, can be real.
Consider a system of functions of the form

(5.4) Fi(z1, . . . , zn, y1, . . . , yk) = 0 i = 1, . . . , n ,

where each yj = yj(z) is an exponential function ez·aj and the Fi are polynomials
in n+k indeterminates.

Theorem 5.2 (Khovanskii’s Theorem). The number of nondegenerate real so-
lutions to the system (5.4) is at most

(5.5)
( n∏

i=1

degFi

)
·
(
1 +

n∑

i=1

degFi

)k

· 2(k2) ,

and strictly less than this number if k > 0.

Proof of Theorem 5.1. Given a system of n real polynomials in n variables
involving 1+l+n distinct monomials, we may assume that one of the monomials
is 1. Under the substitution (5.3), this becomes a system of the form (5.4), where
each Fi is a degree one polynomial whose zi coefficients are zero and which involves
k = l+n exponential functions yj . Then degFi = 1 and the bound (5.5) reduces
to (5.2).
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Sketch of proof of Theorem 5.2. We proceed by induction on k, skip-
ping important technicalities involving Sard’s Theorem. When k = 0, there are
no exponential functions, and the system is just a system of n polynomials in n
variables, whose number of nondegenerate isolated solutions is bounded above by
the Bézout number,

n∏

i=1

degFi ,

which is the bound (5.5) when k = 0.
Suppose that we have the bound (5.5) for systems of the form (5.4) with k

exponential functions, and consider a system with k+1 exponential functions,

Fi(z1, . . . , zn, y1, . . . , yk, yk+1) = 0 i = 1, . . . , n .

Consider the (equivalent) new system with one added variable t.

Gi(z, t) := Fi(z1, . . . , zn, y1, . . . , yk, t · yk+1) = 0 i = 1, . . . , n(5.6)

t = 1

The subsystem (5.6) defines an analytic curve C in Rn+1, which we assume is
smooth and transverse to the hyperplane at t = 1.

Write zn+1 for t and consider the vector field ξ in Rn+1 with rth component

(5.7) ξr := (−1)n+1−r det

(
∂Gi

∂zj

)i=1,...,n

j=1,...,r̂,...,n+1

.

This vector field is tangent to the curve C, and we write ξt = ξn+1 for its component
in the t-direction. An important ingredient in the proof of Theorem 5.2 is a special
case of the Khovanskii-Rolle Theorem [84, pp. 42–51].

Theorem 5.3 (Khovanskii-Rolle Theorem). The number of points of C where
t = 1 is bounded above by

N + q ,

where N is the number of points of C where ξt = 0 and q is the number of unbounded
components of C.

Proof. Note that ξt varies continuously along C. Suppose that a and b are
consecutive points along an arc of C where t = 1. Since C is transverse to the
hyperplane t = 1, we have ξt(a) · ξt(b) < 0, and so there is a point c of C on the arc
between a and b with ξt(c) = 0.

The hyperplane t = 1 cuts a compact connected component of C into the same
number of arcs as points where t = 1. Since the endpoints of each arc lie on the
hyperplane t = 1, there is at least one point c on each arc with ξt(c) = 0. Similarly,
the hyperplane t = 1 cuts a noncompact component into arcs, and each arc with
two endpoints in the hyperplane t = 1 gives a point c with ξt(c) = 0. However,
there will be one more point with t = 1 on this component than such arcs.

Figure 5.1 illustrates the argument in the proof.
The key to the induction in the proof of Khovanskii’s Theorem is to replace

the last exponential function by a new variable. This substitution is omitted in
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t = 1

ξt = 0✛

❄

ξt = 0
❳❳② ✘✘✿

C

Figure 5.1. Idea of the Khovanskii-Rolle Theorem.

Sturmfels’s argument, which also does not use the Khovanskii-Rolle Theorem 5.3.
Recall that yj = ez·aj , and so

∂Gi

∂zr
=

∂Fi

∂zr
(z1, . . . , zn, y1, . . . , yk, t · yk+1)

+

k∑

j=1

∂Fi

∂yj
(z1, . . . , zn, y1, . . . , yk, t · yk+1) · aj,r yj

+
∂Fi

∂yk+1
(z1, . . . , zn, y1, . . . , yk, t · yk+1) · ak+1,r t yk+1 .

If we set u := t · yk+1 and define φt(z, u) to be the expression for ξt = ξn+1 (5.7)
considered as a function of z and u, then the total degree (in z1, . . . , zn, y1, . . . , yk, u)
of φt(z, u) is at most

∑n
i=1 degFi. Since yk+1 = ez·ak+1 is never zero, this coordinate

change (z, t) → (z, u) is a homeomorphism on Rn+1 and therefore does not change
the topology of the curve C. That is, its numbers of bounded and unbounded
components are preserved by this transformation.

This number N of Theorem 5.3 is the number of solutions to the system

(5.8)
Fi(z1, . . . , zn, y1, . . . , yk, u) = 0 i = 1, . . . , n

φt(z, u) = 0 .

This has the form (5.4) with k exponential functions. Given any solution to the
system (5.8), we use the substitution u = t · yk+1 to solve for t and get a corre-
sponding point c on the curve C with ξt(c) = 0. We apply our induction hypothesis
to the system (5.8) (which has k exponential functions and n+1 equations in n+1
variables) to obtain

N ≤
n∏

i=1

degFi ·
( n∑

i=1

degFi

)
·
(
1 + 2

n∑

i=1

degFi

)k

· 2(k2) .

We similarly estimate the number q of noncompact components of C. We claim
that this is bounded above by the maximum number of points of intersection of
C with a hyperplane. Indeed, since each noncompact component has two infinite
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branches, there are 2q points (counted with multiplicity) on the sphere Sn corre-
sponding to directions of accumulation points of the branches of C at infinity. Any
hyperplane through the origin not meeting these points will have at least q of these
points in one of the hemispheres into which it divides the sphere. If we translate
this hyperplane sufficiently far toward infinity, it will meet the branches giving these
accumulation points, and thus will meet C in at least q points.

Thus q is bounded by the number of solutions to a system of the form

(5.9)
Fi(z1, . . . , zn, y1, . . . , yk, u) = 0 i = 1, . . . , n

l0 + l1z1 + l2z2 + · · ·+ lnzn + luu = 0 ,

where l0, . . . , ln, lu are real numbers, as the second equation defines a hyperplane
in our original Rn+1 when lu = 0. This again involves only k exponential functions,
and the last equation has degree 1, so our induction hypothesis gives

q ≤
n∏

i=1

degFi · 1 ·
(
1 +

n∑

i=1

degFi + 1
)k

· 2(k2) .

Combining these estimates bounds N+q by the expression

n∏

i=1

degFi · 2(
k

2) ·
[( n∑

i=1

degFi

)
·
(
1 + 2

n∑

i=1

degFi

)k

+
(
2 +

n∑

i=1

degFi

)k ]
.

This is complicated and not amenable to induction. We obtain a larger estimate
that bounds N + q by the number of solutions to the single system of equations,

Fi(z1, . . . , zn, y1, . . . , yk, u) = 0 i = 1, . . . , n

Fn+1 := φt(z, u) · (l0 + l1z1 + l2z2 + · · ·+ lnzn + luu) = 0 .

By our induction hypothesis, this gives

N + q ≤
n+1∏

i=1

degFi ·
(
1 +

n+1∑

i=1

degFi

)k

· 2(k2) .

But Fn+1 has degree at most 1 +
∑n

i=1 degFi, and so the number of solutions to
the system with k+ 1 exponential functions is bounded by N + q which is at most

n∏

i=1

degFi ·
(
1 +

n∑

i=1

degFi

)
·
(
1 +

n∑

i=1

degFi + 1 +

n∑

i=1

degFi

)k

· 2(k2)

=

n∏

i=1

degFi ·
(
1 +

n∑

i=1

degFi

)k+1

· 2(k+1
2 ) .

This completes the proof of Theorem 5.2 and shows that if k > 0, then the bound
is not sharp.

We see that the result of Theorem 5.2 is much more general than the statement
of Theorem 5.1. Also, the bound is not sharp. While no one believed that Kho-
vanskii’s bound (5.2) was anywhere near the actual upper bound X(l, n), it was
extremely hard to improve it. We discuss the first steps in this direction.
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5.2. Kushnirenko’s Conjecture

One of the first proposals of a more reasonable bound than Khovanskii’s for
the number of positive solutions to a system of polynomials is attributed to Kush-
nirenko, and for many years experts believed that this conjecture may indeed be
the truth.

Conjecture 5.4 (Kushnirenko). A system f1 = f2 = · · · = fn = 0 of real
polynomials where each fi has mi+1 terms has at most m1m2 · · ·mn nondegenerate
positive solutions.

This generalizes the bound given by Descartes’s rule of signs. It easy to use
the example (5.1) for the sharpness of Descartes’s rule to construct systems of the
form

f1(x1) = f2(x2) = · · · = fn(xn) = 0 ,

which achieve the bound of Conjecture 5.4.
Soon after Kushnirenko made this conjecture, Sevostyanov found a counterex-

ample which was unfortunately lost. Nevertheless, this conjecture passed into folk-
lore until Haas [64] found an example of two trinomials (3 = 2 + 1) in variables x
and y with 5 (> 4 = 2 · 2) isolated nondegenerate positive solutions.

(5.10) 10x106 + 11y53 − 11y = 10y106 + 11x53 − 11x = 0 .

There have been other attempts to find better bounds than the Khovanskii
bound. Sturmfels [153] used a more sophisticated version of the toric degenerations
introduced in Chapter 3 to show how to construct systems with many real roots
(the root count depends upon a mixture the geometry of the Newton polytopes and
some combinatorics of signs associated to lattice points). This inspired Itenberg
and Roy [76] to propose a multivariate version of Descartes’s rule of signs, which
was later found to be too optimistic [95]. An interesting part of this story is told
in the cheeky paper of Lagarias and Richardson [90].

More recently, Li, Rojas, and Wang considered Haas’s counterexample to Kush-
nirenko’s Conjecture, seeking to obtain realistic bounds for the number of positive
solutions which depended only on the number of monomials in the different polyno-
mials. For example, they showed that Haas’s counterexample was the best possible.

Theorem 5.5 (Li, Rojas, and Wang [94]). A system consisting of two trino-
mials in two variables has at most five nondegenerate positive solutions.

Dickenstein, Rojas, Rusek, and Shih [35] used exact formulas for A-discrim-
inants [36] to study systems of two trinomials in two variables which achieve this
bound of five positive solutions. They gave the following example and analysis,
which indicates how difficult it is to find systems with many real solutions.

Example 5.6. Consider the family of systems of bivariate sextics,

(5.11) x6 + ay3 − y = y6 + bx3 − x = 0 ,

where a, b are real numbers. When a = b = 78/55, this has five positive real
solutions

(0.814, 0.607) , (0.789, 0.673) , (0.740, 0.740) , (0.673, 0.789) , (0.607, 0.814) .

We now investigate the set of parameters (a, b) for which this achieves the trinomial
bound of five positive solutions. This turns out to be a single connected component



5.2. KUSHNIRENKO’S CONJECTURE 55

in the complement of the discriminant for this family of systems. This discriminant
is a polynomial of degree 90 in a, b with 58 terms whose leading and trailing terms
are

1816274895843482705708030487016037960921088a45b45 + · · · 56 terms · · · +

1102507499354148695951786433413508348166942596435546875.

We display this discriminant in the square [0, 4]× [0, 4], as well as three successive
magnifications, each by a factor of 11. The shaded region in the last picture is the
set of pairs (a, b) for which (5.11) achieves the trinomial bound of five positive real
solutions.

✻

(
78
55 ,

78
55

)

To compare the trinomial bound in [94] to the fewnomial bound (5.2), note that
we may multiply one of the polynomials by a monomial so that the two trinomials
share a monomial. Then there are at most five distinct monomials occurring in
the two trinomials. As n = 2, we then also have l = 2. The fewnomial bound for
l = n = 2 is

X(2, 2) ≤ 2(
2+2
2 ) · (2 + 1)2+2 = 5184 .

We remark that a trinomial system such as (5.10) or (5.11) is not quite a general
fewnomial system with l = n = 2. Still, the bound of five real solutions lent
credence to the belief X(2, 2) is closer to five than to 5184 and that Khovanskii’s
fewnomial bound (5.2) could be improved.

In addition to providing a counterexample to Kushnirenko’s Conjecture, Sevos-
tyanov also established the first result of fewnomial-type. He showed the existence
of an absolute bound c(d,m) for the number of real solutions to a system

f(x, y) = g(x, y) = 0 ,

where f is a polynomial of degree d and g has m terms. The proof of this result,
like his counterexample, has unfortunately been lost. This result however, was the
inspiration for Khovanskii to develop his theory of fewnomials.

Avendaño [2] established a precise version of a special case of Sevostyanov’s
theorem.

Theorem 5.7. Suppose that f(x, y) is linear and g(x, y) has m terms. Then

f(x, y) = g(x, y) = 0 ,

has at most 6m− 4 real solutions.
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5.3. Systems supported on a circuit

Restricting the analysis of Section 4.1 to real solutions shows that X(0, n) = 1.
Bihan [15] showed that X(1, n) = 1+n. We discuss this here.

A collection A of n+2 vectors in Zn which affinely spans Rn is called a circuit.
The circuit is primitive if its Z-affine span is all of Zn, so that ϕA is injective and
there are no trivial extra zeroes coming from ker(ϕA)∩Tn

R
⊂ {±1}n. When 0 ∈ A,

this means that Zn = ZA. (We could also assume that the affine span has odd
index in Zn.)

Theorem 5.8 (Bertrand, et al. [13]). A polynomial system supported on a
primitive circuit has at most 2n+1 nondegenerate nonzero real solutions.

Theorem 5.9 (Bihan [15]). A polynomial system supported on a circuit has at
most n+1 nondegenerate positive solutions, and there exist systems supported on a
circuit having n+1 positive solutions.

This can be used to construct fewnomial systems with relatively many positive
solutions.

Corollary 5.10 (Bihan, et al. [16]). There exist systems of n polynomials in

n variables having 1+l+n monomials and at least
⌊
l+n
l

⌋l
positive solutions.

This gives a lower bound for X(l, n) of ⌊ l+n
l ⌋l, and is the best construction

when l is fixed and n is large. It remains an open problem to give constructions
with more solutions, or constructions with many solutions when l is not fixed.

Proof. Suppose that n = kl is a multiple of l, and let

f1(x1, . . . , xk) = f2(x1, . . . , xk) = · · · = fk(x1, . . . , xk) = 0 ,

be a system with k+2 monomials and k+1 positive solutions. Such systems exist, by
Theorem 5.9. Write F (x) = 0 for this system and assume that one of its monomials

is a constant. For each i = 1, . . . , l, let y(i) = (y
(i)
1 , . . . , y

(i)
k ) be a set of k variables.

Then the system

F (y(1)) = F (y(2)) = · · · = F (y(l)) = 0 ,

has (k + 1)l solutions, kl variables, and 1 + l + kl monomials. When n = kl + r
with r < l, adding extra variables yi and equations yi = 1 for i = 1, . . . , r gives a
system with ⌊ l+n

l ⌋l positive solutions and 1+l+n monomials.
When l = 1 the fewnomial bound (5.2) becomes

2(
1+n

2 ) · (n+ 1)1+n ,

which is considerably larger than Bihan’s bound of n+1. Replacing l+n by n in
the fewnomial bound, it becomes equal to Bihan’s bound when l = 1. When l = 0,
this same substitution in (5.2) yields 1, which is the sharp bound when l = 0. This
suggests that this substitution should yield a correct bound. Indeed that is nearly
the case. In Chapter 6, we will outline generalizations of Theorems 5.8 and 5.9 to
arbitrary l, giving the bound

(5.12) X(l, n) <
e2 + 3

4
2(

l

2)nl
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for positive solutions, and when A is primitive, a bound for all real solutions,

e4 + 3

4
2(

l

2)nl .

This is only slightly larger than (5.12)—the difference is in the exponents 2 and 4 of
e. These bounds are proven in [5, 17]. It is instructive to look at the bound (5.12)

when n = l = 2, which is e2+3
4 2(

2
2)22 ≈ 20.78. Thus X(2, 2) ≤ 20, which is

considerably less than 5184.
By Corollary 5.10 and the bound (5.12),

l−lnl <

⌊
l + n

l

⌋l

< X(n, l) <
e2 + 3

4
2(

l

2)nl .

This reveals the correct asymptotic information for X(n, l) when l is fixed, namely
X(n, l) = Θ(nl).

Theorems 5.8 and 5.9 are related and we will outline their proofs following the
papers in which they appear, where more details may be found. To begin, let

(5.13) f1(x1, x2, . . . , xn) = f2(x1, x2, . . . , xn) = · · · = fn(x1, x2, . . . , xn) = 0

be a system with support a circuit A. Suppose that 0 ∈ A and list the elements
of the circuit A = {0, a0, a1, . . . , an}. After a multiplicative change of coordinates
(if necessary), we may assume that a0 = ℓen, where en is the nth standard basis
vector. Since the system (5.13) is generic, row operations on the equations put it
into diagonal form

(5.14) xai = wi + vix
ℓ
n for i = 1, . . . , n .

When A was a simplex we used integer linear algebra to reduce the equations
to a very simple system in Section 4.1. We use (different) integer linear algebra to
simplify this system supported on a circuit.

Suppose that {0, a0, a1, . . . , an} ⊂ Zn is a primitive circuit. We assume here
that it is nondegenerate—there is no affine dependency involving a subset. (Bounds
in the degenerate case are lower, replacing n by the size of this smaller circuit.) After
possibly making a coordinate change, we may assume that a0 = ℓ · en, where en is
the nth standard basis vector.

For each i, we may write ai = bi + ki · en, where bi ∈ Zn−1. Removing
common factors from a nontrivial integer linear relation among the n vectors
{b1, . . . , bn} ⊂ Zn−1 gives us the primitive relation among them (which is well-
defined up to multiplication by −1),

p∑

i=1

βibi =

n∑

i=p+1

βibi .

Here, each βi > 0, and we assume that the vectors are ordered so that the relation
has this form. We further assume that

N :=

n∑

i=p+1

βiki −
p∑

i=1

βiki > 0 .

Then we have

Nen +

p∑

i=1

βiai −
n∑

i=p+1

βiai = 0 ,
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and so

(5.15) xN
n ·

p∏

i=1

(xai)βi −
n∏

i=p+1

(xai)βi = 0 .

Using (5.14) to substitute for xai in (5.15) gives the univariate consequence
of (5.14)

(5.16) f(xn) := xN
n

p∏

i=1

(wi + vix
ℓ
n)

βi −
n∏

i=p+1

(wi + vix
ℓ
n)

βi .

Some further arithmetic of circuits (which may be found in [13]) shows that f(xn)
has degree equal to n! volume(∆A). This is an eliminant of the system as in the
Shape Lemma 2.8.

Lemma 5.11. The association of a solution x of (5.14) to its nth coordinate
xn gives a bijection between the solutions of (5.14) and the roots of f (5.16) which
restricts to a bijection between their real solutions/roots.

While f is the eliminant of the system, we do not have a Gröbner basis or
even a triangular system to witness this fact, and the proof proceeds by explicitly
constructing a solution to (5.14) from a root xn of f .

For the upper bound, write f = F −G as in (5.16) and then perturb it,

ft(y) = t · F (y) − G(y) .

We simply estimate the number of changes in the the real roots of ft as t passes
from −∞ to 1, which can occur only at the singular roots of ft. While similar to
the proof of Khovanskii’s theorem, this is not inductive, but relies on the form of
the Wronskian F ′G−G′F whose roots are the singular roots of ft. This may also
be seen as an application of Rolle’s Theorem. We note that this estimation also
uses Viro’s method for t near 0 and ∞.

These estimates prove the bounds in Theorems 5.8 and 5.9. Sharpness comes
from a construction. In [13] Viro’s method for univariate polynomials is used to
construct polynomials f with 2n+1 real solutions, for special primitive circuits.
Bihan [15] constructs a system with n+1 positive solutions using Grothendieck’s
dessins d’enfants.

We close this chapter, giving a family of systems that illustrates the result of
Theorem 5.8 (actually of an extension of it) and which may be treated by hand.
These systems come from a family of polytopes ∆ ⊂ Zn for which we prove a
nontrivial upper bound on the number of real solutions to polynomial systems with
primitive support A := ∆ ∩ Zn. That is, the integer points A in ∆ affinely span
Zn, so that general systems supported on ∆ have n! volume(∆) complex solutions,
but there are fewer than n! volume(∆) real solutions to polynomial systems with
support A. This is intended to not only give a glimpse of the more general results
in [13], but also possible extensions which are not treated in [17]. In fact, such an
extension has recently been found [124] (see Section 6.3).

Let l > k > 0 and n ≥ 3 be integers and ǫ = (ǫ1, . . . , ǫn−1) ∈ {0, 1}n−1 have
at least one nonzero coordinate. The polytope ∆ǫ

k,l ⊂ Rn is the convex hull of the
points

(0, . . . , 0), (1, 0, . . . , 0), . . . , (0, . . . , 0, 1, 0), (0, . . . , 0, k), (ǫ1, . . . , ǫn−1, l) .
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The configuration Aǫ
k,l = ∆ǫ

k,l ∩ Zn also includes the points along the last axis

(0, . . . , 0, 1), (0, . . . , 0, 2), . . . , (0, . . . , 0, k−1) .

These points include the standard basis and the origin, so Aǫ
k,l is primitive.

Set |ǫ| := ∑
i ǫi. Then the volume of ∆ǫ

k,l is (l + k|ǫ|)/n!. Indeed, the con-

figuration Aǫ
k,l can be triangulated into two simplices ∆ǫ

k,l \ {(ǫ1, . . . , ǫn−1, l)} and

∆ǫ
k,l \{0} with volumes k/n! and (l−k+k|ǫ|)/n!, respectively. One way to see this

is to apply the affine transformation

(x1, . . . , xn) 7−→ (x1, . . . , xn−1, xn − k + k

n−1∑

i=1

xi) .

Theorem 5.12. The number, r, of real solutions to a generic system of n real
polynomials with support Aǫ

k,l lies in the interval

0 ≤ r ≤ k + k|ǫ|+ 2 ,

and every number in this interval with the same parity as l + k|ǫ| occurs.

This upper bound does not depend on l and, since k < l, it is smaller than or
equal to the number l+ k|ǫ| of complex solutions. We use elimination to prove this
result.

Example 5.13. Suppose that n = k = 3, l = 5, and ǫ = (1, 1).

Then the system

1

x

y

z

z2

z3

xyz5

∆
(1,1)
3,5

x+ y + xyz5 + 1 + z + z2 + z3 = 0

x+ 2y + 3xyz5 + 5 + 7z + 11z2 + 13z3 = 0

2x+ 2y + xyz5 + 4 + 8z + 16z2 + 32z3 = 0

is equivalent to

x− (5 + 11z + 23z2 + 41z3) = 0

y − (8 + 18z + 38z2 + 72z3) = 0

xyz5 − (2 + 6z + 14z2 + 30z3) = 0

And thus its number of real roots equals the number of real roots of

z5(5 + 11z + 23z2 + 41z3)(8 + 18z + 38z2 + 72z3) − (2 + 6z + 14z2 + 30z3) ,

which, as we invite the reader to check, is 3.

Proof of Theorem 5.12. A generic real polynomial system with support
Aǫ

k,l has the form

n−1∑

j=1

cijxj + cinx
ǫxl

n + fi(xn) = 0 for i = 1, . . . , n ,

where each polynomial fi has degree k and xǫ is the monomial xǫ1
1 · · ·xǫn−1

n−1 .
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Since all solutions to our system are simple, we may perturb the coefficient ma-
trix (cij)

n
i,j=1 if necessary and then use Gaussian elimination to obtain an equivalent

system

(5.17) x1 − g1(xn) = · · · = xn−1 − gn−1(xn) = xǫxl
n − gn(xn) = 0 ,

where each polynomial gi has degree k. Using the first n−1 polynomials to eliminate
the variables x1, . . . , xn−1 gives the univariate polynomial

(5.18) xl
n · g1(xn)

ǫ1 · · · gn−1(xn)
ǫn−1 − gn(xn) ,

which has degree l+ k|ǫ| = v(∆ǫ
k,l). Any zero of this polynomial leads to a solution

of the original system (5.17) by back substitution. This implies that the number of
real roots of the polynomial (5.18) is equal to the number of real solutions to our
original system (5.17).

The eliminant (5.18) has no terms of degree m for k < m < l, and so it has at
most k + k|ǫ| + 2 nonzero real roots, by Descartes’s rule of signs. This proves the
upper bound.

We omit the construction which shows that this bound is sharp.



CHAPTER 6

Fewnomial Upper Bounds from Gale Dual

Polynomial Systems

The fewnomial upper bounds that improve Khovanskii’s bound arise from a
construction that replaces a system of polynomials by an equivalent (Gale dual)
system of rational functions defined on a different space. Using an induction based
on the Khovanskii-Rolle Theorem, a bound is obtained for the number of solutions
to the Gale dual system, which then implies the fewnomial bound.

We first give an example of this transformation to a Gale dual system. Suppose
that we have the system of polynomials in either T3

R
or T3,

v2w3 − 11uvw3 − 33uv2w + 4v2w + 15u2v + 7 = 0 ,

v2w3 + 5uv2w − 4v2w − 3u2v + 1 = 0 ,(6.1)

v2w3 − 11uvw3 − 31uv2w + 2v2w + 13u2v + 8 = 0 .

If we solve this for the monomials v2w3, v2w, and uvw3, we obtain

v2w3 = 1− u2v − uv2w ,

v2w = 1
2 − u2v + uv2w , and(6.2)

uvw3 = 10
11 (1 + u2v − 3uv2w) .

Since
(
uv2w

)3 ·
(
v2w3

)
= u3v8w6 =

(
u2v

)
·
(
v2w

)3 ·
(
uvw3

)
and

(
u2v

)2 ·
(
v2w3

)3
= u4v8w9 =

(
uv2w

)2 ·
(
v2w

)
·
(
uvw3

)2
,

we may substitute the expressions on the right hand sides of (6.2) for the monomials
v2w3, v2w, and uvw3 in these expressions to obtain the system

(
uv2w

)3 (
1−u2v−uv2w

)
=

(
u2v

) (
1
2−u2v+uv2w

)3 ( 10
11 (1+u2v−3uv2w)

)
,

(
u2v

)2 (
1−u2v−uv2w

)3
=

(
uv2w

)2 ( 1
2−u2v+uv2w

) (
10
11 (1+u2v−3uv2w)

)2
.

Writing x for u2v and y for uv2w and solving for 0, these become

(6.3)
f := y3(1− x− y) − x( 12 − x+ y)3

(
10
11 (1 + x− 3y)

)
= 0 ,

g := x2(1− x− y)3 − y2( 12 − x+ y)
(
10
11 (1 + x− 3y)

)2
= 0 .

Figure 6.1 shows the curves these define and the lines given by the linear factors
in (6.3).

It is clear that the solutions to (6.3) in the complement of the lines are conse-
quences of solutions to (6.1). More, however, it true. The two systems define iso-
morphic schemes as complex or as real varieties, with the positive solutions to (6.1)

61
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g

g

f ✲

✻

f✛ ✲

f

f

Figure 6.1. Curves and lines.

corresponding to the solutions of (6.3) lying in the central pentagon. Gale dual-
ity, which generalizes this isomorphism, is a first step towards the new fewnomial
bounds of [5, 17].

The system (6.3) is equivalent to the vanishing of the logarithmic functions,

(6.4)
log(x) + 3 log( 12−x+y) + log( 1011 (1+x−3y))− 3 log(y)− log(1−x− y)

2 log(y) + log( 12−x+y) + 2 log( 1011 (1+x−3y))− 2 log(x)− 3 log(1−x−y)

which makes sense only in the interior of the central pentagon of Figure 6.1—the re-
gion where the arguments of the logarithms are positive. The solutions to (6.4) lying
in this central pentagon are exactly the points corresponding to positive solutions
to (6.1). This transformation, into a logarithmic system in which the exponents
are coefficients, and hence do not affect the structure of the system, is one reason
that the fewnomial bounds do not depend upon the exponents of the monomials.

These new bounds are derived using the general method that Khovanskii devel-
oped in [83]. However, they take advantage of special geometry (encoded in Gale
duality) available to systems of polynomials in a way that the proof of Khovanski’s
bound (Theorem 5.1) did not. Their main value is that they are sharp, in the
asymptotic sense described after Corollary 5.10. These bounds are also only for
unmixed systems of equations, such as those covered by Kushnirenko’s Theorem.
It remains open finding such good bounds for mixed systems, such as those covered
by Bernstein’s Theorem. For two different first steps in that direction see [19, 94].

6.1. Gale duality for polynomial systems

Gale duality is an alternative way to view a system of sparse polynomials. It
was developed in [18] in more generality than we will treat here, and extended
in [124]. Let us work over the complex numbers. Let A = {0, a1, . . . , al+n} ⊂ Zn

be integer vectors which span Rn and suppose that we have a system

(6.5) f1(xn, . . . , xn) = f2(x1, . . . , xn) = · · · = fn(x1, . . . , xn) = 0
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of polynomials with support A. As in Section 3.2, the solutions may be interpreted
geometrically as ϕ−1

A (L), where ϕA is the map

ϕA : Tn −→ Tl+n ⊂ Cl+n

x 7−→ (xa1 , xa2 , . . . , xal+n) ,

and L ⊂ Cl+n is a codimension n plane defined by degree one polynomials corre-
sponding to the polynomials fi. While we work here in Cl+n, but used PA = Pl+n

in Section 3.2, there is no essential difference as the image of Tn under ϕA lies in
the principal affine open subset of PA where z0 = 1 is the coordinate corresponding
to 0 ∈ A.

Suppose that A is primitive in that ZA = Zn, so that the homomorphism ϕA is
injective. Then the subscheme1 of Tn defined by the equations (6.5) is isomorphic
to the subscheme X := ϕ(Tn) ∩ L of Tl+n or Cl+n. If we change our perspective
and view X as the basic object, then the bijective parameterization ϕA of ϕA(Tn)
realizes X as the subscheme of Tn defined by (6.5).

The main idea behind Gale duality for polynomial systems is to instead pa-
rameterize L with a map ψp : C

l → L and then consider the subscheme ψ−1
p (X) of

Cl, which is isomorphic to X. This is in fact what we did in transforming (6.1)
into (6.3). We show that ψ−1

p (X) is defined in Cl by a system of rational functions.
Let p1(y), . . . , pl+n(y) be pairwise nonproportional degree one polynomials on

Cl. Their product
∏

i pi(y) = 0 defines a hyperplane arrangement H in Cl. Let
β ∈ Zl+n be an integer vector, called a weight for the arrangement H. We use this
to define a rational function pβ ,

pβ = p(y)β := p1(y)
b1p2(y)

b2 · · · pl+n(y)
bl+n ,

where β = (b1, . . . , bl+n). This rational function p(y)β is a master function for the
weighted arrangement H. As the components of β may be negative, its natural
domain of definition is the complement MH := Cl \ H of the arrangement.

A system of master functions inMH with weights B = {β1, . . . , βl} is the system
of equations in MH,

(6.6) p(y)β1 = p(y)β2 = · · · = p(y)βl = 1 .

More generally, we could instead consider equations of the form p(y)β = α, where
α ∈ T is an arbitrary nonzero complex number. We may however absorb such
constants into the polynomials pi(y), as there are l+n such polynomials but only l
constants in a system of master functions. This is the source of the factor 10

11 in (6.3).
We further assume that the system (6.6) defines a zero-dimensional scheme in MH.
This implies that the weights B are linearly independent, and that the suppressed
constants multiplying the pi(y) are sufficiently general.

As with sparse systems, a system of master functions may be realized geomet-
rically through an appropriate map. The degree one polynomials p1(y), . . . , pl+n(y)
define an affine-linear map

ψp : Cl −→ Cl+n

y 7−→
(
p1(y), p2(y), . . . , pl+n(y)

)
.

1As it is zero-dimensional, this is simply the collection of points defined by (6.5), together

with multiplicities encoded in the local rings at each point. See [112] for an elementary treatment.
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This map is injective if and only if the polynomials {1, p1(y), . . . , pl+n(y)} span the
space of degree one polynomials on Cl, in which case the hyperplane arrangement H
is called essential. Equivalently, the hyperplane arrangement is essential if normal
vectors to the hyperplanes span Cl. The hyperplane arrangement H is the pull-
back along ψp of the coordinate hyperplanes zi = 0 in Cl+n, and its complement
MH is the pullback of the torus Tl+n which is the complement of the coordinate
hyperplanes in Cl+n.

The weights B are saturated if they are linearly independent and span a sat-
urated subgroup of Zl+n, that is, if ZB equals its saturation, QB ∩ Zl+n, which
consists of all integer points in the linear span of B. Linear independence of B is
equivalent to the subgroup G of the torus Tl+n defined by the equations

(6.7) zβ1 = zβ2 = · · · = zβl = 1

having dimension n and saturation is equivalent to G being connected. (Here,
z1, . . . , zl+n are the coordinates for Cl+n.) In this way, we see that the equa-
tions (6.6) describe the pullback ψ−1

p (G) of this subgroup G. We summarize this
discussion.

Theorem 6.1. A system of master functions (6.6) in MH is the pullback along
ψp of the intersection of the linear space ψp(C

l) with a subgroup G of Tl+n of
dimension n, and any such pullback defines a system of master functions in MH.
When ψp is injective, it gives a scheme-theoretic isomorphism between the solutions
to the system of master functions and the intersection G ∩ ψp(C

l).

Theorem 6.1 is the new ingredient needed for the notion of Gale duality. Sup-
pose that G ⊂ Tl+n is a connected subgroup of dimension n and that L ⊂ Cl+n is
a linear subspace of dimension l not parallel to any coordinate hyperplane so that
the intersection G ∩ L has dimension 0.

Definition 6.2. Suppose that we are given

(i) A primitive set A = {0, a1, . . . , al+n} ⊂ Zn and equations (6.7) defining
G = ϕA(Tn) as a subgroup of Tl+n. Then ϕA : Tn → G is an isomorphism
and B = {β1, . . . , βl} is saturated.

(ii) An affine-linear isomorphism ψp : C
l → L and degree one polynomials

Λ1, . . . ,Λn on Cl+n defining L.

Let H ⊂ Cl be the pullback of the coordinate hyperplanes of Cl+n along ψp.
We say that the system of sparse polynomials on Tn

(6.8) ϕ∗
A(Λ1) = ϕ∗

A(Λ2) = · · · = ϕ∗
A(Λn) = 0

with support A is Gale dual to the system of master functions

(6.9) p(y)β1 = p(y)β2 = · · · = p(y)βl = 1

with weights B on the hyperplane complement MH and vice-versa.

The following is immediate.

Theorem 6.3. A pair of Gale dual systems (6.8) and (6.9) define isomorphic
schemes.

This notion of Gale duality involves two different linear algebraic dualities in
the sense of linear functions annihilating vector spaces. In the first duality, the
degree one polynomials pi(y) defining the map ψp are annihilated by the degree one



6.1. GALE DUALITY FOR POLYNOMIAL SYSTEMS 65

polynomials Λi which define the system of sparse polynomials (6.8). The second
duality is integral, as the weights B form a basis for the free abelian group of integer
linear relations among the nonzero elements of A. Writing the elements of B as the
rows of a matrix, the l+n columns form the Gale transform [63, §5.4] of the vector
configuration A—this is the source of our terminology.

Remark 6.4. If we restrict the domain of ϕA to the real numbers or to the
positive real numbers, then we obtain the two forms of Gale duality which are
relevant to us. Set TR := R \ {0}, the real torus and R> to be the positive real
numbers. Suppose that A is not necessarily primitive, but that the lattice index
[Zn : ZA] is odd. Then ϕA : Tn

R
→ Tl+n

R
is injective. Similarly, if ZB has odd index

in its saturation QB∩Zl+n, which is the group of integer linear relations holding on
A, then the equations (6.7) define a not necessarily connected subgroup G ⊂ Tl+n

whose real points GR lie in its connected component containing the identity. When
the linear polynomials Λi of (6.8) and pi of (6.9) are real and annihilate each other,
then these two systems—which do not necessarily define isomorphic schemes in the
complex varieties Tn and MH—define isomorphic real analytic sets in Tn

R
for (6.8)

and in the complement MR
H := Rl \ H of the real hyperplanes defined by the pi

for (6.9).
In the version valid for the positive real numbers, we may suppose that the

exponents A are real vectors, for if r ∈ R> and a ∈ R, then ra := exp(a log(x)) is
well-defined. In this way, we obtain systems of polynomials with real exponents.
In this case, the weights B should be a basis for the vector space of linear relations
holding on A, and the degree one polynomials Λi and pi are again real and dual to
each other. The equations (6.7) for z ∈ Rl+n

> define a connected analytic subgroup

of Rl+n
> which equals ϕA(Rn

>). In this generality, the polynomial system (6.8) makes
sense only for x ∈ Rn

> and the system of master functions (6.9) only makes sense
for y in the positive chamber ∆p of the hyperplane complement MR

H,

(6.10) ∆p := {y ∈ Rl | pi(y) > 0 i = 1, . . . , l+n} ,
and the two systems define isomorphic real analytic sets in Rn

> for (6.8) and in ∆p

for (6.9).

The description of Gale duality in Definition 6.2 lends itself immediately to an
algorithm for converting a system of sparse polynomials into an equivalent system
of master functions. We describe this over C, but it works equally well over R or
R>. Suppose that A ⊂ Zn is a primitive collection of integer vectors and that

(6.11) f1(x1, . . . , xn) = f2(x1, . . . , xn) = · · · = fn(x1, . . . , xn) = 0

defines a zero-dimensional subscheme of Tn. In particular, the polynomials fi are
linearly independent. We may solve these equations for some of the monomials to
obtain

(6.12)

xa1 = g1(x) =: p1(x
a1+n , . . . , xal+n)

...
...

xan = gn(x) =: pn(x
a1+n , . . . , xal+n)

Here, A = {0, a1, . . . , an, a1+n, . . . , al+n}, and for each i = 1, . . . , n, gi(x) is a poly-
nomial with support {0, a1+n, . . . , al+n} which is a degree one polynomial func-
tion pi(x

a1+n , . . . , xal+n) in the given l arguments. (Compare this to (6.2).) For
i = 1+n, . . . , l+n, set pi(x

a1+n , . . . , xal+n) := xai .
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An integer linear relation among the exponent vectors in A,

b1a1 + b2a2 + · · · + bl+nal+n = 0 ,

is equivalent to the monomial identity

(xa1)b1 · (xa2)b2 · · · (xal+n)bl+n = 1 ,

which gives the consequence of the system (6.12)

p(y)β :=
(
p1(x

an+1 , . . . , xal+n)
)b1 · · ·

(
pl+n(x

an+1 , . . . , xal+n)
)bl+n = 1 ,

where β := (b1, . . . , bl+n) ∈ Zl+n.
Define y1, . . . , yl to be new variables which are coordinates for Cl. The degree

one polynomials pi(y1, . . . , yl) define a hyperplane arrangement H in Cl. Let B :=
{β1, . . . , βl} ⊂ Zl+n be a basis for the Z-module of integer linear relations among
the nonzero vectors in A. These weights B define a system of master functions

(6.13) p(y)β1 = p(y)β2 = · · · = p(y)βl = 1

in the complement MH of the arrangement.

Theorem 6.5. The system of polynomials (6.11) in Tn and the system of
master functions (6.13) in MH define isomorphic schemes.

Proof. Condition (i) in Definition 6.2 holds as A and B are both primitive and
annihilate each other. The linear forms Λi that pullback along ϕA to define the
system (6.12) are

Λi(z) = zi − pi(zn+1, . . . , zl+n) ,

which shows that condition (ii) holds, and so the statement follows from Theo-
rem 6.3.

The example at the beginning of this chapter illustrated Gale duality, but the
equations (6.3) were not of the form pβ = 1. They are, however, easily transformed
into such equations, and we obtain

(6.14)
y3(1− x− y)

x( 12 − x+ y)3
(
10
11 (1 + x− 3y)

) =
x2(1− x− y)3

y2( 12 − x+ y)
(
10
11 (1 + x− 3y)

)2 = 1 .

Systems of the form (6.3) may be obtained from systems of master functions by
multiplying pβ = 1 by the terms of pβ with negative exponents to clear the denomi-

nators, to obtain pβ
+

= pβ
−

and thus pβ
+−pβ

−

= 0, where β± is the componentwise
maximum of the vectors (0,±β).

6.2. New fewnomial bounds

The transformation of Gale duality is the key step in establishing the new
fewnomial bounds.

Theorem 6.6. A system (6.5) of n polynomials in n variables having a total
of 1+l+n monomials with exponents A ⊂ Rn has at most

e2 + 3

4
2(

l

2)nl

positive nondegenerate solutions.
If A ⊂ Zn and ZA has odd index in Zn, then the system has at most

e4 + 3

4
2(

l

2)nl
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nondegenerate real solutions.

The first bound is proven in [17] and the second in [5]. By Gale duality,
Theorem 6.6 is equivalent to the next theorem.

Theorem 6.7. Let p1(y), . . . , pl+n(y) be degree 1 polynomials on Rl that, to-
gether with the constant 1, span the space of degree 1 polynomials. For any linearly
independent vectors B = {β1, . . . , βl} ⊂ Rl+n, the number of solutions to

p(y)βj = 1 for j = 1, . . . , l,

in the positive chamber ∆p (6.10) is less than

e2 + 3

4
2(

l

2)nl .

If B ⊂ Zl+n and has odd index in its saturation, then the number of solutions in
MR

H is less than
e4 + 3

4
2(

l

2)nl .

The basic idea behind the proof of Theorem 6.7 is to use the Khovanskii-Rolle
Theorem, but in a slightly different form than given in Theorem 5.3. Using it in
this way to establish bounds for real solutions to equations was first done in [57].
Given functions g1, . . . , gm defined on a domain D, let VD(g1, . . . , gm) be their set
of common zeroes. If C is a curve in D, let ubcD(C) be its number of unbounded
(noncompact) components in D.

Theorem 6.8 (Khovanskii-Rolle). Let g1, . . . , gl be smooth functions defined
on a domain D ⊂ Rl with finitely many common zeroes and suppose that C :=
VD(g1, . . . , gl−1) is a smooth curve of finite type. Set J to be the Jacobian determi-
nant, det(∂gi/∂yj), of g1, . . . , gl. Then we have

(6.15) |VD(g1, . . . , gl)| ≤ ubcD(C) + |VD(g1, . . . , gl−1, J)| .
Proof. This form of the Khovanskii-Rolle Theorem follows from the from the

usual Rolle Theorem. Suppose that gl(a) = gl(b) = 0, for points a, b on the same
component of C. Let s(t) be the arclength along this component of C, measured
from a point t0 ∈ C, and consider the map,

C −→ R2

t 7−→ (s(t), gl(t)) .

This is the graph of a differentiable function g(s) which vanishes when s = s(a)
and s = s(b), so there is a point s(b) between s(a) and s(b) where its derivative
also vanishes, by the usual Rolle Theorem. But then c lies between a and b on
that component of C, and the vanishing of g′(s(c)) is equivalent to the Jacobian
determinant J vanishing at c.

Thus along any arc of C connecting two zeroes of gl, the Jacobian vanishes at
least once. We illustrate this in Figure 6.2

As in the proof of Theorem 5.3, the estimate (6.15) follows from the observation
concerning consecutive zeroes of gl along components of C.

We first make an adjustment to the system of master functions in Theorem 6.7,
replacing each master function p(y)β = p1(y)

b1 · · · pl+n(y)
bl+n by

|p(y)|β := |p1(y)|b1 · · · |pl+n(y)|bl+n .
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C = VD(g1, . . . , gl−1)

gl = 0

VD(g1, . . . , gl−1, J)✏✏✏✮

Figure 6.2. The Jacobian vanishes between two zeroes of gl.

For example, if we take absolute values in the system of master functions (6.14),
we obtain

(6.16)
|y|3|1− x− y|

|x|| 12 − x+ y|3| 1011 (1 + x− 3y)| =
|x|2|1− x− y|3

|y|2| 12 − x+ y|| 1011 (1 + x− 3y)|2 = 1 .

This new system with absolute values will still have the same number of solutions
in the positive chamber ∆p as the original system, since when y ∈ ∆p, we have
|pi(y)| = pi(y) for i = 1, . . . , l+n. Its solutions in the hyperplane complement MR

H
will include the solutions to the system of master functions from Theorem 6.7, but
there may be more solutions.

We illustrate this for the system (6.16) in Figure 6.3, which we may compare
to Figure 6.1 as the system of master functions (6.14) is equivalent to the sys-
tem (6.3) in the complement of the lines. In particular, among the solutions to

Figure 6.3. Curves from absolute values and additional solutions.

the system (6.16) are the three solutions to (6.3) in the positive chamber (which is
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shaded) as well as the three solutions to (6.3) outside the positive chamber. The
system (6.16) has four additional solutions outside the positive chamber, which are
marked in Figure 6.3.

We give a proof of Theorem 6.7 for systems of the form |p(y)|βj = 1 for j =
1, . . . , l. This will imply the bound for systems of master functions. Taking absolute
values allows nonintegral (real number) exponents in |p(y)|βj = 1, and so we shall
no longer require that exponents be integral.

We make two reductions.

(1) The degree one polynomials pi(y) are in general position in that the hy-
perplanes in the arrangement H are in linear general position. That is,
any j of them meet in an affine linear subspace of codimension j, if j ≤ l,
and their intersection is empty if j > l. We may do this, as we are bound-
ing nondegenerate solutions, which cannot be destroyed if the pi(y) are
perturbed to put the hyperplanes into this general position.

(2) Let B be the matrix whose rows are β1, . . . , βl. We may assume that every
minor of B is nonzero. This may be done by perturbing the real-number
exponents in the functions |p(y)|βj . This will not reduce the number of
nondegenerate solutions.

Perturbing exponents is not as drastic of a measure as it first seems. Note that
in the hyperplane complement, |p(y)|β = 1 defines the same set as log(|p(y)|β) = 0.
If β = (b1, . . . , bl+n), then this is simply

(6.17) b1 log |p1(y)| + b2 log |p2(y)| + · · · + bl+n log |pl+n(y)| = 0 .

Expressing the equations in this form shows that we may perturb the exponents
without altering the structure of the equations. In fact, it is possible to arrange for
this assumption on B to hold with the βj rational or even integral.

Example 6.9. We first look at these reductions in the context of the system
of master functions (6.14). The hyperplane arrangement H is an arrangement of
lines in which no three meet and no two are parallel, and thus they are in general
position. The matrix of exponents is

B =

(
2 −2 3 −1 −2

−1 3 1 −3 −1

)
.

No entry and no minor of B vanishes.
Let us now see how the Khovanskii-Rolle Theorem applies to the system (6.16)

of Figure 6.3, restricted to the positive chamber. First, take logarithms and rear-
range to obtain

2 log |x| − 2 log |y|+ 3 log |1−x−y| − log | 12−x+y| − 2 log | 1011 (1+x−3y)| = 0

− log |x|+ 3 log |y|+ 1 log |1−x−y| − 3 log | 12−x+y| − log | 1011 (1+x−3y)| = 0

Call these functions g1 and g2, respectively. Their Jacobian is the rational function

2x3 − 16x2y + 12xy2 + 6y3 − 31
2 x2 + 26xy − 53

2 y2 + 9
2x+ 15

2 y − 2

xy(1− x− y)( 12−x+y)(1 + x− 3y)

whose denominator is the product of the linear factors defining the lines in Fig-
ure 6.3. Clearing the denominator and multiplying by 2, gives a cubic polynomial

J2 := 4x3 − 32x2y + 24y2x+ 12y3 − 31x2 + 52xy − 53y2 + 9x+ 15y − 4 .
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Its zero set meets the curve C1 (which is defined by g1 = 0) in six points, five of
which we display in Figure 6.4—the sixth is at (3.69,−0.77). By the Khovanskii-

(3.69,−0.77)
❳❳❳❳③

Figure 6.4. Gale system and Jacobian J2.

Rolle Theorem, the number of solutions to g1 = g2 = 0 is at most this intersection
number, |V (g1, J2)|, plus the number of unbounded components of C1.

We see that C1 consists of 14 unbounded components in the complement D of
the lines, which gives the inequality

10 = |VD(g1, g2)| ≤ ubcD(C1) + |VD(g1, J2)| = 14 + 6 = 20 .

We follow the suggestion in the second reduction (6.17) and replace the master
functions by the logarithms of their absolute values. For each j = 1, . . . , l, define

gj(y) := log |p(y)|βj =

l+n∑

i=1

βi,j log |pi(y)| ,

where βi,j is the ith component of βj . Observe that both gj = 0 and |p(y)|βj = 1
have the same solutions in the hyperplane complement MR

H. For each j = 1, . . . , l,
let Zj ⊂ MR

H be the common zeroes of the functions g1, . . . , gj , that is, Zj :=
V (g1, . . . , gj).

The connected components of the complement MR
H are called chambers. A

flat of the arrangement H is an affine subspace which is an intersection of some
hyperplanes in H. By our assumption that the hyperplane arrangement H is in
general position, a flat of H has codimension j exactly when it is the intersection
of j hyperplanes in H.

Lemma 6.10. For each j = 1, . . . , l−1, Zj is a smooth submanifold of MR
H of

codimension j. The closure Zj of Zj in Rl meets the arrangement H in a union
of codimension j+1 flats. In the neighborhood of point on a codimension j+1 flat
meeting Zj, Zj has one branch in each chamber incident on that point.
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Proof. First consider the hypersurface Z1 ⊂ MR
H defined by

(6.18) 0 = g1(y) =

l+n∑

i=1

βi,1 log |pi(y)| .

This was obtained by taking the logarithm of the following equation,

1 =

l+n∏

i=1

|pi(y)|βi,1 = |p(y)|β1 .

If we write β±
i,j := max(0,±βi,j), we may clear the denominators to obtain

(6.19)

l+n∏

i=1

|pi(y)|β
+
i,1 −

l+n∏

i=1

|pi(y)|β
−

i,1 = 0 ,

which agrees with (6.18) in the hyperplane complement MR
H, but which makes sense

in all of Rl and defined Zj .

Let y ∈ Z1∩H. Then some degree one polynomial pi(y) vanishes at y, pi(y) = 0.
By our hypotheses on the exponents B, βi,1 6= 0. Thus one of the two terms in (6.19)
vanishes, which implies the other does, as well. It follows that that for some k 6= i,
we have pk(y) = 0 where βi,1 · βk,1 < 0. This shows that Z1 ∩ H is a subset of

the codimension two skeleton of H. But this implies that Z1 ∩ H is a union of
codimension two flats, as its dimension is at least l − 2.

We use induction to complete the proof of the lemma. Suppose j > 1. Since
Zj−1 ⊃ Zj , the intersection Zj ∩H will be contained in Zj−1 ∩H, which is a union

of codimension j flats of H. Let y0 ∈ Zj ∩H lie in a codimension j flat, which, after
reordering the pi, we may assume is defined by the vanishing of the polynomials
p1, . . . , pj . Our assumption on the minors of the matrix (βi,j) of exponents implies
that Zj is defined by functions of the form

0 = g̃k(y) := log |pk(y)| +

l+n∑

i=j+1

β̃i,k log |pi(y)| k = 1, . . . , j .

We obtain these equations by applying Gaussian elimination to the first j columns
of the matrix of exponents. Converting these equations into binomial form, we have

(6.20) |pk(y)| ·
l+n∏

i=j+1

|pi(y)|β̃
+
i,k −

l+n∏

i=j+1

|pi(y)|β̃
−

i,k = 0 k = 1, . . . , j .

Since p1(y0) = p2(y0) = · · · = pj(y0) = 0, there is some m > j with pm(y0) = 0

and β̃−
m,k 6= 0 for k = 1, . . . , j. But this implies that Zj ∩ H lies in a union of

codimension j+1 flats. As the intersection Zj ∩H has dimension at least l− (j+1),
it must be a union of codimension j+1 flats.

Let y0 ∈ Zj ∩H be in the relative interior of a codimension j+1 flat of H. We
may assume that p1, . . . , pj+1 vanish at y0 but no other polynomial pi vanishes.
Then we may solve the binomials (6.20) to obtain

(6.21) |pk| = |pj+1|β̃
−

j+1,k ·
l+n∏

i=j+2

|pi(y)|β̃i,k for k = 1, . . . , j .

As the hyperplanes are general, we may assume that p1, . . . , pl are our coordinates.
After restricting to a single chamber ∆ of MR

H incident on y0 (which amounts to
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choosing signs for p1, . . . , pj+1), and applying an analytic change of coordinates
in a neighborhood of y0, the equations (6.21) become pk = fk(pj+1, . . . , pl) for
k = 1, . . . , j. Thus, in a neighborhood of y0 in each chamber of MR

H incident on y0,
Zj is the graph of a function, and therefore consists of a single branch.

Define functions Jl, Jl−1, . . . , J1 by recursion,

Jj := Jacobian of g1, . . . , gj , Jj+1, . . . , Jl .

We would like to iteratively apply the Khovanskii-Rolle Theorem with these Ja-
cobians. That is, if D is the hyperplane complement MR

H or one of its connected
components, then setting Cj := Zj−1 ∩ VD(Jj+1, . . . , Jl), we would like to obtain
the estimates

|VD(g1, . . . , gj , Jj+1, . . . , Jl)| ≤ |VD(g1, . . . , gj−1, Jj , . . . , Jl)| + ubcD(Cj) ,

but we do not know if Cj is smooth as a subset of D, or if these numbers are finite.
The easiest way around this conundrum is to perturb the Jacobians.

The following is proven in [124] using the Cauchy-Binet Theorem.

Lemma 6.11. There exist polynomials Fl, . . . , F2, F1 with Fj a polynomial of
degree 2l−j ·n such that for each j = l, . . . , 2, 1, we have that Zj−1∩VD(Fj+1, . . . , Fl)
defines a smooth curve Cj in D, and we have the estimate

|VD(g1, . . . , gj , Fj+1, . . . , Fl)| ≤ |VD(g1, . . . , gj−1, Fj , . . . , Fl)| + ubcD(Cj) ,

and furthermore, the polynomials F1, . . . , Fl are general given their degrees.

The main point of this lemma is that the Jacobian J of g1, . . . , gj , Fj+1, . . . , Fl

becomes a polynomial F̃j of degree 2l−j · n if we multiply it by
∏l+n

i=1 pi(y). By the

Khovanskii-Rolle Theorem, we have the inequality of the lemma with F̃j in place
of Fj . We would be done if the curve Cj−1 were smooth. To guarantee this, we

perturb the polynomial F̃j to a general polynomial Fj of degree 2l−j · n so that
Cj−1 is smooth, but the estimate still holds. In fact, the estimate will hold if both

F̃j and Fj have the same sign at each point of V (g1, . . . , gj , Fj+1, . . . , Fl), and this

property is preserved under perturbation (as F̃j is nonzero at these points).
We now iterate the Lemma 6.11 to estimate the number of solutions to a system

of master functions as in Theorem 6.7.

|V (g1, g2, . . . , gl)| ≤ |V (g1, g2, . . . , gl−1, Fl)| + ubc(Cl)

≤ |V (g1, . . . , gl−2, Fl−1, Fl)| + ubc(Cl) + ubc(Cl−1)(6.22)

≤ |V (F1, F2, . . . , Fl)| + ubc(Cl) + · · · + ubc(C1) .

Here, V (· · · ) = VMR

H
(· · · ), the common zeroes in MR

H. Let ubc∆(C) count the

number of unbounded components of the curve C in the positive chamber ∆p and
V∆(· · · ) be the common zeroes in ∆p. Then the analog of (6.22) holds in ∆p.

Lemma 6.12. With these definitions, we have the estimates

(1) |V∆(F1, . . . , Fl)| ≤ |V (F1, . . . , Fl)| ≤ 2(
l

2)nl.

(2) ubc∆(Cj) ≤ 1
2

(
1+l+n

j

)
· 2(l−j

2 )nl−j .

(3) ubc(Cj) ≤ 1
2

(
1+l+n

j

)
· 2(l−j

2 )nl−j · 2j.
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The first statement follows from Lemma 6.11 and Bézout’s Theorem. For the
second, recall that Cj = Zj−1 ∩ V (Fj+1, . . . , Fl). Since F1, . . . , Fl are general, this

is transverse at each point of Zj−1 ∩H, and so Cj has one branch in ∆ incident on
such a point, as Zj−1 has a unique branch in ∆ incident on such a point. Since each
unbounded component of Cj has two ends, the number of unbounded components

is at most half the number of points in the boundary of ∆ lying in Zj−1 ∩ H.
By Lemma 6.10, these are points in the closure of ∆ in some codimension j flat
where Fj+1, . . . , Fl vanish. The bound in the second statement of 6.12 is simply
1
2 multiplied by the product of

(
1+l+n

j

)
and 2(

l−j

2 )nl−j . That is, by the number of

codimension j flats in H (some of which meet the boundary of ∆) multiplied by
the Bézout number of the system Fj+1 = · · · = Fl = 0.

Note that the bound in (2) holds for any chamber of MR
H. We get the bound in

(3) by noting that in the neighborhood of any point in the interior of a codimension
j flat of H, the complement has at most 2j chambers, and so each point of Cj at
the boundary of MR

H can contribute at most 2j such ends. We get this estimate
because the hyperplanes of H intersect transversally.

The complement MR
H of the hyperplane arrangement consists of many cham-

bers. The first bound of Theorem 6.7 is in fact a bound for the number of solutions
in any chamber, while the second bound is for the number of solutions in all cham-
bers. This is smaller than what one may naively expect. The number of chambers
in a generic arrangement of 1+n+l hypersurfaces in Rl is

(
l+n+2

l

)
+

(
l+n+2
l−2

)
+ · · ·+

{ (
l+n+2

0

)
if l is even

(
l+n+2

1

)
if l is odd

.

This exceeds 2l, which is the number of chambers cut out by l hyperplanes. Thus,
we would naively expect that the ratio between ubc∆(Cj) and ubc(Cj) to be this
number, rather than the far smaller number 2j . This is the source for the mild
difference between the two estimates in Theorem 6.6.

We may combine the estimates of Lemma 6.12 with (6.22) to estimate the
numbers |V∆(g1, . . . , gl)| and |V (g1, . . . , gl)|,

|V∆(g1, . . . , gl)| ≤ 1

2

l∑

j=1

(
1+l+n

j

)
· 2(l−j

2 )nl−j + 2(
l

2)nl , and

|V (g1, . . . , gl)| ≤ 1

2

l∑

j=1

(
1+l+n

j

)
· 2(l−j

2 )nl−j · 2j + 2(
l

2)nl .

It is not hard to show the estimate [17, Eq.(3.4)]

(
1+l+n

j

)
· 2(l−j

2 )nl−j ≤ 2j−1

j!
2(

l

2)nl ,

so that these estimates become

|V∆(g1, . . . , gl)| ≤
(

1
2

∑l
j=1

2j−1

j! + 1
)
2(

l

2)nl ≤ e2+3
4 2(

l

2)nl , and

|V (g1, . . . , gl)| ≤
(

1
2

∑l
j=1

22j−1

j! + 1
)
2(

l

2)nl ≤ e4+3
4 2(

l

2)nl .

This implies Theorem 6.7 and thus the fewnomial bounds of Theorem 6.6.
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6.3. Dense fewnomials

The bounds of Theorem 6.6 can be lowered if we know more about the structure
of the set of exponents. We illustrate this in a case which generalizes the near
circuits of [13], and close with some open questions involving fewnomial bounds.

In our reduction to the a system of master functions, we had polynomials
pi(x

a1+n , . . . , xal+n) which, after substituting yi = xai+n , became degree one poly-
nomials. Dense fewnomials are when the exponent vectors a1+n, . . . , al+n have the
additional structure of being the d-fold sum of a collection of k vectors. We sketch
the results of [124], which develops a version of Gale duality and gives bounds for
dense fewnomials.

A collection A ⊂ Zn of exponent vectors is (d, k)-dense if there are integers d, k
such that A admits a decomposition of the form

(6.23) A = ψ(d
k ∩ Zk)

⋃
W ,

where W consists of n affinely independent vectors, ψ : Zk → Zn is an affine-linear

map, and
k
is the unit simplex in Rk. A (d, k)-dense fewnomial is a Laurent

polynomial whose support A ⊂ Zn is (d, k)-dense.
A general (d, k)-dense set A has the form,

(6.24) A :=
{
v0 +

k∑

m=1

dmvm | 0 ≤ dm ,
∑

i

di ≤ d
}⋃

W ,

where W = {w1, . . . , wn} ⊂ Zn is affinely independent and v0, v1, . . . , vk are integer
vectors. Here is an example of such a set A in Z2 (v0 = (0, 0) is the open circle).

(6.25)

v0

v1

v2

w2

w1

For this, n = l = d = 2, W = {(9, 0), (2, 7)} and v1 = (7, 1) and v2 = (2, 3). Here
is a (2, 3)-dense set in Z2.

v2

v1

v3

v0

w2

w1

The numbers of nondegenerate positive and nondegenerate real solutions to a
system of dense fewnomials have bounds similar to those for ordinary fewnomials.

Theorem 6.13. Suppose that A ⊂ Zn is (d, k)-dense. Then a system

f1(x1, . . . , xn) = f2(x1, . . . , xn) = · · · = fn(x1, . . . , xn) = 0
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of real polynomials with support A has fewer than

e2+3

4
2(

k

2) nk · dk

nondegenerate positive solutions. If the affine span of A is a sublattice of Zn with
odd index, then the number of nondegenerate real solutions is less than

e4+3

4
2(

k

2) nk · dk .

This is proven in nearly the same way as Theorem 6.6, except that a modified
version of Gale duality for (d, k)-dense fewnomials is used in which the degree one
polynomials pi in l variables are replaced by degree d polynomials in k variables.

When d = 1, a dense fewnomial is an ordinary fewnomial with k = l, and these
bounds reduce to the fewnomial bound of Theorem 6.6. When d > 1, these bounds
are a significant improvement over Theorem 6.6 as the number of monomials is(
d+k
k

)
+ n, so that the parameter l is

(
d+k
k

)
− 1. When k = 1, a (d, k)-dense

fewnomial is a near circuit of [13], and the bound of Theorem 6.13 extends the
bound for near circuits.

Despite this work on fewnomial bounds which refine Khovanskii’s breakthrough,
many important questions remain open. For example, while the bound for X(2, 2)

has dropped from 5184 to e2+3
4 2(

2
2)22 ≈ 20.78, and in fact the proof gives the bound

2(
2
2)22 + 1

22
(12)21 · 5 + 1

22
(02)20 · 5 = 15.5 ,

(a polygon with five (2+2+1) edges has five vertices). However, the best construc-
tion of a system of two polynomials in two variables with five monomials remains
essentially that of Haas (5.10) which has five solutions. Thus all we currently know
is that

5 ≤ X(2, 2) ≤ 15 .

New ideas are needed to improve these bounds for X(l, n), as the examples in
this section are nearly the limit of the ideas that led to Theorem 6.6. As important
as proven bounds are constructions of fewnomial systems with many positive solu-
tions. In fact, a lack of examples or constructions, particularly when n is fixed or
when it has moderate size with respect to l, prevents us from understanding how
good the known upper bound for X(l, n) is.





CHAPTER 7

Lower Bounds for Sparse Polynomial Systems

In Chapters 5 and 6 we studied upper bounds on the number of real solu-
tions to systems of polynomial equations. We turn now to the other side of the
inequality (1.2). That is, results which guarantee the existence of real solutions
by establishing lower bounds on the number of real solutions to certain geometric
problems or systems of equations. While some work on lower bounds is quite so-
phisticated, we use only elementary topology and the structure of real toric varieties
to develop a theory of lower bounds for sparse polynomial systems.

In Chapter 1, we discussed how work of Welschinger [162], Mikhalkin [99],
and of Kharlamov, Itenberg, and Shustin [77, 78] combined to show that there
is a nontrivial lower bound Wd for the number of real rational curves of degree d
interpolating 3d−1 points in RP2. Similar results were found by Pandharipande,
Solomon, and Walcher [111] for rational curves on the quintic three-fold. For
example, there are at least 15 real lines (out of 2875 complex lines) on a real
smooth quintic hypersurface in RP4.

We also discussed earlier work of Eremenko and Gabrielov [45], who found a
similar result for the number of real solutions to the inverse Wronski problem. They
gave numbers σm,p > 0 for m+p odd, and proved that if Φ is a real polynomial
of degree mp then there are at least σm,p different m-dimensional spaces of real
polynomials of degree m+p−1 with Wronskian Φ. We will prove this in Section 8.2.

These spectacular results are but the beginning of what could be an important
story for the applications of mathematics. That is, a useful theory of natural
geometric problems or systems of structured polynomial equations possessing a
lower bound on their number of real solutions. The point is that nontrivial lower
bounds imply the existence of real solutions to systems of equations. A beginning
of the interaction between applications and this theory of lower bounds is found in
the work of Fiedler-Le Touzé [49] discussed in Section 1.5.

The first steps toward a theory of lower bounds for sparse polynomial systems
were developed jointly with Soprunova in [138]. That theory concerned unmixed
systems, such as those covered by Kushnirenko’s Theorem. It remains an impor-
tant open problem to develop a theory for mixed systems such as those which
appear in Bernstein’s Theorem. Example 7.16 is a step in this direction. Also, the
computations reported in Chapters 13 and 14 suggest there are many systems pos-
sessing lower bounds for which there is currently no theoretical or even conjectural
explanation.

This chapter develops the basic theory of lower bounds on the number of real
solutions to systems of sparse polynomial equations, while the next chapter will be
devoted to instances and applications of this theory.

77
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Like the fewnomial upper bounds, which used the topological argument of
the Khovanskii-Rolle Theorem, this theory of lower bounds is based on topology,
specifically the notion of mapping degree. There are three steps in this theory.

(1) Realize a polynomial system as the fiber g−1(p) of a map

g : XA −→ Pn .

If we restrict this to the real points of XA and Pn,

(7.1) g : YA −→ RPn ,

then the number of real solutions, #g−1(p), is bounded below by the
mapping degree of g, if the spaces in (7.1) are orientable.

(2) Characterize when the spaces in (7.1) are orientable. This is from [139],
which extends work of Nakayama and Nishimura [109].

(3) Use toric degenerations to compute the mapping degree in some cases.

These steps are presented in the following three sections. These systems are un-
mixed in that the polynomials all have the same Newton polytope. We close with
a discussion of open problems and an example of a mixed system with a provable
lower bound.

7.1. Polynomial systems as fibers of maps

Let A ⊂ Zn be a finite set of exponent vectors and consider a system of real
polynomial equations with support A,

(7.2) f1(x1, . . . , xn) = f2(x1, . . . , xn) = · · · = fn(x1, . . . , xn) = 0 .

Lemma 3.5 explains how the solution set to a system (7.2) of polynomials with
support A ⊂ Zn is the pullback along ϕA of a linear section,

(7.3) ϕ−1
A (L ∩XA) ,

where ϕA : Tn ∋ x 7→ [xa | a ∈ A] ∈ PA is the parameterization map and XA is the
closure of its image, a toric variety. This correspondence is a bijection when A is
primitive.

In this case, we can assume that A consists of all the integer points in its convex
hull. Indeed, if we set A′ = conv(A) ∩ Zn, then A and A′ have the same convex
hull and are both primitive, so by Kushnirenko’s Theorem, the toric varieties XA
and XA′ have the same degrees in their natural projective embeddings into PA and
PA′

. Furthermore XA is the image of XA′ under the natural coordinate projection
π : PA′− → PA, and so there is a bijection between the linear sections

L ∩XA and π−1(L) ∩XA′ .

Since π commutes with ϕA′ and ϕA, we may replace the first linear section (7.2) by
the second π−1(L) ∩XA′ . Thus, in (7.2), we may assume that A = conv(A) ∩ Zn.
This means that the toric variety XA is normal, which implies that it is smooth in
codimension one and therefore its singular locus has codimension at least two.

Remark 7.1. The correspondence of Lemma 3.5 is a bijection of complex
solutions only when A is primitive. It is a bijection between real solutions to the
system of polynomials and real points in the linear section (7.3) only when ϕA is
injective on Tn

R
. This is equivalent to the lattice index [ZA : Zn] being odd, so that

the kernel of the map ϕA on Tn
R
is {1}. While there is not a bijection when the

index is even, it is a combinatorial problem to determine the real solutions to the
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polynomial system given the real points in the linear section. If the lattice index
[ZA : Zn] is odd so that this correspondence is a bijection on real solutions, we
may replace Zn by ZA so that A is primitive, without changing the number of real
solutions. Therefore, we will assume that A is primitive for the remainder of this
chapter.

To use mapping degree, we need to realize L ∩ XA as the fiber of a map. To
that end, let E ⊂ L be a hyperplane in L that does not meet XA and M ≃ Pn a
linear space that is disjoint from E. Then E has codimension n+1 in PA and the
set of codimension n planes containing E is naturally identified with M , with each
plane associated to its unique intersection with M . The linear projection

(7.4) πE : PA \ E −→ M ≃ Pn

sends a point y ∈ PA \E to the intersection of M with span of E and y. Figure 7.1
illustrates this in P3, where E and M are lines. Write πE : PA − → Pn, using the

❍❍❥

✻

✁
✁
✁
✁
✁
✁✁✕

❇
❇
❇
❇
❇❇▼

πE
✲

E ❍❍❥

L

✄
✄✎

p✛

M✛

XA

✻

✁
✁
✁
✁
✁
✁✁✕

❇
❇
❇
❇
❇❇▼

π−1
E (p)

Figure 7.1. A linear projection π with center E.

broken arrow to indicate that πE is a rational map that is not defined on all of PA.
Write π for the restriction of the linear projection πE to the toric variety XA.

If p := L ∩M is the point where L meets M , then

L ∩XA = π−1(p) .

This is also illustrated in Figure 7.1, where XA is a rational normal cubic curve.
To study the real solutions/real points in the linear section, define the real toric
variety YA := XA ∩ RPA, which is also the closure in RPA of ϕA(Tn

R
). This is

a consequence of our assumption that A is primitive. Then the real solutions to
our system of polynomials correspond to points of the real linear section L ∩ YA.
Equivalently, we restrict the projection π further to a map

g : YA → RPn ,

and consider points in the fiber g−1(p), where x ∈ RPn. Since YA and RPn have
the same dimension, the map g may have a degree. For this, YA and RPn must be
orientable and we must fix orientations of YA and of RPn. Suppose this is the case.
For a regular value p ∈ RPn of g and a point y ∈ g−1(p), the differential map dgy
is a bijection between the tangent spaces TyYA and TpRP

n. Set signg(y) := 1 if the
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differential dgy preserves the orientations of the tangent spaces and signg(y) := −1
if dgy reverses the orientations. The mapping degree mdeg(g) of g is the sum

∑

y∈g−1(p)

signg(y) .

The value of this sum does not depend upon the choice of a regular value x, as the
target space RPn is connected, but it does depend upon the choice of orientation.
The value of the notion of mapping degree is the following.

Theorem 7.2. The number of points in a fiber g−1(p), for p ∈ RPn a regular
value of g, is at least the absolute value |mdeg(g)| of the mapping degree of g.

Corollary 7.3. The absolute value of the mapping degree |mdeg(g)| is a lower
bound on the number of solutions to a system of polynomial equations modeled as
a fiber of the map g.

It is sufficient, but not necessary, that mdeg(g) 6= 0 for there to be a lower
bound. Nonnecessity is apparently illustrated by the computer experiment on the
Schubert problem 9 = 42 in the Grassmannian of 3-planes in C6 reported in
Table 13.4. This experiment determined the numbers of real points in a fiber of
the Wronski map on the real Grassmannian, which has mapping degree σ3,3 = 0,
yet there were always at least two real points in each fiber.

7.2. Orientability of real toric varieties

To apply Corollary 7.3 to deduce a lower bound on the number of real solutions
to a system of polynomials realized as the fibers of a map g, we apparently need
both RPn and YA to be orientable manifolds. There are a priori problems with
this approach. Real projective space RPn is orientable if and only if n is odd, toric
varieties are typically singular, and we also need to understand the orientability
of YA. The first two objections are easily handled, and we will characterize the
orientability of YA using a little algebraic topology, following [139].

For the nonorientability of of RPn, recall that the n-sphere Sn is the oriented
double cover of RPn. Similarly, the sphere SA in RA is the oriented double cover
of RPA. If Y +

A ⊂ SA is the pullback of YA ⊂ RPA along this double cover, and

g+ : Y +
A → Sn is the pullback of the map g, we get a commutative diagram:

(7.5)

g : YA ⊂ RPA πE−−− → RPn

g+ : Y +
A ⊂ SA

π+
E−−− → Sn

❄ ❄ ❄

Passing to the double cover does not affect the number of points in fibers, for if
p′, p′′ ∈ Sn are the antipodal points covering a point p ∈ RPn, then each point in
the fiber g−1(p) is covered by a pair of antipodal points, one in each fiber of g+

above the points p′ and p′′. We will call Y +
A a spherical toric variety.

Next, while the toric variety YA is typically singular, its singular points have
codimension at least two. Indeed, as we assumed that A is the set of lattice points
within its convex hull ∆, the complex toric variety XA is normal and hence its
singular locus has codimension at least two. Thus the singular locus of YA will also
have codimension at least two. These facts hold for the spherical toric variety Y +

A .
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The image under g+ of the singular locus of Y +
A in Sn has codimension at least

two. If U is its complement, then it is connected and g+ : (g+)−1(U) → U is a
proper map between manifolds of the same dimension and thus it will have a well-
defined mapping degree, if (g+)−1(U) is oriented. So it suffices to understand the
orientability of (g+)−1(U), which is equivalent to the orientability of the smooth
locus of Y +

A , as they differ only in codimension two or greater.
If YA is oriented and n is odd, then Corollary 7.3 applies so there is no need to

pass to the double cover of g : YA → RPn. On the other hand, it is no loss of gen-
erality to pass to this double cover, as orientations pull back. We will characterize
when the smooth points of either YA or Y +

A are orientable.
This characterization is given in [139] following the ideas of [109]. It uses the

dual description of the convex hull ∆ of A in terms of intersections of half-spaces,
or facet inequalities, which have the form

(7.6) ∆ =
⋂

F a facet

{x ∈ Rn | vTF · x ≥ −bF } ,

where, for each facet F of ∆, vF ∈ Zn is the unique shortest inward-pointing integer
normal to F and bF is the (signed) lattice distance of F from the origin.

For example, the symmetric hexagon of Example 3.4 is defined by the six facet
inequalities, which we collect in matrix form,




−1 0
0 −1
1 −1
1 0
0 1

−1 1




·
(

x
y

)
≥




−1
−1
−1
−1
−1
−1




.

Let εF ∈ {±1}n be the element whose ith coordinate is −1 raised to the power
of the ith coordinate of vF . That is, εF is the image of vF under the natural map
Zn

։ {±1}n given by reduction modulo 2.

Theorem 7.4. The smooth locus of YA is orientable if and only if there is a
basis for {±1}n such that for every facet F of ∆, the element εF is the product of
an odd number of basis elements.

Remark 7.5. Lemma 2.3 of [139] gives the following equivalent formulations
of the condition of Theorem 7.4. There is a basis of {±1}n such that every facet
element εF is the product of an odd number of basis elements if and only if there
is an independent subset E of these facet elements such that every εF is a product
of an odd number of elements of E, if and only if no facet element is the product
of an even number of facet elements.

Example 7.6. Consider the two-dimensional crosspolytope,



1 1
−1 1
−1 −1
1 −1




·
(

x
y

)
≥




−1
−1
−1
−1




.



82 7. LOWER BOUNDS FOR SPARSE POLYNOMIAL SYSTEMS

For each of its facets, the element εF is (−1,−1), so the crosspolytope satisfies
Theorem 7.4; we may take the basis of {±1}2 to be (−1,−1) and (−1, 1).

We can see this directly, as YA is the orientable double pillow. Half of it (a pil-
low) is obtained by gluing two copies of the crosspolytope along their corresponding
edges. This gives four singular corners, which are glued to the four corners of a
second pillow, so that the corners are locally the apices of quadratic cones. Fig-
ure 7.2 shows a double pillow projected from its ambient RP4 into RP3, displaying
one pillow and part of the second near the four singular points. Each pillow is

Figure 7.2. Double pillow in R3.

homeomorphic to S2 and is therefore orientable.

The characterization of orientability of the smooth points of Y +
A is similar. For

each facet F of ∆, set ε+F := ((−1)bF , εF ) ∈ {±1}1+n.

Theorem 7.7. The smooth locus of Y +
A is orientable if and only if there is a

basis for {±1}1+n such that for every facet F of ∆, the element ε+F is the product
of an odd number of basis elements.

Example 7.8. The toric variety YA associated to the symmetric hexagon of
Example 3.4 is not orientable as the product of the three elements εF , (−1, 1),
(1,−1), and (−1,−1), is the identity in {±1}2. However Y +

A is orientable, as the

elements ε+F are (−1, 1,−1), (1,−1,−1), and (−1,−1,−1), which form a basis.

Elementary algebraic topology tells us that a connected n-dimensional manifold
Y is orientable if and only if its top homology group Hn(Y,Z) is nontrivial, if and
only if Y has a fundamental cycle in homology. We prove Theorems 7.4 and 7.7 by
computing the top homology groups of YA and Y +

A using cellular chain complexes

from explicit descriptions of YA and Y +
A as cell complexes, similar to the description

of the gluing of four crosspolytopes to form the double pillow in Example 7.6. Since
YA and Y +

A are smooth in codimension one, this is also the top homology group of
their smooth points.

These cell complexes arise from the structure of real toric varieties associated
to lattice polytopes, which may be found in [52, Ch. 4] and [145]. Under ϕA, the
group of units {±1}n ⊂ Tn

R
acts on RPA via

(7.7) g.[xa | a ∈ A] = [ga · xa | a ∈ A] ,
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where g ∈ {±1}n. This action restricts to an action on YA and the orbit space
YA/{±1}n is naturally identified with the polytope ∆.

The nonnegative orthant RPA
≥0 of RP

A consists of points having a representative

with all coordinates nonnegative. Each orbit of {±1}n on YA meets the nonnegative
orthant in a unique point. Thus YA ∩RPA

≥0 may be identified with the orbit space.
This nonnegative part of the toric variety YA is mapped homeomorphically to the
polytope under the algebraic moment map µA, which is defined by

µA : [xa | a ∈ A] 7−→
∑

a∈A |xa| · a∑
a∈A |xa|

.

Birch’s Theorem from algebraic statistics [1, p. 168] implies that this is a homeomor-
phism from the nonnegative part of YA to the polytope ∆. The fibers µA : YA → ∆
are the orbits of {±1}n. Identifying the nonnegative part of YA with the polytope
∆ using µA yields a description of the topological space YA as a quotient

(7.8) YA =
(
∆× {±1}n

)
/ ∼ ,

where (g, x) ∼ (g, y) if and only if x = y and g.x = g.y under the action (7.7).
This quotient realizes YA as a cell complex. Each face F of ∆ corresponds to the
intersection of the nonnegative part of YA with the coordinate subspace

PF := {x ∈ PA | xa = 0 if a 6∈ F} .
An element g ∈ {±1}n fixes PF pointwise if the element ga ∈ {±1} does not depend
upon the choice of a ∈ F ∩A. Let GF ⊂ {±1}n be the subgroup consisting of these
elements fixing PF pointwise. When F is a facet, GF = {1, εF } = 〈εF 〉. If we let
F ′ be the relative interior of a face F of ∆, then

∆ =
∐

F

F ′

is a realization of ∆—which is homeomorphic to a ball—as a cell complex, and

YA =
∐

F

F ′ ×
(
{±1}n/GF

)

is a realization of YA as a cell complex.
Set ∆◦ to be the union of ∆′ and F ′, for F a facet of ∆, which is the complement

of the codimension two skeleton of ∆. Then

Y ◦
A := ∆◦ × {±1}n/ ∼

is the union of all cells of dimension n and dimension n−1 in YA. This consists of
smooth points of YA, and its orientability is equivalent to the orientability of the
smooth points of YA, as these two sets differ only in codimension two.

Proof of Theorem 7.4. The group {±1}n acts transitively on the cells of
Y ◦
A of each dimension. Thus its connected components are isomorphic and Y ◦

A is
orientable if and only if each of its connected components is orientable. Thus Y ◦

A
is orientable if and only if its top integral homology group is nonzero.

We use the cellular chain complex associated to the cell decomposition of Y ◦
A,

Y ◦
A =

(
∆′ × {±1}n

) ∐ ∐

F

F ′ ×
(
{±1}n/〈εF 〉

)
.

This is the chain complex

Cn
∂−−→ Cn−1 ,
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where Cn is the free abelian group with generators [g,∆] for g ∈ {±1}n, and
Cn−1 is the free abelian group with generators [g〈εF 〉, F ] for F a facet of ∆ and
g〈εF 〉 ∈ {±1}n/〈εF 〉.

The top homology group Hn(YA,Z) is the kernel of ∂. To compute it, suppose
that ∆ and its facets F are oriented so that

∂∆ =
∑

F

F .

Consider an element Z in Cn,

(7.9) Z =
∑

g∈{±1}n

cg · [g,∆] ,

where cg ∈ Z. Then

∂(Z) =
∑

g

cg
∑

F

[g〈εF 〉, F ] =
∑

F

∑

g〈εF 〉∈{±1}n/〈εF 〉
(cg + cgεF ) · [g〈εF 〉, F ] .

Thus ∂(Z) = 0 if and only if cg = −cgεF for all g ∈ {±1}n and facets F . Equiva-
lently, cg = (−1)kcgεF1

···εFk
, when F1, . . . , Fk are facets of ∆.

Suppose that there is a basis e1, . . . , en of {±1}n such that each εF is a product
of an odd number of the basis elements ei. For g ∈ {±1}n, set cg = 1 if g is the
product of an even number of the ei and −1 if it is the product of an odd number
of the ei. Then cg = −cgεF for all g ∈ {±1}n, and therefore the chain Z (7.9) is a
nonzero element in the kernel of ∂, and Y ◦

A is orientable.
Suppose there is no such basis of {±1}n. Let Z be a chain (7.9) that lies

in the kernel of ∂. Then there is some εE for a facet E which is a product of
an even number of elements εF for facets F . If not, then we can reduce the set
{εF | F a facet of ∆} to a linearly independent set and then extend it to a basis of
{±1}n in which every εF is a product of an odd number of basis elements. We get
εE = εF1

· · · εF2k
and hence 1 = εEεF1

· · · εF2k
, so for every g ∈ {±1}n we get

cg = (−1)2k+1cgεEεF1
···εF2k

= −cg ,

which implies that cg = 0 and hence ker ∂ = 0 and so Y ◦
A is nonorientable.

The same arguments using the group {±1}1+n acting on Y +
A prove Theorem 7.7.

Suppose that the real toric variety YA has an orientable lift Y +
A . Given any

projection map πE (7.4) whose center E is disjoint from the toric variety XA, write
g for its restriction to YA. Then the lift g+ : Y +

A → Sn of g to Y +
A has a well-defined

mapping degree, whose absolute value we call the real degree of the map g. Its
value is the following restatement of Corollary 7.3.

Corollary 7.9. The real degree of g is a lower bound for the number of real
solutions to polynomial systems arising as fibers of the map g.

7.3. Degree from foldable triangulations

Theorems 7.4 and 7.7 provide a challenge: compute the real degree of a (or
any) map g arising as a linear projection of a toric variety YA whose lift Y +

A is
orientable. We give a method based on toric degenerations to provide an answer to
this question. It is by no means the only answer. We first describe this in terms
of polynomial systems, and then give a proof which uses toric degenerations. The
key notion is that of a foldable triangulation.
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Example 7.10. Consider the triangulation of the hexagon (the HSBC Bank
symbol rotated 45◦ anti-clockwise) of Figure 7.3 with the points of A labeled 0, 1,
and 2. Each triangle is colored by the orientation given by the cyclic order 0–1–2 of
its vertices. Mapping the points of A to the corresponding vertices of the simplex
defines a piecewise linear folding map whose mapping degree is 4− 2 = 2.

0

0

0

2 2

1

1

folding−−−−−→

0

2

1

Figure 7.3. Foldable triangulation and folding map on the hexagon.

Suppose now that ∆ is a lattice polytope and A = ∆ ∩ Zn. Let ω : A → N be
a function inducing a regular unimodular triangulation ∆ω of ∆, as in Section 4.2.
(Note that not every polytope ∆ admits such a regular unimodular triangulation.)
This triangulation ∆ω is foldable if its facet simplices may be properly 2-colored,
which is equivalent to there being a labeling of the vertices A of the triangulation
with n+1 labels, where each simplex receives all n+1 labels [80]. (This is also called
a balanced triangulation in the literature.) Let ℓ : A → {0, 1, . . . , n} be the vertex
labeling. Both the 2-coloring and the vertex-labeling are unique up to permuting
the colors and labels. The difference in the number of simplices of different colors
is the signature σ(ω) of the foldable triangulation. Up to a sign, it is the mapping
degree of the piecewise linear combinatorial folding map from ∆ to an n-simplex
given by the labeling of A, as in Figure 7.3.

Example 7.11. Here are two foldable triangulations of the unit cube in R3.
The first has signature 2, while the second has signature 0.

A foldable triangulation with labeling ℓ : A → {0, 1, . . . , n} and a choice of
positive constants κ = (κa | a ∈ A) ∈ RA

> defines a family of Wronski polynomials,
Wκ,c(x), which depend upon real parameters c = (c0, c1, . . . , cn) ∈ Rn+1,

(7.10) Wκ,c(x) =
∑

a∈A
cℓ(a) · κax

a .
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Example 7.12. Suppose that A consists of the integer points in the hexagon,

1

2

1 2

κ ∈ RA
>, and ∆ω is the triangulation of Figure 7.3. A Wronski polynomial for this

triangulation has the form

c0
(
κ00 + κ11xy + κ22x

2y2
)

+ c1
(
κ10x+ κ12xy

2
)

+ c2
(
κ01y + κ21x

2y
)
.

A system of Wronski polynomials consists of n Wronski polynomials (7.10)
where the coefficients ci vary, but not the constants κ ∈ RA

>. We show that a
system of Wronski polynomials for a foldable regular triangulation ∆ω will always
have at least σ(ω) real solutions, when the corresponding spherical toric variety Y +

A
is orientable and a technical condition holds that we now explain.

As in Section 4.2, the function ω : A → N defines an action of T on PA,

t.[ya | a ∈ A] := [tω(a)ya | a ∈ A] .

Let Eω,κ ⊂ PA be the linear space of codimension n+1 defined by the vanishing of
the terms multiplying the coefficients ci of a Wronski polynomial,

(7.11) Λi(z) :=
∑

ℓ(a)=i

κaza for i = 0, 1, . . . , n .

Then the technical condition is that the real points t−1.YA of the toric degeneration
do not meet the subspace Eω,κ for 0 < t ≤ 1.

Theorem 7.13. Suppose that the set A = ∆∩Zn of integer points in a polytope
∆ is primitive and Y +

A is orientable. Let ω : A → N be a function inducing a regular
unimodular foldable triangulation ∆ω of ∆ with signature σ(ω), and let κ ∈ RA

>.
If t−1.YA ∩ Eω,κ is empty for all 0 < t ≤ 1, then a general system of Wronski
polynomials (7.10) for ω and κ has at least n! volume(∆) complex solutions, at
least σ(ω) of which are real

Example 7.14. Let A be the integer points in the hexagon of Example 7.10.
The foldable triangulation is induced by a function ω that takes the value 3 at the
center point (1, 1), the value 0 at (0, 0) and (2, 2), and otherwise takes the value 2.
We check the condition on t−1.YA ∩ Eω,κ. The center Eω,κ is defined by

κ00z00 + κ11z11 + κ22z22 = κ10z10 + κ12z12 = κ01z01 + κ21z21 = 0 .

As in Corollary 4.8, the ideal of t−1.YA is defined by the binomials

z00z11 − tz10z01 , z10z12 − t2z211 , z01z21 − t2z211 , . . .

The underlined form defining Eω,κ implies that κ10z10 = −κ12z12. Substituting
this into underlined term defining t−1.YA (after multiplying it by κ10) gives

−κ12z
2
12 − κ10t

2z211 = 0 ,
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which has no nonzero real solutions, and so z10 = z12 = z11 = 0. Similar con-
sequences of other equations show that t−1.YA does not meet Eω,κ, for any real
t, and thus any Wronski polynomial system for the foldable triangulation ∆ω will
have at least σ(ω) = 2 real solutions. Figure 7.4 shows Wronski polynomials (with
constants κa = 1), and the curves they define in the plane. This system has exactly
two real solutions, which is the lower bound predicted by Theorem 7.13.

3(1 + xy + x2y2) + 5(x+ xy2)

+(y + x2y) = 0

(1 + xy + x2y2)− 2(x+ xy2)

−3(y + x2y) = 0

Figure 7.4. System of Wronski polynomials.

We prove Theorem 7.13 by showing that the systems of Wronski polynomi-
als (7.10) are the fibers of a map

g : YA −→ RPn

whose real degree is the signature σ(ω) of the foldable triangulation ∆ω. This
proceeds in two steps. First, the labeling function ℓ : A → {0, . . . , n} coming from
the foldable triangulation and the constants κ induce a linear projection

πω,κ : PA −−→ Pn

whose center is Eω,κ. We will show that if t > 0 is sufficiently small, then the
restriction gt of πω,κ to t−1.YA is a map t−1.YA → Pn of real degree σ(ω). The
condition that t−1.YA ∩Eω,κ = ∅ for 0 < t ≤ 1, and the definition of real degree as
the degree of the lift to double covers, implies that the real degree of gt is constant
for 0 < t ≤ 1, and therefore the map g1 = g has real degree σ(ω).

Define the map πω,κ by the linear forms Λi(z) (7.11),

πω,κ(z) := [Λ0(z) : Λ1(z) : · · · : Λn(z)] ∈ Pn .

This has center Eω,κ, and the pullback of a linear form
∑

i ciyi is∑

a∈A
cℓ(a)κaza ,

whose pullback under ϕA is a Wronski polynomial (7.10). Thus a system of Wronski
polynomials (7.10) is a fiber of the map g : YA → RPn obtained by restricting πω,κ

to YA. By Corollary 7.9, the real degree of g is a lower bound for the number of real
solutions to systems of Wronski polynomials. For 0 < t, let gt be the restriction of
πω,κ to t−1.YA. By our assumption on Eω,κ, the real degree of gt is constant for
0 < t ≤ 1. Thus Theorem 7.13 is a consequence of the following lemma.

Lemma 7.15. For t sufficiently small, the real degree of gt is σ(ω).
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Proof. The positive part YA,> of a projective toric variety XA consists of its
points with positive coordinates. It is the image of the positive orthant Rn

> under
the parameterization map ϕA and is homeomorphic to the interior of the convex
hull of A under the algebraic moment map µA. In particular, YA,> is orientable.

For each facet simplex F of ∆ω, the map πω,κ sends a point [ya | a ∈ F ] ∈ RPF

to the point [κaya | a ∈ F ] ∈ RPn, where κaya is the ℓ(a)-th coordinate. For
p := [1 : 1 : · · · : 1] ∈ RPn

> the linear space L := π−1
ω,κ(p) meets RPF in the point

pF := [1/κa | a ∈ F ] ∈ RPF
>.

Since ∆ω is unimodular, if we restrict the toric degeneration to the real points,
Corollary 4.14 implies that

(7.12) lim
t→0

t−1.YA =
⋃

F
RPF .

If we restrict this to t > 0, then the positive part t−1.YA,> degenerates to the union
of positive parts

⋃
F RPF

>.
As in Section 4.4, if t > 0 is sufficiently small, then the points of L ∩ t−1.YA =

g−1
t (p) are in bijection with the facets F of ∆ω with each point having a unique
closest point pF . Fix such a t > 0 and let yF be the point of g−1

t (p) closest to pF .

RPF
>

pF
¡
¡✒

yF
¡¡✠

RPF ′

>

yF ′

❄

pF ′

✁
✁✁☛t−1.YA

✏✏✏✶

L = π−1
ω,κ(p)

✓
✓✴

Choosing orientations of t−1.YA,> and RPn
>, the sum

(7.13)
∑

y∈g−1
t (p)

signgt(y) =
∑

F
signgt(yF )

is the degree of the map gt restricted to t−1.YA,>. As the positive parts are con-
nected and this computation is local, this sum (7.13) is identical to the sum com-
puting the degree of g+t using the fiber above the lifted point p+ = (1 : · · · : 1) ∈ Sn.

Since κ ∈ RA
>, the map is πω,κ is a homeomorphism between the positive

parts RPF
> and RPn

>, and therefore induces orientations on RPF
> so that the map

πω,κ : RP
F
> → RPn

> has degree 1. As in the proof of Kushnirenko’s Theorem in Sec-
tion 4.3, in a neighborhood of the point yF , the map gt is isotopic to the coordinate
projection to RPF

>, and therefore signgt(yF ) is equal to the sign of this coordinate

projection to RPF
> (by our choice of orientation of RPF

>). But this coordinate pro-
jection to RPF

> induces an orientation oF on t−1.YA, and so signgt(yF ) measures
the agreement of the induced orientation oF with the fixed orientation.

We complete the proof by showing that if F and F ′ are adjacent facets of the
triangulation ∆ω, then the induced orientations oF and oF ′ differ, for then the
sum (7.13) is equal to the signature σ(ω) of the triangulation.

The adjacent facets F and F ′ share a common face {a0, . . . , an−1} := F∩F ′ and
we have F \F ′ = {an} and F ′ \F = {a′n}. We assume that the labeling associated
to the triangulation gives ℓ(ai) = i and ℓ(a′n) = n. Setting za0

= 1, RPF
> has
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coordinates (za1
, . . . , zan

) and RPF ′

> has coordinates (za1
, . . . , z′an

), and the implied

orientations agree. Pulling these back to t−1.YA,> along the two projections gives
two local coordinate charts inducing the orientations oF and oF ′ .

To compare these orientations, we determine the change of coordinates be-
tween these two charts. Consider the union of the facet simplices F and F ′ in the
triangulation.

an

a′na0

an−1

F

F ′

The line segment an, a′n crosses the affine hull of {a0, . . . , an−1} and so there is an
integer linear relation

Nan +Ma′n = α0a0 + α1a1 + · · ·+ αn−1an−1 ,

where N,M are positive. As in Section 6.1, this gives a valid equation for YA,

zMan
zNa′

n
− zα0

a0
· · · zαn−1

an−1
= 0 .

As in Section 4.3 this gives the equation on t−1.YA,

t〈ω,α〉zMan
zNa′

n
− tω(an)N+ω(a′

n)Mzα0
a0

· · · zαn−1
an−1

= 0 .

We can solve this in the affine chart where za0
= 1 to obtain,

zan
= N

√
tω(an)N+ω(a′

n)M−〈ω,α〉z−M
a′
n

· zα1
a1 · · · zαn

an = z
−M/N
a′
n

R ,

where R := N
√
tω(an)N+ω(a′

n)M−〈ω,α〉 · zα1
a1 · · · zαn

an . The Jacobian matrix for the
change of coordinates between these two charts has the form




1 · · · 0 ∗
...

. . .
...

...
0 · · · 1 ∗
0 · · · 0 −M

N z
M/N−1
a′
n

·R


 ,

whose determinant is negative. This implies that oF and oF ′ are opposite orienta-
tions, and completes the proof.

7.4. Open problems

There is much more to be done in this area. Here are some suggestions.

(1) Find other methods to give polynomial systems whose degree may be
computed or estimated. For example, we give a family of systems in
Section 8.3 having a lower bound on their numbers of real solutions for
which Y +

A is not orientible.
(2) Find more unbalanced triangulations (see [81]).
(3) Apply these ideas to specific problems from the applied sciences.
(4) Extend any of this from unmixed systems (all polynomials have the same

Newton polytope) to more general mixed systems (those whose polyno-
mials have different Newton polytopes). We end with an example in this
direction which is due to Chris Hillar.
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Example 7.16. Let P and Q be the two lattice polytopes given below

P
(0, 1) (m, 1)

(0, 0) (m, 0)

Q

(1, 2)

(2, 1)

(0, 0)

A polynomial with support P has the form

g := A(x) + yB(X) ,

where A and B are univariate polynomials in x with degree m. Let their coefficients
be a0, . . . , am and b0, . . . , bm, and let h be a polynomial with support Q,

h := c + dxy + ex2y + fxy2 .

By Bernstein’s Theorem 1.2, a general mixed system g(x, y) = h(x, y) = 0 will have
2m+ 2 solutions in T2, as 2m+ 2 is the mixed volume of P and Q. (For polygons
P,Q, the mixed volume is volume(P + Q) − volume(P ) − volume(Q).) We can
compute an eliminant for this system by substituting −A(x) for yB(x) in h ·B(x)2,
to obtain

cB(x)2 − dxA(x)B(x) − ex2A(x)B(x) + fxA(x)2 .

This has constant term cb20 and leading term −eambm. If ce > 0 and ambm > 0,
then these have different signs, which implies that the mixed system has at least
one positive root (and hence at least two real roots). This may be ensured by
the condition that none of the coefficients vanish and they satisfy the two linear
equations, c+ e = am + bm = 0.



CHAPTER 8

Some Lower Bounds for Systems of Polynomials

While the theory of lower bounds developed in Chapter 7 does not apply to
all systems of sparse polynomials, it does have several significant applications. We
discuss three. One is a system of polynomials constructed from partially ordered
sets which gives a satisfying application for this theory. In fact, the theory of lower
bounds was developed to explain observed phenomena for this family of systems.
Another is the Wronski map in the Schubert Calculus (1.4)—the theory of lower
bounds, together with the sagbi degeneration of the Grassmannian, implies Ere-
menko and Gabrielov’s result about lower bounds for fibers of the Wronski map.
The last are polynomial systems from posets that are union of incomparable chains.
For these, we give a different derivation of the lower bounds and establish a new
phenomenon of gaps in the possible numbers of real solutions.

The phenomena discussed here—lower bounds and gaps—will reappear in re-
lation to the Shapiro Conjecture, particularly in Chapters 13 and 14. We are far
from understanding them, and this area is ripe for progress.

8.1. Polynomial systems from posets

The motivating application of the theory of lower bounds is a class of polyno-
mial systems associated to partially ordered sets. These are systems of Wronski
polynomials (7.10) coming from regular unimodular triangulations of order poly-
topes of partially ordered sets. We give necessary definitions before applying the
theory of Chapter 7 to give a lower bound for these systems of polynomials.

Let P be a finite partially ordered set (poset). Posets are often represented
by their Hasse diagrams, which are acyclic graphs with vertices the elements of P
and an edge for every minimal order relation (cover, ⋖) in P . The order relation
is induced by moving vertically along the edges. Here are posets on four elements.

An order ideal I ⊂ P is a set that is closed upwards,

x ≤ y with x ∈ I ⇒ y ∈ I .

We take elements of P as our variables. To an order ideal I ⊂ P we associate a
monomial whose exponent is the characteristic function of I,

xI :=
∏

x∈I

x .

Its degree is |I|, the cardinality of the order ideal I.

91
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Example 8.1. If P is the incomparable union of two chains each of length two,

(8.1) P :=
t y

x z
,

then the monomials corresponding to the order ideals of P are

{∅, x, z, tx, xz, yz, xyz, txz, txyz} .
A Wronski polynomial for P is a polynomial of the form

(8.2)
∑

I

c|I|κIx
I =

|P |∑

i=0

ci

(∑

|I|=i

κIx
I
)
,

the sum over all order ideals I of P , where c0, . . . , c|P | ∈ R and κI ∈ R>. A system
of Wronski polynomials is a system of polynomials (8.2), where the coefficients ci
vary, but the constants κI are the same for all polynomials in the system.

Example 8.2. A Wronski polynomial for the poset (8.1) has the form

c4 txyz

+ c3(txz + xyz)

+ c2(tx + xz + yz)(8.3)

+ c1(x + z)

+ c0 ,

where the coefficients c0, . . . , c4 are real numbers. Here, all κI = 1.

By Kushnirenko’s Theorem 3.2, the number of solutions to a system of Wronski
polynomials is expected to be the normalized volume of the convex hull of their
exponent vectors. This convex hull is the order polytope OP of the poset P , which
is the set of all order-preserving functions,

f : P −→ [0, 1] ,

where x ≤ y in P implies that f(x) ≤ f(y). The integer points of OP are the order-
preserving maps P → {0, 1}, and thus are the characteristic functions of order
ideals of P (the order ideal is f−1(1)). Each is a vertex of OP , as OP ⊂ [0, 1]P .
Thus OP is the Newton polytope of a Wronski polynomial.

Stanley [148] gave a regular unimodular triangulation of OP . Assume that P
has n elements. A linear extension of P is a listing x1, x2, . . . , xn of the elements of
P that respects the order: xi < xj in P implies that i < j. Given a linear extension
x1, x2, . . . , xn of P , the set of all f ∈ OP with f(x1) ≤ f(x2) ≤ · · · ≤ f(xn) forms
a unimodular simplex, and these simplices form a triangulation of OP . Call this
the canonical triangulation of OP . The number λ(P ) of linear extensions of P is
the number of simplices and thus is the normalized volume of OP , which is the
expected number of complex solutions to a system of Wronski polynomials.

There are six linear extensions of the poset (8.1), as each is a permutation of
the word txyz where t precedes x and y precedes z.

The lower bound for the number of real solutions to a system of Wronski poly-
nomials is also combinatorial. The sign-imbalance σ(P ) of P is

(8.4) σ(P ) :=
∣∣∣
∑

sign(w)
∣∣∣ ,
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the sum over all linear extensions w of P . For this, fix one linear extension of P ,
and then any other linear extension w is a permutation of the fixed linear extension
whose sign is sign(w). The absolute value in (8.4) removes the dependence on this
choice of initial linear extension.

A chain of length k in a poset P is sequence of covers

(8.5) x1 ⋖ x2 ⋖ · · ·⋖ xk .

It is maximal if x1 is minimal and xk is maximal in P . A poset P is Z2-graded if
the lengths all of maximal chains have the same parity. Given an element x in P ,
choose a chain C from x to a maximal element. Appending C to any chain (8.5)
ending in x (x = xk) with x1 minimal gives a maximal chain in P . As the lengths
of all maximal chains have the same parity, the parity of k is determined and so
any two chains from a minimal element to x have the same parity.

We state a theorem about lower bounds for systems of polynomials from posets.

Theorem 8.3. A generic system of Wronski polynomials for a finite Z2-graded
poset P has λ(P ) complex solutions, at least σ(P ) of which are real.

We will show that the Wronski polynomials are induced by a projection πω,κ

whose restriction to the toric variety of OP has real degree σ(P ).

Example 8.4. We saw in Example 1.16 that the poset P (8.1) has sign-
imbalance two. Every maximal chain has length two, so P satisfies the hypotheses
of Theorem 8.3, and so we conclude that a system of four equations involving poly-
nomials of the form (8.3) has six solutions, at least two of which are real. We saw
this in Table (1.1) which reported on a computer experiment that determined the
number of real solutions in 10,000,000 Wronski systems for P .

Proof of Theorem 8.3. We use Theorem 7.13. We first show that OP ∩Zn

is primitive and the canonical triangulation ofOP is unimodular. Writing YP for the
real toric variety associated to OP , we show that Y +

P is orientable if and only if P is
Z2-graded. Then we give a function ω which induces the canonical triangulation and
show that it is foldable with signature σ(P ). The labeling function of the canonical
triangulation shows that Wronski polynomials of P , as defined in (8.2), are Wronski
polynomials (7.10) for this triangulation. We complete the proof by showing that
the center of projection does not meet the toric degeneration (Lemma 8.6).

Let P be a poset with n elements and order polytope OP . A linear extension
x1, x2, . . . , xn of P gives a chain of order ideals

∅ ⊂ {x1} ⊂ {x1, x2} ⊂ · · · ⊂ {x1, x2, . . . , xn} ,

whose corresponding simplex in the canonical triangulation has vertices

(8.6) (0, . . . , 0) , (1, 0, . . . , 0) , (1, 1, 0, . . . , 0) , . . . , (1, . . . , 1) .

This generates Zn, so OP ∩ Zn is primitive and the simplex is unimodular which
implies that the canonical triangulation of OP is unimodular.

Lemma 8.5. The smooth locus of Y +
P is orientable if and only if P is Z2-graded.

Proof. Let P̂ be the poset obtained by adjoining a new maximum element 1̂

to P . For x ∈ P̂ , let ex ∈ ZP̂ be the standard basis element with a 1 in position x
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and 0 elsewhere. The order polytope OP has three types of facet inequalities

x ≥ 0 if x ∈ P is minimal
x− y ≥ 0 if y ⋖ x is a cover in P
−x ≥ −1 if x ∈ P is maximal

.

Letting the coordinate 1̂ hold the constants in these inequalities, there are two types

of facet vectors which are indexed by the minimal elements and covers of P̂ ,

v0<x = ex if x ∈ P is minimal

vy⋖x = ex − ey if y ⋖ x is a cover in P̂
.

We define a basis {fq | q ∈ P̂} of ZP̂ consisting of facet vectors for OP . When

q ∈ P̂ is minimal, set fq := v0<q = eq, and otherwise choose any cover p ⋖ q in

P̂ and set fq := vp⋖q = eq − ep. This is a basis for ZP̂ as the matrix expressing
it in terms of the standard basis is upper triangular with 1s on the diagonal with
respect to any linear extension of P .

Let y1 ⋖ y2 ⋖ · · ·⋖ yk be a chain in P with y1 minimal. Then

(8.7) eyk
= v0<y1

+ vy1⋖y2
+ · · · + vyk−1⋖yk

,

as this is the telescoping sum ey1
+ (ey2

− ey1
) + · · ·+ (eyk

− eyk−1
).

We will show that every facet vector is the sum of an odd number of the ±fq if

and only P is Z2-graded. Under the map ZP̂
։ {±1}P̂ given by reduction modulo

2, a sum of an odd number of the ±fq becomes a product of an odd number of basis

elements in {±1}P̂ , and so the lemma follows by Theorem 7.7 and Remark 7.5.

The grade gr(x) of an element x ∈ P̂ is the length k of the longest chain

(8.8) x1 ⋖ x2 ⋖ · · · ⋖ xk = x

of elements of P that ends in x. Necessarily, x1 is minimal.
Suppose that P is Z2-graded. We show that every facet vector is the sum of

an odd number of the ±fq. If x is minimal, the facet vector v0<x = fx, so there

is nothing to show. Suppose that x ∈ P̂ is not minimal. We assume by way of
induction that every facet vector vz⋖y with gr(y) < gr(x) is a sum of an odd number

of the ±fq. Let z ⋖ x be a cover in P̂ . If fx = vz⋖x, then it is already an odd sum
of the ±fq. Otherwise, fx = vy⋖x = ex − ey with y 6= z. Let

(8.9) y1 ⋖ · · ·⋖ yk ⋖ y and z1 ⋖ · · ·⋖ zl ⋖ z

be chains in P ending in y and z with y1 and z1 minimal. Then

vz⋖x = ex − ez = ex − ey + ey − ez = fx + ey − ez

= fx + (v0<y1
+ · · ·+ vyk⋖y)− (v0<z1 + · · ·+ vzl⋖z) .(8.10)

The last equality uses (8.7) and the chains (8.9). Since gr(x) exceeds the grade of
any element in the chains (8.9), each facet vector in (8.10) is an odd sum of the

±fq. Since P̂ is Z2-graded, y⋖x and z⋖x imply that the lengths of the chains (8.9)
have the same parity, so (8.10) contains an even number of facet vectors. Replacing
each facet vector by an odd sum of the ±fq results in an odd sum of the ±fq.

Thus if P is Z2-graded, then every facet vector is an odd sum of the ±fq. If

P is not Z2-graded, then there is an element x ∈ P̂ with gr(x) minimal having two
covers y⋖ x and z⋖ x with chains (8.9) having lengths of different parities. In this
case, each cover in the expression (8.9) is an odd sum of the ±fq, and substituting
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these sums into (8.9) gives an expression of a facet vector as an even sum of the
±fq, which implies that Y +

P is not orientable.

We now show that the canonical triangulation of OP is regular and compute
its signature. For an order ideal I of P , set ω(I) := |I|2. This gives a function
(also written ω) on characteristic functions of order ideals, ω(aI) = ω(I) = |I|2.
Let OP,ω ⊂ R1+n be the lift of the order polytope given by ω,

OP,ω := conv{(ω(aI), aI) | aI ∈ OP ∩ Zn} .
The induced regular triangulation is the canonical triangulation. To see this, let
x1, x2, . . . , xn be a linear extension of P . Let z1, . . . , zn be the corresponding coor-
dinate functions on Rn and consider the linear form Λ,

Λ(z1, . . . , zn) :=

n∑

i=1

(2i− 1)zi .

If aI is the characteristic function of an order ideal I, then Λ(aI) ≥ |I|2 = ω(aI)
with equality only if aI is a vertex of the simplex (8.6) corresponding to the linear
extension x1, x2, . . . , xn. Thus OP lies under the graph of Λ and meets it in a facet
lying over this simplex. We conclude that the canonical triangulation of OP is
induced by ω.

The canonical triangulation is foldable as the map ℓ(aI) = |I| takes a different
value on each vertex of a simplex (8.6) in the canonical triangulation. To compute
its signature, note that two linear extensions x1, x2, . . . , xn and y1, y2, . . . , yn of P
define adjacent simplices when they differ in only one vertex. If this is the jth
vertex, then xj = yj+1 and yj = xj+1, but for i 6= j, j+1, xi = yi. Thus these
two linear extensions differ by an adjacent transposition in the symmetric group,
which implies that the signature of the canonical triangulation is equal to the sign-
imbalance of the poset P .

Given a positive constant κI for each order ideal I, the center Eω,κ of the
projection πω,κ giving the Wronski polynomials is defined by the linear equations

(8.11)
∑

|I|=i

κIzI = 0 ,

where {zI | I an order ideal of P} are the coordinate functions for the projective
space containing the toric variety XP of the order polytope OP .

Lemma 8.6 below completes the proof of Theorem 8.3.

Lemma 8.6. For every t 6= 0, the translated toric variety t−1.XP is disjoint
from the center Eω,κ of projection.

Proof. Hibi [68] showed that the ideal of XP is generated by the binomials

(8.12) zIzJ − zI∩JzI∪J ,

for any two order ideals I, J (the intersection and union of order ideals are again
order ideals, and the set of order ideals forms a distributive lattice). Substituting
zI = xI shows that these binomials are valid on XP .

Thus the toric degeneration t−1.XA is cut out by the binomial equations

(8.13) t|I|
2+|J|2zIzJ − t|I∩J|2+|I∪J|2zI∩JzI∪J = 0 .

We show that if t 6= 0, then these equations imply that zI = 0 for every I.
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The unique order ideal I with |I| = 0 is ∅, so (8.11) with i = 0 gives z∅ = 0,
as κ∅ 6= 0. Suppose that for |K| < i, the equations (8.11) and (8.13) imply that
zK = 0. If I 6= J are order ideals with |I| = |J | = i, then I and J are incomparable
with |I ∩ J | < i and so zI∩J = 0. Then the binomial equation (8.13) implies that
zIzJ = 0, as t 6= 0. Since all pairwise products of variables zI with |I| = i vanish,
the equations (8.11) imply that all zI with |I| = i vanish. Lastly, if there is a unique
order ideal I with |I| = i, then (8.11) implies that zI = 0.

8.2. Sagbi degenerations

Eremenko and Gabrielov’s result (Theorem 1.14) on the degree of the Wronski
map on the Grassmannian [45] can be deduced from Theorem 8.3. The Grass-
mannian Gr(p,m+p) of p-planes in (m+p)-space admits a degeneration to the toric
variety associated to the poset Cm,p that is the product of a chain of length m
with a chain of length p. The degree of a linear projection inducing the Wronski
map (1.4) is preserved under this degeneration and the map on the toric variety
YCm,p

induces the Wronski polynomials (8.2) of Section 8.1. Thus the real degree
of the Wronski map in Schubert Calculus equals the sign-imbalance of the poset
Cm,p, which was shown by White [163] to be σm,p (1.10). We explain this here.

The Grassmannian Gr(p,m+p) is the set of p-dimensional linear subspaces (p-
planes) in Cm+p. It admits two complementary systems of coordinates. For the
first, define the Stiefel manifold St(p,m+p) to be the set of p by (m+p)-matrices
of full rank. The row space of a matrix in St(p,m+p) is a p-plane H in Cm+p, and
this defines a surjective map St(p,m+p) ։ Gr(p,m+p) whose fibers consist of all
the matrices with a given row space. The group GL(p) of invertible row operations
acts transitively on each fiber. General principles then imply that Gr(p,m+p) is
an algebraic manifold of dimension

dim(St(p,m+p)) − dim(GL(p)) = p(m+p) − p2 = mp .

Under the map St(p,m+p) ։ Gr(p,m+p), entries of matrices in St(p,m+p) give
global Stiefel coordinates for Gr(p,m+p).

A point H ∈ Gr(p,m+p) in the Grassmannian gives a vector space inclusion
H →֒ Cm+p whose top (pth) exterior power,

C ≃ ∧pH −֒→ ∧pCm+p ,

is the inclusion of a one-dimensional linear space, and thus a point in the projective
space P(∧pCm+p). This defines the Plücker embedding

Gr(p,m+p) −→ P(∧pCm+p) ,

which realizes the Grassmannian Gr(p,m+p) as a projective variety.
The basis {e1, . . . , em+p} for Cm+p induces a basis eα := eα1

∧ eα2
∧ . . . ∧ eαp

indexed by α : 1 ≤ α1 < α2 < · · · < αp ≤ m+p for ∧pCm+p. Write
(
[m+p]

p

)
for this

set of indexing sequences. Plücker coordinates (pα | α ∈
(
[m+p]

p

)
) for ∧pCm+p and

P(∧pCm+p) form the basis dual to {eα}.
The Plücker coordinates of points H ∈ Gr(p,m+p) are minors of matrices

M = (mi,j) ∈ St(p,m+p) with row space H. The row space H of M has a basis

hi :=
∑

j

mi,jej i = 1, . . . , p .
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Then h1 ∧ h2 ∧ . . . ∧ hp spans ∧pH. Expanding this in the basis {eα} gives
∑

α

pα(M) · eα ,

where pα(M) is the determinant of the p by p submatrix of M given by its columns
indexed by α. These pα(M) depend on H, up to a global multiplicative constant

coming from the determinant of a change of basis for H. Call [pα(M) | α ∈
(
[m+p]

p

)
]

Plücker coordinates for H ∈ P(∧pCm+p).

The set of indices
(
[m+p]

p

)
form the Bruhat order under componentwise com-

parison, α ≤ β ⇔ αi ≤ βi for every i. Here are the Bruhat posets
(
[4]
2

)
and

(
[5]
3

)
.

34

24

23 14

13

12

345

245

145 235

135 234

125 134

124

123

This is in fact a lattice with meet and join,

(α ∧ β)i = min{αi, βi} and (α ∨ β)i = max{αi, βi} .
Thus 14 ∧ 23 = 13 and 14 ∨ 23 = 24.

For α ∈
(
[m+p]

p

)
, set |α| :=

∑
i(αi − i). For the minimal and maximal el-

ements, we have |12 . . . p| = 0 and |m+1, . . . ,m+p| = mp. Let κα ∈ R> for

α ∈
(
[m+p]

p

)
be any choice of positive constants. We define the generalized Wronski

map Wrκ : Gr(p,m+p) → Pmp by the restriction of the projection

(8.14) πκ : [pα | α ∈
(
[m+p]

p

)
] 7−→

[∑

|α|=i

καpα | i = 0, . . . ,mp
]
.

Remark 8.7. Let α ∈
(
[m+p]

p

)
and set β : β1 < · · · < βm to be the complement

to α in the set {1, . . . ,m+p}. If we set

κα := (−1)|β|
∏

i<j

(βj − βi) ,

then the projection πκ (8.14) gives the Wronski map in Schubert calculus (1.4) of
Section 1.4, by the computation leading to (10.8). We will see that the projection
πκ gives a Wronski map for the canonical triangulation of the order polytope Om,p

of the poset Cm,p. This connection is the source of the terminology Wronski in
Chapter 7.

Recall that the sign-imbalance of the poset Cm,p is the number σm,p (1.10).

Theorem 8.8 (Eremenko and Gabrielov [45]). For any regular value x ∈ RPmp

of the real generalized Wronski map Wrκ there are at least σm,p points of the real

Grassmannian in Wr−1
κ (x).
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The Plücker ideal Im,p is the ideal of the Grassmannian Gr(p,m+p) in its
Plücker embedding. This has a classical description due to Hodge [71, §XIV.9]
that was reinterpreted by Sturmfels [152, §3.1].

Lemma 8.9. The Plücker ideal Im,p is minimally generated by quadratic polyno-

mials with one generator gα,β for each pair α, β ∈
(
[m+p]

p

)
of incomparable elements

of the Bruhat order. The generator gα,β has the form

(8.15) gα,β = pαpβ − pα∧βpα∨β +
∑

cγ,δpγpδ ,

where the indices γ, δ of every nonzero term in the sum satisfy γ < α∧β, α∨β < δ,
and the equality γ ∪ δ = α ∪ β of multisets.

For example, the single quadratic generator of I2,2 is

(8.16) p14p23 − p13p24 + p12p34 .

The structure of the quadratic polynomials (8.15) implies that the Grassman-
nian admits a toric degeneration to a toric variety defined by the underlined bi-
nomial of the generators gα,β . This degeneration of the Grassmannian is called
the sagbi degeneration. This terminology is explained in [154, Ch. 11]. Let

ω :
(
[m+p]

p

)
→ Z be defined by ω(α) :=

∑
i(p − i)αi. This induces a map on expo-

nents of Plücker coordinates where the weight of pα is ω(α). We give the technical
proof of the following lemma at the end of this section.

Lemma 8.10. The initial ideal inω(Im,p) is generated by the quadratic binomials

inω(gα,β) = pαpβ − pα∧βpα∨β for α, β ∈
(
[m+p]

p

)
incomparable .

We can see this in (8.16) by computing the ω-weights of its terms.

ω(p14p23) = 1 + 0 · 4 + 2 + 0 · 3 = 3 ,

ω(p13p24) = 1 + 0 · 3 + 2 + 0 · 4 = 3 ,

ω(p12p34) = 1 + 0 · 2 + 3 + 0 · 4 = 4 .

Under the action of T given by ω, the limit of t−1.Gr(p,m+P ) as t → 0 is the
variety of the initial ideal. We identify this initial scheme.

Lemma 8.11. The initial scheme inω Gr(p,m+p) is the toric variety XCm,p

associated to the poset Cm,p which is a product of chains of lengths m and p.

Proof. This follows from a standard isomorphism between the Bruhat poset(
[m+p]

p

)
and the lattice of order ideals in Cm,p. Write the poset Cm,p as a p by m

array of boxes where boxes to the right or below are are greater in Cm,p.

C2,2 ⇐⇒ C3,4 ⇐⇒

An order ideal I of Cm,p is a collection of boxes in the south east corner of this
array. It is enclosed by a path from the north east corner to the south west corner
in the edges of the boxes which has length m+p with p vertical steps. The positions

of the vertical steps give a sequence α(I) ∈
(
[m+p]

p

)
with |α(I)| = |I|.

⇐⇒ 136 ⇐⇒ 257
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Under this isomorphism, the quadratics inω(gα,β) of Lemma 8.10 and of (8.12) for
Cm,p coincide.

Proof of Theorem 8.8. As in Section 7.2, neither the real Grassmannian
nor the projective space RPmp are necessarily orientable. However, both have
orientable double covers obtained by pulling back to the spheres over projective
spaces. The oriented Grassmannian Gr+(p,m+p) parameterizes oriented p-planes
in Rm+p. We show that the degree of the map

Wr+κ : Gr+(p,m+p) −→ Smp

is the sign-imbalance σm,p of the poset Cm,p.
As every term but the first (pαpβ) of the generators gα,β and inω(gα,β) has

a factor pγ with γ < α, β, the same argument as in Lemma 8.6 implies that nei-
ther any translate of the Grassmannian t−1.Gr(p,m+p) nor the initial scheme
inω(Gr(p,m+p)) meets the center πκ of the projection. The same is true for their
double covers, and so the degree of the map Wr+κ will equal the degree of the
restriction of π+

κ to Y +
Cm,p

.

Maximal chains of Cm,p have length m+p−1, so Cm,p is Z2-graded, and there-
fore Y +

Cm,p
is orientable by Theorem 7.7. The labeling function of the canonical tri-

angulation of OCm,p
sends an order ideal I to its cardinality |I|. Comparing (8.11)

to (8.14) shows that the projection πω,κ associated to the canonical triangulation
is equal to the projection πκ, and thus the degree of the restriction of π+

κ to Y +
Cm,p

is the sign-imbalance σm,p of Cm,p.

Proof of Lemma 8.10. Since {αi, βi} = {(α ∧ β)i, (α ∨ β)i},
ω(α) + ω(β) = ω(α ∧ β) + ω(α ∨ β) .

Thus the terms of the underlined initial binomial of gα,β have the same weight
under ω. We show that the remaining terms have strictly larger weight.

Suppose that cγδpγpδ is a nonzero term of gα,β in the sum of (8.15). Then
γ ∪ δ = α ∪ β as multisets, and also γ < α ∧ β and α ∨ β < δ. It follows that the
pair (γ, δ) is obtained from the pair (α ∧ β, α ∨ β) by interchanging k elements γ′

of α ∧ β with k elements δ′ of α ∨ β,

γ = (α ∧ β \ {γ′}) ∪ {δ′} and δ = (α ∨ β \ {δ′}) ∪ {γ′} .
The condition that γ < α ∧ β (and also that α ∨ β < δ) is equivalent to δ′ < γ′

under coordinatewise comparison in
(
[m+p]

k

)
.

For example, if α = 12569 and β = 23478, then α∧β = 12468 and α∨β = 23579.
If we let γ′ = 468 ⊂ α ∧ β and δ′ = 357 ⊂ α ∨ β, then γ = 12357 < 24689 = δ and
we have δ′ < γ′.

Rather than interchange subsets γ′ and δ′ of size k in one step, we could
instead do this in k steps, first interchanging their smallest elements, then their

next smallest, and so on. Thus it suffices to prove the claim: If ζ ≤ η in
(
[m+p]

p

)

and we have indices indices a, b with ηb < ζa where γ := (ζ \ {ζa}) ∪ {ηb} and

δ := (ζ \ {ηa}) ∪ {ζb} are in
(
[m+p]

p

)
, then

(8.17) ω(pγpδ)− ω(pζpη) = ω(γ) + ω(δ) − (ω(ζ) + ω(η)) > 0 .

To see that this is sufficient, set ζ = α ∧ β and η = α ∨ β.
To prove the claim, let ζ, η, a, b, δ, and γ be as above. Let i be minimal such

that ηb < ζi and j be maximal such that ηj < ζa. Necessarily, b ≤ i, j ≤ a. Then γ
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is obtained from ζ by replacing the elements ζi, . . . , ζa by ηb, ζi, . . . , ζa−1 and δ is
obtained from η by replacing the elements ηb, . . . , ηj by ηb+1, . . . , ηj , ζa, specifically

γ : ζ1 < · · · · · · < ζi−1 < ηb < ζi < · · · < ζa−1 < ζa+1 < · · · < ζp

δ : η1 < · · · < ηb−1 < ηb+1 < · · · < ηj < ζa < ηj+1 < · · · · · · < ηp

(This representation is where we use that γ, δ ∈
(
[m+p]

p

)
.) We compute the terms

in the inequality (8.17), taking advantage of cancellations

ω(γ)− ω(ζ) = (p− i)ηb + (p− (i+ 1))ζi + · · ·+ (p− a)ζa−1

−
(
(p− i)ζi + (p− (i+ 1))ζi+1 + · · ·+ (p− a)ζa

)

= (p− i)ηb − (ζi + · · ·+ ζa−1) − (p− a)ζa .

and

ω(δ)− ω(η) = (p− b)ηb+1 + · · ·+ (p− (j − 1))ηj + (p− j)ζa

−
(
(p− b)ηb + · · ·+ (p− (j − 1))ηj−1 + (p− j)ηj

)

= (p− j)ζa + ηb+1 + · · ·+ ηj − (p− b)ηb .

Adding these intermediate computations gives

ηb+1 + · · ·+ ηj + (a− j)ζa −
(
(i− b)ηb + ζi + · · ·+ ζa−1

)
.

To see that this difference is positive, observe that

(ηb+1, . . . , ηj−1, ηj , ζa, . . . , ζa︸ ︷︷ ︸
a−j

) > (ηb, . . . , ηb︸ ︷︷ ︸
i−b

, ζi, ζi+1, . . . , ζa−1) ,

under componentwise comparison of sequences of length a+b. Indeed, ηb is the
minimum of these numbers and ζa is the maximum, so the components involving
either ζa or ηb are in strict order. We need only show that if i−b+ a−j < a−b, so
that there are other components, than these remaining components are in order.
That is, if i ≤ k < j, then ζk ≤ ηk, but this follows from our assumption that
ζ < η. This completes the proof of the lemma.

8.3. Incomparable chains, factoring polynomials, and gaps

We consider a special case of the polynomial systems of Section 8.1 where the
posets are unions of incomparable chains and the constants κI are all equal to 1.
(This gives the systems in Examples 1.16 and 8.4.) We are able to completely
analyze these systems of Wronski polynomials as their solutions correspond to the
groupings of linear factors in a univariate polynomial. These systems give examples
of posets P for which Y +

P is not orientable, yet for which there are provable lower
bounds on the numbers of real solutions. These systems also have the new property
of gaps in their numbers of real solutions.

Let a := (a1, . . . , ak) be positive integers with a1 + · · ·+ ak = n. The poset Pa

is the union of incomparable chains of lengths a1, . . . , ak. For example,

P22 = and P34 =
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The number of linear extensions of the poset Pa is the multinomial coefficient(
n

a1,...,ak

)
which is defined by the recursion

(8.18)

(
n

a1, . . . , ak

)
=

(
n− ak

a1, . . . , ak−1

)
·
(

n

ak, n− ak

)
,

where
(

n
a,b

)
= 0 unless a+ b = n in which case

(
n
a,b

)
= n!

a!b! , the binomial coefficient.

Theorem 8.12. The number, ρ, of real solutions to a general system of Wronski
polynomials for the poset Pa with all constants κI = 1 satisfies the inequality

( ⌊n
2 ⌋

⌊a1

2 ⌋, . . . , ⌊ak

2 ⌋

)
≤ ρ ≤

(
n

a1, . . . , ak

)
.

The maximum and minimum are both attained. Moreover, at most

1 +
⌊a1
2

⌋
+

⌊a2
2

⌋
+ · · · +

⌊ak
2

⌋

distinct values of ρ can occur, unless all ai are even, in which case the number of
distinct values becomes n/2.

This establishes lower bounds for the number of real solutions to these systems
of Wronski polynomials, and the new phenomenon of gaps. The polynomial systems
of Example 1.16 were Wronski systems when a = (2, 2). As we saw in Table 1.1, only
the lower bound of 2 =

(
2
1,1

)
and the upper bound of 6 =

(
4
2,2

)
were achieved, but

not four, as only 4/2 = 2 distinct values can occur. For a more extreme example,
suppose that a = (4, 4, 5), then the minimum is

(
6

2,2,2

)
= 90, the maximum is(

13
4,4,5

)
= 90090, and the following table gives the 7 = 1 + ⌊ 4

2⌋+ ⌊ 4
2⌋+ ⌊ 5

2⌋ different

values of ρ that can occur.

ρ 90 210 666 2226 7434 25410 90090

We will prove Theorem 8.12 by reinterpreting a system of Wronski polynomials
as a problem of grouping factors in a univariate polynomial. First, for each j =

1, . . . , k, let x
(j)
1 > x

(j)
2 > · · · > x

(j)
aj be variables corresponding to the jth chain in

Pa. Order ideals are indexed by lists I = (i1, . . . , ik) of integers with 0 ≤ ij ≤ aj
for each j, with the corresponding order ideal

{x(1)
1 , . . . , x

(1)
i1

, . . . , x
(j)
1 , . . . , x

(j)
ij

, . . . , x
(k)
1 , . . . , x

(k)
ij

} ,

and the monomial xI is

xI :=
k∏

j=1

x
(j)
1 · · ·x(j)

ij
.

This has degree |I| = i1+ · · ·+ ik. Wronski polynomials have the form
∑

I c|I|κIx
I .

We make an invertible monomial change of variables, from which the alternative

formulation is evident. For each j = 1, . . . , k, let y
(j)
1 > y

(j)
2 > · · · > y

(j)
aj be

new variables corresponding to the jth chain in Pa, and set y
(j)
0 := 1. If we set

y
(j)
i := x

(j)
1 · · ·x(j)

i , then x
(j)
i = y

(j)
i /y

(j)
i−1, and so the change of variables x

(j)
i ⇔ y

(j)
i

is invertible. In these new variables, the monomial of an order ideal becomes

yI := y
(1)
i1

· y(2)i2
· · · y(k)ik

,
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and a Wronski polynomial with κI = 1 has the form
∑

I c|I|y
I , which is

∑

i1,...,ik

ci1+···+iky
(1)
i1

y
(2)
i2

· · · y(k)ik
=

n∑

d=0

cd

( ∑

i1,...,ik
i1+···+ik=d

y
(1)
i1

y
(2)
i2

· · · y(k)ik

)
.

A general system of Wronski polynomials is equivalent to one of the form

(8.19)
∑

i1,...,ik
i1+···+ik=d

y
(1)
i1

y
(2)
i2

· · · y(k)ik
= bd for d = 1, 2, . . . , n .

Suppose that we have a solution (y
(j)
i )

i=1,...aj

j=1,...,k to (8.19). For each j = 1, . . . , k form
the monic univariate polynomial

gj(t) := taj +

aj∑

i=1

y
(j)
i taj−i .

By (8.19), we have

g1(t)g2(t) · · · gk(t) = tn +
n∑

i=1

bjt
n−j =: g(t) .

Similarly, any such factorization of the monic polynomial g(t) into monic factors
where deg(gi) = ai gives a solution to (8.19). The invertible change of coordinates

x
(j)
i ⇔ y

(j)
i and this calculation proves the following theorem.

Theorem 8.13. Solutions to a general system of Wronski polynomials for the
poset Pa with constants κI = 1 are equivalent to different factorizations of a general
monic univariate polynomial g(t) of degree n = a1+ · · ·+ak into monic polynomials
g1(t), . . . , gk(t), where gj(t) has degree aj.

Consider this for a = (2, 2). We have a monic quartic polynomial g(t) with
distinct roots that we wish to factor into two monic quadratics, g(t) = g1(t)g2(t),
where the order of the factors matters. There are 6 =

(
4
2

)
ways to do this, as we

first distribute a pair of the roots of g(t) to g1(t), and then g2(t) = g(t)/g1(t). If
all the roots of g(t) are real, this gives

(
4
2

)
real factorizations. If g(t) has complex

roots, then it has at least one irreducible (over R) quadratic factor, q(t). There are
two factorizations, either g1(t) = q(t) and g2(t) = g(t)/q(t), or vice-versa. Thus
there are either two or six factorizations, and therefore either two or six solutions
to a Wronski polynomial system for P(2,2), which we have already seen.

Proof of Theorem 8.12. By Theorem 8.13, we need only establish the con-
clusions of Theorem 8.12 for the problem of monic factorization. Factorizations

(8.20) g1(t)g2(t) · · · gk(t) = g(t) ,

where gj(t) is a monic polynomial of degree aj for j = 1, . . . , k and g(t) is monic
of degree n = a1 + · · · + ak with distinct roots correspond to distributions of
the roots of g(t) among the polynomials g1(t), . . . , gk(t), with gj(t) receiving aj
roots. This number of distributions, and hence factorizations, is a standard counting
problem [149, Ch. 1] whose solution is the multinomial coefficient

(
n

a1,...,ak

)
.

Suppose now that g(t) is a real polynomial with r real roots and c pairs of
complex conjugate roots, all of which are distinct. In every factorization of g(t)
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into real monic polynomials, each factor must receive both roots in a complex
conjugate pair. This limits the possible numbers of such real factorizations.

If every root of g(t) is real, then every factorization is real. Thus the upper
bound

(
n

a1,...,ak

)
is attained. Since each gj(t) of odd degree must receive a real root,

there are no real factorizations when g(t) has fewer than |{j | aj is odd}| real roots.
Thus the minimum number of factorizations is 0 when more than one aj is odd. In
this case ⌊n/2⌋ > ⌊a1/2⌋+ · · ·+ ⌊ak/2⌋, and so the multinomial coefficient

(8.21)

( ⌊n
2 ⌋

⌊a1

2 ⌋, . . . , ⌊ak

2 ⌋

)

vanishes, and the lower bound is also attained in this case.
When all the aj are even and g(t) has no real roots, then n is even and there

are c = n/2 pairs of complex conjugate roots to distribute among the polynomials
g1(t), . . . , gk(t), with the polynomial gj(t) receiving aj/2 conjugate pairs. The num-
ber of these is the multinomial coefficient (8.21). Suppose that exactly one of the
numbers, aj , is odd, and g(t) has the minimum number r = 1 real roots. This root
must be distributed to gj(t). Replacing aj by aj−1, reduces to the case with all aj
even, and the number of factorizations is again the multinomial coefficient (8.21).

If g(t) has more real roots than the minimum, there are at least as many real
factorizations as when it had the minimum number of real roots—simply pairing
the real roots in any way recovers (8.21) real factorizations.

The last statement, the number of different possibilities for the number of real
factorizations, follows as this number depends only upon the number of real roots
of g(t), and ρ = 0 unless g(t) has at least |{j | aj is odd}| real roots. When the ai
are all even, there is no difference between the cases of r = 0 or r = 2, so there are
n/2 different possibilities.

We close with three remarks about these systems.

Remark 8.14. The lower bound in Theorem 8.12 is in fact the signature of the
poset Pa, and so for these posets, the lower bound of Theorem 8.3 is attained.

To see this, observe that precomposing a linear extension with the inverse of
the extension where elements of the jth chain preceed elements of the (j+1)st chain
identifies the set of linear extensions with the set Sa of minimal coset representatives
of the parabolic subgroup Sa1

× Sa2
× · · · × Sak

of the symmetric group Sn. The
length lg(w) of a permutation w is its number of inversions, #{i < j | w(i) > w(j)},
and its sign is sign(w) = (−1)lg(w). The length generating function for Sa is the
q-multinomial coefficient, (the case k = 2 is [149, Prop. 1.3.7]),

(8.22)
∑

w∈Sa

qlg(w) =

(
n

a1, a2, . . . , ak

)

q

.

This is defined by the same recursion (8.18) as the ordinary multinomial coefficient,
but in terms of the q-binomial coefficients

(8.23)

(
a+ b

a, b

)

q

:=
(1− qa+b)(1− qa+b−1) · · · (1− q2)(1− q)

(1− qa) · · · (1− q2)(1− q) · (1− qb) · · · (1− q2)(1− q)
.

We evaluate (8.22) at q = −1 to compute the sign-imbalance of P . If c is odd,
then 1− qc = 2 when q = −1. For even exponents, we have

1− q2c = (1− q2)(1 + q2 + q4 + · · ·+ q2c−2) .



104 8. SOME LOWER BOUNDS FOR SYSTEMS OF POLYNOMIALS

Now consider (8.23) when q = −1. If both a and b are odd, then (8.23) has one
more factor with an even exponent in its numerator then in its denominator, and
so it vanishes at q = −1. Otherwise (8.23) has the same number of factors with
even exponents in its numerator as in its denominator, and so we may cancel all
factors of (1 − q2). Substituting q = −1, factors with odd exponents c becomes 2,
and these cancel as there is the same number of such factors in the numerator and
denominator. Since (1 + q2 + q4 + · · ·+ q2c−2) = c when q = −1, we see that

(
a+ b

a, b

)

q=−1

=

(⌊a
2 ⌋+ ⌊ b

2⌋
⌊a
2 ⌋, ⌊ b

2⌋

)
.

The recursion (8.18) for the q-multinomial coefficients, together with the generating
function (8.22), gives

∑

w∈Sa

(−1)lg(w) =

( ⌊n
2 ⌋

⌊a1

2 ⌋, . . . , ⌊ak

2 ⌋

)
.

Remark 8.15. The possible lengths of maximal chains in the poset Pa are the
components of a, and so Pa is Z2-graded if and only if the numbers aj all have the
same parity. By Lemma 8.5, the toric variety Y +

Pa

is orientible if and only if the
numbers aj have the same parity. Nevertheless, Theorem 8.12 gives lower bounds
which are non-trivial in some cases when exactly one of the numbers aj is odd, with
the rest even. For example, when for a = (4, 4, 5), the lower bound is 90.

In this way, Theorem 8.12 extends Theorem 8.3, giving lower bounds for some
posets P when Y +

P is not orientible. This suggests that the theory of Chapter 7
may admit an extension to more systems of sparse polynomials.

Remark 8.16. The most distinctive feature of the polynomial systems for the
posets Pa is the existence of gaps in the possible numbers of real solutions. As we
saw in the proof of Theorem 8.12, the number of real solutions depends upon the
number r of real roots of g(t) and the number c of pairs of complex conjugate roots.
There is in fact a generating function for these numbers of real solutions, as Ira
Gessel once explained to the author.

Lemma 8.17. The coefficient of xa1
1 · · ·xak

k in (x1 + · · ·+ xk)
r(x2

1 + · · ·+ x2
k)

c

is the number of factorizations

g1(t) · g2(t) · · · gk(t) = g(t)

where g(t) is a monic real polynomial of degree r+2c = n with r distinct real roots
and c distinct pairs of complex conjugate roots, and gj(z) is a monic real polynomial
of degree aj for j = 1, . . . , k.

Proof. This is a standard application of generating functions, as described in
Chapter 1 of [149]. We have r red balls and c cyan balls to distribute among k
boxes such that if ri is the number of red balls in box i and ci is the number of
cyan balls in box i, then ri + 2ci = ai.

This phenomenon of gaps is not isolated. Many other systems of real polyno-
mials or geometric problems appear to exhibit gaps. Sections 13.3 and 14.2 contain
some examples. Unlike lower bounds, we have no current framework with which to
understand this phenomenon of gaps.



CHAPTER 9

Enumerative Real Algebraic Geometry

Enumerative geometry is the art of counting geometric figures satisfying condi-
tions imposed by other, fixed, geometric figures. For example, in 1848, Steiner [150]
asked how many plane conics are tangent to five given conics? His answer, 65 =
7776, turned out to be incorrect, and in 1864 Chasles [29] gave the correct answer
of 3264. The methods Chasles used were later systematized and used to great effect
by Schubert [128], who codified the field of enumerative geometry.

This classical work always concerned complex figures. It was only in 1984 that
the question of reality was posed by Fulton [51, p. 55]: “The question of how
many solutions of real equations can be real is still very much open, particularly
for enumerative problems.” He goes on to ask: “For example, how many of the
3264 conics tangent to five general conics can be real?” He later determined that
all can be real, but did not publish that result. Independently, Ronga, Tognoli, and
Vust [119] gave a careful proof that all 3264 can be real.

There are now many geometric problems for which it is known that all solutions
can be real. We describe some of these problems, beginning with the problem of
conics, then presenting examples coming from kinematics, computational geometry,
and hyperplane arrangements before ending with the Schubert Calculus.

9.1. 3264 real conics

The basic idea of the arguments of Fulton and of Ronga, Tognoli, and Vust
is to deform the same special configuration. Suppose that ℓ1, . . . , ℓ5 are the lines
supporting the edges of a convex pentagon and pi ∈ ℓi, i = 1, . . . , 5 are points in
the interior of the corresponding edge.

ℓ5

ℓ4

ℓ3

ℓ1
ℓ2

p5

p4 p3

p1

p2

The points in this example are {(0, 0), ( 114 , 3
2 ), (

3
2 ,

7
2 ), (− 1

2 ,
13
4 ), (−1, 1)}, and the

corresponding slopes of the lines are 0, 3
2 ,−1, 1

2 ,−3.

For every subset S of the lines, there are 2min(|S|,5−|S|) conics that are tangent
to the lines in S and that meet the 5−|S| points not on the lines of S. This is
the number of complex conics, and it does not depend upon the configuration of

105
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(generic) points and lines. However, when the points and lines are chosen in convex
position, then all such conics will be real. Altogether, this gives

20
(
5
0

)
+ 21

(
5
1

)
+ 22

(
5
2

)
+ 22

(
5
3

)
+ 21

(
5
4

)
+ 20

(
5
5

)
= 102

real conics, that, for each i = 1, . . . , 5 either meet pi or are tangent to ℓi. We draw
these in Figure 9.1. Since our pentagon was asymmetric, exactly 51 of these conics

Figure 9.1. 102 conics.

meet each point pi and none of the 51 conics tangent to ℓi are tangent at pi.
The idea now is to replace each pair pi ∈ ℓi by a hyperbola hi that is close to

the pair pi ∈ ℓi, in that hi lies close to its asymptotes, which are two lines close to
ℓi that meet at pi. If we do this for one pair pi ∈ ℓi, then, for every conic in our
configuration, there will be two nearby conics tangent to hi. To see this, suppose
that i = 1. Then the set C of conics which satisfy one of the 24 conditions “meet
pj” or “tangent to ℓj” for each j = 2, 3, 4, 5 will form an irreducible curve C. For
each conic in C that meets p1, there will be two nearby conics in C tangent to h1

near p1, and for each conic in C tangent to ℓ1, there will be two nearby conics in C
tangent to each of the two nearby branches of h1. Figure 9.2 illustrates this when C
is the curve of conics tangent to ℓ2, ℓ3, ℓ4, and ℓ5, showing the conics in the family
C. We show some conics in the family near the conic that meets p1.

ℓ1

❄

Conics meeting p1
❍❍❍❍❍❍❍

Nearby conics
✟✟✟✟

✟✟✟✟✟✟

✟✟✟ ✁
✁✁

h1

✄
✄
✄✎

❈
❈
❈
❈
❈❈❲



9.1. 3264 REAL CONICS 107

ℓ1
✲ h1

PPP✐
✏✏✏✮

p1
✟✟✟✟✟✟✟✟✯

p4

p3

p5

p2

ℓ4

ℓ3

ℓ5 ℓ2

Figure 9.2. Family of conics.

Here are conics in the family C near the conic tangent to ℓ1.

ℓ1
✲

Conic in C tangent to ℓ1 Nearby conics

h1
❅❅■

¡¡✠

The hyperbola in these pictures is

h1 : (y − 1
15x)(y + 1

15x) + 1
15000 = 0 ,

which is close enough to its asymptotes, and these pass through p1 and are close
close enough to ℓ1 so that for each of the 102 conics of Figure 9.1, there are two
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nearby conics in C tangent to h1 that pass through the other points or are tangent
to the other lines.

We illustrate this doubling, by first showing the configuration of 102 conics of
Figure 9.1 in the neighborhood of ℓ1,

ℓ1

✻

and then the resulting 204 conics in the same region. Every conic in the first picture
is replaced by two nearby conics in the second.

This construction works as explained because no tangent direction to a conic
in Figure 9.1 through p1 meets h1. It was possible to find such a hyperbola h1, as
no conic was tangent to ℓ1 at p1. Figure 9.3 shows the resulting 204 conics that are
tangent to h1 and, for each i = 2, 3, 4, 5 either contain pi or are tangent to ℓi.

Figure 9.3. 204 conics.



9.2. SOME GEOMETRIC PROBLEMS 109

If we now replace p2 ∈ ℓ2 by a similar nearby hyperbola, then the 204 conics
become 408. Replacing p3 ∈ ℓ3 by a nearby hyperbola, will give 816 conics. Con-
tinuing with p4 ∈ ℓ4 gives 1632, and finally replacing p5 ∈ ℓ5 with a hyperbola gives
five hyperbolae, h1, . . . , h5 for which there are 25 · 102 = 3264 real conics tangent
to each hi. In this way, the classical problem of 3264 conics can have all of its
solutions be real. Observe that this discussion also gives a derivation of the number
3264 without reference to intersection theory [54].

9.2. Some geometric problems

There are many geometric problems for which it known to be possible that all
solutions are real. We present some from four diverse areas. The first is the Stewart
platform from kinematics, and is representative of many other realizability problems
in this field. The second is a classical interpolation problem involving plane rational
which exhibits a lower bound on its number of solutions and which influenced
Welschinger’s work on invariants. Then we give a problem of lines tangent to
spheres from computational geometry. The last example is the problem of the
critical points of real master functions, which arose in the theory of hyperplane
arrangements, but has applications in algebraic statistics and optimization. It has
the property that all of its solutions are real.

Example 9.1 (The Stewart-Gough platform). The position of a rigid body
in R3 has six degrees of freedom (three rotations and three translations). This
is exploited in kinematics, giving rise to the Stewart-Gough platform [62, 151]:
Suppose that we have six fixed points A1, . . . , A6 in space and six points B1, . . . , B6

on a rigid body B (the framework of Figure 9.4). The body is controlled by varying
each distance li between the fixed point Ai and the point Bi on B. This may
be accomplished by attaching rigid actuators between spherical joints located at

A1

A2

A3

A4

A5 A6

B1

B2

B3

B4

B5

B6

l1

l2 l3

l4

l6

Figure 9.4. A Stewart platform.
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the points Ai and Bi, or by suspending the platform from a ceiling with cables.
(Apparently, this configuration is often used in factories.)

Given a position of the body B, the distances l1, . . . , l6 are uniquely determined.
A fundamental problem is the inverse question (in kinematics, this is called the
forward problem): Given a platform (positions of the Ai fixed and the relative
positions of the Bi specified) and a sextuple of distances l1, . . . , l6, what is the
position of the platform?

It had long been understood that several positions were possible for a given
sextuple of lengths. This led to the following enumerative problem:

For a given (or general) Stewart platform, how many (complex)
positions are there for a generic choice of the distances l1, . . . , l6?

How many of these can be real?

In the early 1990’s, several approaches (numerical experimentation [117], inter-
section theory [120], Gröbner bases [92], resultants [101], and algebra [102]) each
showed that there are 40 complex positions of a general Stewart platform. The ob-
viously practical question of how many positions could be real remained open until
1998, when Dietmaier introduced a novel method involving numerical homotopy to
find a platform and value of the distances l1, . . . , l6 with all 40 positions real.

Theorem 9.2 (Dietmaier [37]). All 40 positions can be real.

Example 9.3 (Real rational cubics through 8 points in P2
R
). In Section 1.5

we remarked that there are 12 singular (rational) cubic curves containing eight
general points in the plane. We will derive that number in the process of explaining
Kharlamov’s treatment of this question over the real numbers.

Theorem 9.4 ([33, Proposition 4.7.3]). Given eight general points in P2
R
, there

are at least eight real rational cubics containing them, and there are choices of the
eight points for which all 12 rational cubics are real.

A homogeneous cubic has ten coefficients, so the set of plane cubics is naturally
identified with nine-dimensional projective space. Let p1, . . . , p8 be general points
in RP2. As the condition for a cubic to contain a point pi is linear in the coefficients
of the cubic, there is a pencil (a P1) of cubics through these eight points. Let P,Q
be two distinct cubics in this pencil, which is then parameterized by sP + tQ for
[s, t] ∈ P1. By Bézout’s Theorem, the cubics P and Q, and hence every cubic in
the pencil, vanish at a ninth point, p9.

It is not hard to see that there is a unique cubic in the pencil that vanishes at
any point p ∈ RP2 − {p1, . . . , p9}. A little harder, but still true, is that there is a
unique cubic in the pencil with any given tangent direction at some point pi. In
this way, we have maps

(9.1)

Z := Bl{p1,...,p9}RP
2

C
❄ ❄

π

RP1 RP2

where Bl{p1,...,p9}RP
2 is the blow-up of RP2 in the 9 points, which is obtained by

removing each point pi and replacing it with the tangent directions RP1 ≃ S1 to
RP2 at pi. The map π is the blow-down, and the map C associates a point of Z to
the unique curve in the pencil that contains that point.
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Because Z is a blow-up, we may compute its Euler characteristic to obtain

χ(Z) = χ(RP2) − 9 · χ(pt) + 9 · χ(S1)
= 1 − 9 + 0

= −8 .

The key to Theorem 9.4 is to compute the Euler characteristic of Z a second way
using the map C : Z → RP1 ≃ S1. The fibers of this map are the cubic curves in
the pencil. Smooth real cubics either have one or two topological components,

and hence are homeomorphic to one or two copies of S1. In either case, their Euler
characteristic is zero, and so the Euler characteristic of Z, −8, is the sum of the
Euler characteristics of singular fibers of the map C.

Because the points p1, . . . , p8 were general, the only possible singular fibers are
nodal cubics, and there are two types of real nodal cubics.

The first is the topological join of two circles and has Euler characteristic −1, while
the second is the disjoint union of a circle with a point and therefore has Euler
characteristic 1. Thus, if n is the number of nodal cubics in the pencil and s is the
number with a solitary point, then we have s− n = −8. The same argument over
the complex numbers implies there are 12 complex rational cubics, and so we also
have n+ s ≤ 12. (To see that this number is 12, note that the diagram (9.1) leads
to the computation of Euler characteristic

χ(ZC) = χ(P2)− 9 + 9 · χ(P1) = 3− 9 + 18 = 12 .

For the computation over P1, observe that smooth complex cubics have genus 1
and Euler characteristic zero, so only but singular complex cubics contribute and
they all have Euler characteristic 1.)

This system, s − n = −8 and s + n = 12, has three solutions with n, s non-
negative integers, (n, s) ∈ {(8, 0), (9, 1), (10, 2)}. Thus there are at least eight real
cubics through the eight points, and this is the derivation of the Welschinger in-
variant W3 = 8. Moreover, if there are two cubics in the pencil with solitary points,
then all 12 rational cubics will be real. Figure 9.5 shows two cubics which generate
such a pencil. We conclude that there will be 12 real rational cubics interpolating
any subset of eight of the nine points where these two cubics meet.

The question of how many of the Nd (1.8) rational curves of degree d which

interpolate 3d−1 points in RP2 can be real remains open.
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(y + 9x− 28)2 = 4x2(x− 1)
❤❤❤❤❤❤❤❤❤❤❤

✘✘✘✘✘

(x+ 9y − 29)2 = 4y2(y − 1)
✑

✑
✑

Figure 9.5. Two cubics generating a pencil with 12 real rational cubics.

Example 9.5 (Common tangent lines to spheres). How many common tangent
lines are there to 2n−2 spheres in Rn? For example, when n = 3, how many
common tangent lines are there to four spheres in R3? (The number 2n−2 is the
dimension of the space of lines in Rn and is necessary for there to be finitely many
common tangents.) Despite its simplicity, this question does not seem to have been
asked classically, but rather arose in computational geometry. Macdonald, Pach,
and Theobald [97] gave an elementary argument that four spheres with the same
radius in R3 can have at most 12 common tangents. Then they considered the
symmetric configuration where the spheres are centered at the vertices of a regular
tetrahedron. If the spheres overlap pairwise, but no three have a common point,
then there will be exactly 12 common real tangents, as illustrated in Figure 9.6.

Figure 9.6. Four spheres with 12 common tangents.

The general case was established soon after that [147].



9.2. SOME GEOMETRIC PROBLEMS 113

Theorem 9.6. 2n − 2 general spheres in Rn (n ≥ 3) have 3 · 2n−1 complex
common tangent lines, and there are 2n− 2 such spheres with all common tangent
lines real.

The same elementary arguments of Macdonald, Pach, and Theobald give a
bound valid for all n and for spheres of any radius, and a generalization of the
symmetric configuration of Figure 9.6 gives a configuration of 2n−2 spheres having
3 · 2n−1 common real tangents.

Megyesi [98] showed that this result for n = 3 remains true if the spheres
have coplanar centers (Figure 9.7), but that there can only be eight common real

Figure 9.7. Four spheres with coplanar centers and 12 common tangents.

tangents (out of 12 complex ones) if the spheres have the same radii (Figure 9.8).

Figure 9.8. Four equal spheres with coplanar centers and eight
common tangents.

The spheres in Figures 9.6 and 9.7 are not disjoint, in fact their union is con-
nected. Fulton asked if it were possible for four disjoint spheres to have 12 common
real tangents. A perturbation of the configuration of Figure 9.7 gives four pairwise
disjoint spheres with 12 common tangents, as we show in Figure 9.9 The three large
spheres have radius 4/5 and are centered at the vertices of an equilateral triangle

of side length
√
3, while the smaller sphere has radius 1/4 and is centered on the

axis of symmetry of the triangle, but at a distance of 35/100 from the plane of the
triangle. It remains an open question whether it is possible for four disjoint unit
spheres to have 12 common tangents.
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Figure 9.9. Four disjoint spheres with 12 common tangents.

Example 9.7 (Critical points of master functions). Our last sampling of geo-
metric problems that can have all their solutions be real is one that has only real
solutions. This involves hyperplane arrangements and arose in Varchenko’s study
of quasiclassical asymptotics of the Knizhnik-Zamolodchikov equation with values
in certain sl2-representations [161]. It concerns the critical points of certain real
master functions, in the sense of Section 6.1.

Let p1(x), . . . , pm(x) be real degree one polynomials on Cn. Their product∏
i pi(x) = 0 defines an arrangement H of real hyperplanes in Cn. Let β =

(b1, . . . , bm) be positive integral weights for H and consider the master function,

p(x)β := p1(x)
b1 · p2(x)b2 · · · pm(x)bm ,

on the complement MH := Cn \H of the arrangement. The critical points of p(x)β

in MH are defined by the system of equations,

∂

∂xi
p(x)β = 0 , for i = 1, . . . , n .

The hyperplanes in H divide the real points MR
H of M into connected components,

called chambers. Each chamber is a polyhedron, and some chambers are bounded
and some are unbounded. We give Varchenko’s Theorem in this context. A hyper-
plane arrangement is essential if the normal vectors of its hyperplanes span Rn.

Theorem 9.8. Suppose that H is an essential arrangement of hyperplanes.
Then all critical points of p(x)β are real and nondegenerate and they lie in the
bounded chambers of MR

H, with one critical point in each bounded chamber.

Consider a nontrivial example. Suppose that n = 2 and we have four degree
one polynomials,

p1 = x , p2 = y , p3 = 2x+ y − 2 , p4 = x− 2y + 1 .

For unit weights bi = 1, we seek critical points of pβ = xy(2x+ y − 2)(x− 2y + 1).
Taking logarithmic derivatives, these are the solutions to

1

x
+

2

2x+ y − 2
+

1

x− 2y + 1
=

1

y
+

1

2x+ y − 2
− 2

x− 2y + 1
= 0 .
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Also consider the directional derivative (∂x−2∂y) log(p
β). If we clear denominators

of these three derivatives, we obtain

e := 2y2 + 6xy − 5y − 6x2 + 2 = 0 ,

f := 3y2 + 3xy − 5y − x2 + 1 = 0 , and

g := 2y2 − 10xy − y + 2x2 + 2x = 0 .

We may eliminate y2 with the combination h := 3e−2f = 12xy−5y−16x2+4,
and both y2 and xy with k := (−9e + 8f − 3g)/2 = 4y + 20x2 − 3x − 5. Finally,
(4x− 1)k − 2h eliminates y,

l := 80x3 − 24x2 − 15x+ 3 .

We may solve k and l to get the three solutions

(−0.40093, 0.14555), (0.17930, 1.22372), and (0.52163, 0.28073) .

These are the three critical points, with one in each of the three bounded regions
in the complement of the lines. The line arrangement and the critical points are on
the left below, and the graph of the master function is on the right. (The arrow in
the line arrangement indicates the direction of view for the graph.)

p1

p2

p3
p4

Proof of Theorem 9.8. We first show that each bounded chamber contains
a unique nondegenerate critical point of p(x)β , and then show there are no other
critical points. Write each polynomial as pi(x) = ai + vi · x, where ai ∈ R and
vi ∈ Rn. The hyperplane arrangement is essential so the vectors vi span Rn.

The critical points of p(x)β in a bounded chamber ∆ are equal to those of
|p(x)|β , and therefore to the critical points of its logarithm,

(9.2) b1 log |p1(x)| + b2 log |p2(x)| + · · · + bm log |pm(x)| .
This is a sum of concave functions on ∆. As its limit is −∞ at every boundary point
and ∆ is bounded, it has a unique maximum, and therefore a unique critical point in
∆. This critical point is nondegenerate, as the Hessian of (9.2) is negative definite
on ∆. Indeed, each summand has a negative semidefinite Hessian whose null space
is the hyperplane vi · x = 0. As the hyperplane arrangement H is essential, these
null spaces have intersection {0}.

Now suppose that x lies in an unbounded component of MR
H. Then there is a

ray x+ R≥u emanating from x which does not meet H. Thus

pi(x+ su) = pi(x) + svi · u = 0 ,

has no solutions with s ≥ 0 for any i, and so vi ·u/pi(x) ≥ 0 for all i. But then the
logarithmic directional derivative of pβ in the direction u at x,

(9.3) Du log |p(x)|β = b1
vi · u
p1(x)

+ b2
vi · u
p2(x)

+ · · · + bm
vi · u
pm(x)

,
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is strictly positive, because it is a sum of nonnegative terms, not all of which are
zero, as the hyperplane arrangement is essential. Thus p(x)β has no critical points
in unbounded regions of MR

H.
Lastly, let x ∈ MH \ Rn be a nonreal point in the hyperplane complement.

Write x as a sum of its real and imaginary parts, x = y +
√
−1u with y,u ∈ Rn.

Then pi(x) = pi(y) +
√
−1vi · u is the decomposition of pi(x) into its real and

imaginary parts. From (9.3), we can see that the imaginary part of the logarithmic
directional derivative is

ℑ(Du log |p(x)|β) = −b1
(v1 · u)2
|p1(x)|2

− b2
(v2 · u)2
|p2(x)|2

− · · · − bm
(vm · u)2
|pm(x)|2 ,

which is strictly negative. Thus p(x)β has no critical points in MH \ Rn, which

completes the proof.

This argument leads to the same conclusion if the weights β are positive real
numbers. In that case, p(x)β should be interpreted as a multivalued function on
MH—this is the context in which Varchenko studied this system.

Theorem 9.8, and more generally the critical point equations

Du log p(x)β = b1
v1 · u

a1 + v1 · x
+ b2

v1 · u
a2 + v1 · x

+ · · · + bm
v1 · u

am + v1 · x
= 0 ,

have played a recent role in some applications of algebraic geometry. This includes
maximum likelihood estimation for linear statistical models [28] and [110, § 1.2.1]
and the analysis of the central path of interior point methods in linear program-
ming [32]. These applications, particularly the last one, used that all solutions to

these equations were all real.

9.3. Schubert Calculus

The largest class of problems which have been studied from the perspective
of having all solutions be real come from the classical Schubert Calculus of enu-
merative geometry, which involves linear spaces meeting other linear spaces. The
simplest nontrivial example illustrates some of the vivid geometry behind this class
of problems. Consider the following question:

How many line transversals are there to four given lines in space?

To answer this problem of four lines, first consider three lines. They lie on a
unique hyperboloid. (See Figure 9.10.) This hyperboloid has two rulings by lines.
The three lines are in one ruling, and the other ruling (which is drawn on the
hyperboloid in Figure 9.10) consists of the lines which meet the three given lines.

The fourth line will meet the hyperboloid in two points (the hyperboloid is
defined by a quadratic polynomial). Through each point of intersection there will
be one line in the second family, and that line will meet our four given lines. In this
way, we see that the answer to the question is 2. Note that the fourth line may be
drawn so that it meets the hyperboloid in two real points, and both solution lines
will be real when this happens.

Let Gr(p,m+p) be the Grassmannian of p-dimensional linear subspaces (p-
planes) in an (m+p)-dimensional vector space, which is an algebraic manifold of
dimension mp. The Schubert Calculus involves fairly general incidence conditions
imposed on p-planes H. These general conditions are imposed by flags, which are
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Figure 9.10. Hyperboloid containing three lines.

sequences of linear subspaces, one contained in the next. More specifically, a flag
F• is a sequence

F• : F1 ⊂ F2 ⊂ · · · ⊂ Fm+p−1 ⊂ Fm+p ,

where Fi is a linear subspace having dimension i.
These general conditions are called Schubert conditions and are indexed by

sequences α in the Bruhat poset
(
[m+p]

p

)
. The set of all p-planes satisfying the

condition α imposed by the flag F• is a Schubert variety, defined by

XαF• := {H ∈ Gr(p,m+p) | dim(H ∩ Fαj
) ≥ j for j = 1, . . . , p} .

This subvariety of the Grassmannian has dimension |α| := α1−1 + · · ·+ αp−p. Its
codimension is mp− |α|.

Write for the Schubert condition (m,m+2, . . . ,m+p), the unique Schubert
condition α with |α| = mp− 1. If K is a linear subspace of codimension p and F•
is a flag with Fm = K, then

(9.4) X F• := X(m,m+2,...,m+p)F• = {H | H ∩K 6= {0}} .
The condition that H meets K is a simple Schubert condition and X F• is a simple
Schubert variety. An important class of Schubert conditions are those involving
only a single subspace in the flag called special Schubert conditions. There are two
types of special Schubert conditions. Let 0 < a ≤ m and 0 < b ≤ b, then the
corresponding special Schubert varieties are

Xm+1−a,m+2,...,m+pF• := {H | H ∩ Fm+1−a 6= {0}} ,
Xm,m+1,...,m−1+b,m+1+b,...,m+pF• := {H | span{H,Fm−1+b} 6= Cm+p} .
A list α1, . . . , αn of Schubert conditions satisfying the numerical condition

(9.5)

n∑

i=1

(mp− |αi|) = mp

will be called a Schubert problem. The reason for this terminology is that the
numerical condition (9.5) implies that the expected dimension of an intersection of
Schubert varieties given by α1, . . . , αn is zero. For a Schubert problem α1, . . . , αn,
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the Kleiman-Bertini Theorem [86] implies that if flags F 1
• , . . . , F

n
• are in general

position, then the intersection

(9.6) Xα1F 1
• ∩ Xα2F 2

• ∩ · · · ∩ XαnFn
•

is transverse and zero-dimensional, so there will be finitely many complex p-planes
H which satisfy the Schubert condition αi imposed by flag F i

• for i = 1, . . . , n. This
number of p-planes may be computed using algebraic algorithms from the Schubert
Calculus or combinatorial algorithms based on the Littlewood-Richardson rule [54].

Schubert problems are another class of geometric problems that can have all
their solutions be real.

Theorem 9.9. For any Schubert problem α1, α2, . . . , αn for Gr(p,m+p), there
exist real flags F 1

• , F
2
• , . . . , F

n
• such that the intersection (9.6) is transverse with all

points real.

Theorem 9.9 was proved in several stages. First, when p = 2 [140], and then for
any p, but only for special Schubert conditions [141], and then finally for general
Schubert conditions by Vakil [159].

Example 9.10 (Quantum Schubert Calculus). A related geometric problem
that can have all of its solutions be real arises in the quantum Schubert calculus.
Given points s1, . . . , sd(m+p)+mp ∈ P1 and m-planes K1, . . . ,Kd(m+p)+mp in Cm+p,

there are finitely many rational curves γ : P1 → Gr(p,m+p) of degree d so that

(9.7) γ(si) ∩ Ki 6= {0} i = 1, 2, . . . , d(m+p) +mp .

These are simple quantum Schubert conditions. More generally, one could (but
we will not) impose the condition that the p-plane γ(si) lie in some predetermined
Schubert variety. The number of solutions to such problems are certain Gromov-
Witten invariants of the Grassmannian, and may be computed by the quantum
Schubert Calculus [12, 75, 134, 158].

Theorem 9.11 ([142]). There exist points s1, s2, . . . , sd(m+p)+mp ∈ RP1 and

m-planes K1,K2, . . . ,Kd(m+p)+mp ⊂ Rm+p so that every rational curve γ : P1 →
Gr(p,m+p) of degree d satisfying (9.7) is real.

Example 9.12 (Theorem of Mukhin, Tarasov, and Varchenko). In May of 1995,
Boris Shapiro communicated to the author a remarkable conjecture that he and
his brother Michael had made concerning reality in the Schubert Calculus. They
conjectured that there would only be real points in a zero-dimensional intersection
of Schubert varieties given by flags osculating the rational normal curve. Subsequent
computation [121, 143] gave strong evidence for the conjecture and revealed that
the intersection should be transverse. Partial results were obtained [141, 46], and
the full conjecture was proven by Mukhin, Tarasov, and Varchenko [104]. They
later gave a second proof [106], which is different from their original proof and gave
a proof of transversality.

This Shapiro Conjecture has been a motivating conjecture for the study of re-
ality in the Schubert Calculus with several interesting (and as-yet-unproven) gener-
alizations that we will discuss in subsequent chapters. Let γ be the rational normal
(or moment) curve in Cm+p, which we will take to be the image of the map

γ(t) = (1, t, t2, . . . , tm+p−1) ∈ Cm+p ,
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defined for t ∈ C. Given t ∈ C, the osculating flag F•(t) is the flag of subspaces
whose i-plane is the linear span of the first i derivatives of γ, evaluated at t

Fi(t) := span{γ(t), γ′(t), γ′′(t), . . . , γ(i−1)(t)} .
We may also define F•(∞) to be the limit as s → 0 of F•(

1
s ), to get a family of

flags F•(t) for t ∈ P1. Here is the strongest form of the Shapiro Conjecture that
has been proven [106].

Theorem 9.13. For any Schubert problem α1, . . . , αn for Gr(p,m+p) and for
every choice of n distinct points s1, . . . , sn ∈ RP1, the intersection

Xα1F•(s1) ∩ Xα2F•(s2) ∩ · · · ∩ XαnF•(sn)

is transverse with all points real.

Example 1.10 discussed this in the context of the problem of four lines. For
that, the Shapiro Conjecture asserts that given any four lines tangent to the real
rational normal curve, there will always be two lines meeting them, and both will be
real. We also gave a more elementary formulation of (a special case of) the Shapiro
Conjecture in terms of the Wronski map in Schubert Calculus. The remainder of
this book will explore what we know and do not know about the Shapiro Conjecture
and some of its extensions and generalizations.





CHAPTER 10

The Shapiro Conjecture for Grassmannians

In Example 9.12 we discussed the Shapiro Conjecture (Theorem of Mukhin, Ta-
rasov, and Varchenko), which asserts that all solutions to a problem in the Schubert
Calculus were real, when the flags were chosen to osculate a real rational normal
curve. We also presented this same conjecture and result in Section 1.4, but phrased
in terms of the Wronski map. Our purpose here is reconcile these two different
points of view. This not only connects these two formulations and links them to
the discussion in Section 8.2, but provides a foundation for the rest of this book.

We work in the Grassmannian Gr(p,m+p) of p-planes in Cm+p. Recall from
Section 9.3 that Schubert varieties are indexed by elements of the Bruhat poset

α ∈
(
[m+p]

p

)
. Given a flag F•, the corresponding Schubert variety is

XαF• = {H ∈ Gr(p,m+p) | dim(H ∩ Fαj
) ≥ j for j = 1, . . . , p} .

This has dimension |α| := ∑
j(αj − j).

In Example 9.12, we considered the rational normal curve γ in Cm+p, which
we took to be the image of the map

γ(t) = (1, t, t2, . . . , tm+p−1) ∈ Cm+p ,

defined for t ∈ C. For a point t ∈ C, the osculating flag F•(t) is the flag of
subspaces whose i-plane is the linear span of γ(t) and the the first i−1 derivatives
of γ, evaluated at t,

Fi(t) := span{γ(t), γ′(t), γ′′(t), . . . , γ(i−1)(t)} .

We define F•(∞) to be the limit as s → 0 of F•(
1
s ), to get a family of flags F•(t)

for t ∈ P1.
We investigate the Shapiro Conjecture for Grassmannians (Theorem of Mukhin,

Tarasov, and Varchenko).

Theorem 9.13. If α1, . . . , αn ∈
(
[m+p]

p

)
are Schubert conditions that satisfy∑

i(mp − |αi|) = mp, then for every choice of n distinct points s1, . . . , sn ∈ RP1,
the intersection

Xα1F•(s1) ∩ Xα2F•(s2) ∩ · · · ∩ XαnF•(sn)

is transverse with all points real.
We show that a special case of this theorem is equivalent to the statement

(Theorem 1.9) of the Shapiro Conjecture from Chapter 1, prove this special case
in an asymptotic sense, and discuss Grassmann duality which helps to understand
the different formulations of these results.

121
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10.1. The Wronski map and Schubert Calculus

In the special case when all the Schubert conditions are simple (so that α =
= (m,m + 2, . . . ,m+p) and |α| = mp − 1), the Shapiro Conjecture has another

formulation in terms of the Wronski map. The Wronskian of a list f1(t), . . . , fm(t)
of polynomials of degree m+p−1 is the determinant

(10.1) Wr(f1, f2, . . . , fm) := det

((
d

dt

)j−1

fi(t)

)

i,j=1,...,m

,

which is a polynomial of degree mp, when the polynomials f1(t), . . . , fm(t) are
generic among all polynomials of degree m+p−1.

Up to a scalar factor, the Wronskian depends only upon the linear span of the
polynomials f1(t), . . . , fm(t). Removing these ambiguities, gives the Wronski map

(10.2) Wr : Gr(m,Cm+p−1[t]) −→ Pmp = P(Cmpt) ,

from the Grassmannian of m-planes in the space of polynomials of degree m+p−1
to the space of polynomials of degree mp, modulo scalars.

Let us begin with the moment (rational normal) curve. For t ∈ C, set

γ(t) = (1, t, t2, . . . , tm+p−1)T ∈ Cm+p .

Let Γ = Γ(t) : Cm → Cm+p be the map such that

(10.3) Γ(ei) = γ(i−1)(t) ,

the (i−1)-th derivative of γ. (We take e1, e2, . . . to be the standard basis vectors
of the vector space in which we are working.)

A polynomial f corresponds to a linear form (also written f):

f : Cm+p −→ C so that f ◦ γ(t) = f(t) .

The matrix in the definition (10.1) of the Wronskian is the matrix of the composition

(10.4) Cm Γ(t)−−−−→ Cm+p Ψ−−→ Cm ,

where the rows of Ψ are the linear forms defining the polynomials f1, . . . , fm. Let
H be the kernel of the map Ψ. Choosing a basis, we may consider H to be a map

Cp H−−→ Cm+p, which we sum with Γ(t) to get a map

Cm+p = Cm ⊕ Cp (Γ(t):H)−−−−−−→ Cm+p .

This map is invertible if and only if the composition Ψ ◦ Γ(t) (10.4) is invertible.
Thus, up to a constant (depending on the choice of basis for H), we have

(10.5) Wr(f1, f2, . . . , fm) = det(Γ(t) : H) ,

as both are polynomials of the same degree with the same roots. (Strictly speaking,
this argument requires the Wronskian to have distinct roots. The general case
follows via a limiting argument.)

We obtain a useful formula for the Wronskian when we expand the determi-
nant (10.5) along the columns of Γ(t)

(10.6) Wr(f1, f2, . . . , fm) = det(Γ(t) : H) =
∑

α

(−1)|α|pα(Γ(t)) · pαc(H) .
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Here, the sum is over all α ∈
(
[m+p]

m

)
, which are choices of m distinct rows of the

matrix Γ(t). Also, αc := [m+p] − α ∈
(
[m+p]

p

)
are the complimentary rows of H,

and pα(Γ(t)) is the αth maximal minor of Γ(t), which is the determinant of the
submatrix of Γ(t) formed by the rows in α, and similarly for pαc(H). (These are
Plücker coordinates of the row spans of H and Γ(t) as in Section 8.2.)

There is a similar expansion for the Wronskian using the composition (10.4).
Take the top exterior power (∧m) of this composition,

C = ∧mCm ∧mΓ(t)−−−−−−→ ∧mCm+p ∧mΨ−−−−→ ∧mCm = C ,

where we have used the ordered basis of Cm so that ∧mCm = C · e1 ∧ . . . ∧ em to
identify ∧mCm with C. Then ∧mΓ(t) is a vector in ∧mCm+p and ∧mΨ is a linear
form on ∧mCm+p. If we use the basis eα := eα1

∧ . . . ∧ eαm
for ∧mCm+p, where

α ∈
(
[m+p]

m

)
, then the Wronskian has the form,

(10.7) Wr(f1, f2, . . . , fm) =
∑

α∈([m+p]
m )

pα(Γ(t)) · pα(Ψ) .

Here, pα(Γ(t)) and pα(Ψ) are the αth coordinates of the corresponding vector/linear
form, which are the αth maximal minors of the corresponding matrices or Plücker
coordinates. (This expansion (10.7) is the familiar Cauchy-Binet formula for the
determinant of a composition.) Equating these two expressions for the Wronskian
gives an interesting equality (again up to a constant)

∑

α∈([m+p]
m )

(−1)|α|pα(Γ(t)) · pαc(H) =
∑

α∈([m+p]
m )

pα(Γ(t)) · pα(Ψ) .

We explore some geometric consequences of the formulas (10.5) and (10.6). Let
H be the column space of the matrix H, which is the kernel of the map Ψ. Then
H is a point in the Grassmannian Gr(p,m+p). From the definition (10.3) of Γ, we
see that the column space of the matrix Γ(t) is the m-plane Fm(t) osculating the
rational normal curve γ at the point γ(t). From (10.5) and (10.6), we see that s is
a zero of the Wronskian Φ(t) := Wr(f1(t), f2(t), . . . , fm(t)) if and only if

0 = det(Γ(s) : H) .

This implies that there is a linear dependence among the columns of this matrix
and thus there is a nontrivial intersection between the subspaces Fm(s) and H.

Suppose that a polynomial Φ(t) has roots s1, . . . , smp. Let f1(t), . . . , fm(t) be
univariate polynomials of degree m+p−1 whose associated linear forms cut out a
p-plane H in Cm+p. Then Φ(t) is the Wronskian of the polynomials f1(t), . . . , fm(t)

⇔ H meets the m-plane Fm(si) nontrivially for each i = 1, . . . ,mp,

⇔ H lies in the Schubert variety X F•(si) (9.4) for each i = 1, . . . ,mp.

If the roots s1, . . . , smp are all real, then the Shapiro Conjecture (Theorem 9.13)
asserts that all such p-planes H are real, and there are the expected number of
them. Thus the second part of Theorem 1.9 is a consequence of Theorem 9.13.

Second part of Theorem 1.9. If the polynomial Φ(t) ∈ Pmp has simple
real roots then there are #m,p real points in Wr−1(Φ).
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Recall from Chapter 1 the formula for the degree of the Wronski map,

(1.5) #m,p =
1!2! · · · (m−1)! · [mp]!

p!(p+1)! · · · (m+p−1)!
,

which is the number of inverse images of a regular value of the Wronski map. The
first part of Theorem 1.9, which asserts that all points are real in a fiber of the
Wronski map over a polynomial with only real roots, follows from the second by
the construction of Theorem 10.1.

10.2. Asymptotic form of the Shapiro Conjecture

It is not too hard to show that the conclusion of the Shapiro Conjecture holds
when all conditions αi are simple, αi = , for some s1, . . . , smp ∈ R. We establish
the following asymptotic form of the Shapiro Conjecture from [141].

Theorem 10.1. There exist numbers s1, . . . , smp ∈ R such that the intersection

X F•(s1) ∩X F•(s2) ∩ · · · ∩X F•(smp)

is transverse with all points real.

The proof uses a version of Schubert’s principle of degeneration to special posi-
tion and the same ideas can be used to establish similar results for related varieties,
such as Theorem 9.11 on rational curves in Grassmannians.

Interchanging α with αc, the expansion (10.6) becomes (up to a sign)

det(Γ(t) : H) =
∑

α∈([m+p]
p )

(−1)|α|pαc(Γ(t)) · pα(H) .

We convert this into a very useful form by expanding the minor pαc(Γ(t)). Let

α ∈
(
[m+p]

m

)
. Observe that the determinant of the rows indexed by α in Γ(t)

det




tα1−1 (α1 − 1)tα1−2 . . . (α1−1)!
(α1−m)! t

α1−m

tα2−1 (α2 − 1)tα2−2 . . . (α2−1)!
(α2−m)! t

α2−m

...
...

. . .
...

tαm−1 (αm − 1)tαm−2 . . . (αm−1)!
(αm−m)! t

αm−m




is equal to

t|α| · det




1 (α1 − 1) . . . (α1−1)!
(α1−m)!

1 (α2 − 1) . . . (α2−1)!
(α2−m)!

...
...

. . .
...

1 (αm − 1) . . . (αm−1)!
(αm−m)!




!
= t|α| · det




1 α1 . . . αm−1
1

1 α2 . . . αm−1
2

...
...

. . .
...

1 αm . . . αm−1
m




.

(The second equality is via column operations.) We recognize this last determinant
as the Vandermonde,

∏
i<j(αj − αi). Write κα for the product

(−1)|α| ·
∏

i<j

(αj − αi) .
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Since |αc| = mp− |α|, we obtain the expansion for the Wronskian (up to a sign).

(10.8) det(Γ(t) : H) =
∑

α∈([m+p]
p )

tmp−|α| καc pα(H) .

Collecting together the coefficients of ti for i = 0, . . . ,mp, shows that the resulting
map to P(Cmp[t]) is the restriction to the Grassmannian of a generalized Wronski
map (8.14) with constants καc .

For the purpose of display, we transpose all matrices, replacing column vectors
by row vectors. Let H ∈ Gr(p,m+p) be represented as the row space of a p by
(m+p)-matrix (a point in the Stiefel manifold as in Section 8.2), and apply Gaussian
elimination with pivoting from bottom to top and right to left to H to obtain a
unique representative matrix of the form

(10.9) H = span




∗ · · · ∗ 1 0 · · · 0 0 0 · · · 0 0 0 · · · 0
∗ · · · ∗ 0 ∗ · · · ∗ 1 0 · · · 0 0 0 · · · 0
...

...
...

...
...

...
. . .

...
...

...
∗ · · · ∗ 0 ∗ · · · ∗ 0 ∗ · · · ∗ 1 0 · · · 0


 .

The entries ∗ indicate an unspecified element of our field (R or C).
The set of columns containing the leading 1s (pivots) is a discrete invariant of

the linear subspace H. Let α ∈
(
[m+p]

p

)
be the positions of the pivots, that is, αi is

the column of the leading 1 in row i. Observe that pβ(H) = 0 unless βi ≤ αi for
every i. This coordinatewise comparison defines the Bruhat order on the indices(
[m+p]

p

)
, which was investigated in Section 8.2.

The set of linear spaces whose row reduced echelon forms (10.9) have pivots in
the columns of α forms a topological cell of dimension |α|, called the Schubert cell
and written X◦

α. The undetermined entries ∗ in (10.9) show that it is isomorphic
to A|α|, the affine space of dimension |α|.

To determine which linear spaces are in the closure of a Schubert cell, let Mα

be the set of matrices with full rank p where the entries in row i are undetermined
up to column αi, and are 0 thereafter. These matrices have the form




∗ · · · ∗ 0 · · · 0 0 · · · 0 0 · · · 0
∗ · · · ∗ ∗ · · · ∗ 0 · · · 0 0 · · · 0
...

...
...

...
. . . 0 · · · 0

∗ · · · ∗ ∗ · · · ∗ ∗ · · · ∗ 0 · · · 0


 ,

where the last undetermined entry ∗ in row i is in column αi. This is a closed
subset of the set of p by (m+p)-matrices of full rank p. The pivots β of a matrix
M ∈ Mα occur weakly to the left of the columns indexed by α, so that β ≤ α, and
all such β occur.

This shows that the set of p-planes H parameterized by matrices in Mα is the
union of the Schubert cells indexed by β for β ≤ α in the Bruhat order. This is a
closed subset of the Grassmannian, in fact it is one of the Schubert varieties defined
in Chapter 9. To see this, let e1, . . . , em+p be basis vectors corresponding to the
columns of our matrices. For each i = 1, . . . ,m+p let Fi be the linear span of the
vectors e1, . . . , ei. From the form of matrices in Mα, we see that if H is the row
space of a matrix in Mα, then we have

dim(H ∩ Fαj
) ≥ j for j = 1, . . . , p .
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This defines the Schubert variety XαF•. Note that if H ∈ XαF•, then pβ(H) = 0
unless β ≤ α. Write X◦

αF• for the Schubert cell consisting of those H of the
form (10.9).

The key lemma in our proof of Theorem 10.1 is due essentially to Schubert [130].

Lemma 10.2. For any α ∈
(
[m+p]

p

)
,

XαF• ∩ {H | pα(H) = 0} =
⋃

β⋖α

XβF• ,

as schemes.

Here β ⋖ α means that α covers β that is, β < α, but there is no index µ
in the Bruhat order with β < µ < α. This is easy to see set-theoretically, as for
H ∈ XαF• we have pβ(H) = 0 unless β ≤ α.

It is also easy to see that this is true on the generic point of each Schubert
variety XβF• for β⋖α. Fix some index β with β⋖α. Then there is a unique index
k with βk = αk − 1, and for all other indices i, βi = αi. Consider the subset of
the matrices Mα, where we require the entries in row i and column βi to be 1, and
write xk,αk

for the entry in row k and column αk

(10.10)




∗ · · · ∗ 1 0 · · · 0 0 0 0 · · · 0 0 0 · · · 0
...

... 0
. . .

...
...

...
...

...
...

...
∗ · · · ∗ 0 ∗ · · · ∗ 1 xk,αk

0 · · · 0 0 0 · · · 0
∗ · · · ∗ 0 ∗ · · · ∗ 0 ∗ 0 · · · 0 0 0 · · · 0
...

...
...

...
...

...
...

. . .
...

...
...

∗ · · · ∗ 0 ∗ · · · ∗ 0 ∗ ∗ · · · ∗ 1 0 · · · 0




.

The row spans of these matrices form a dense subset of the Schubert variety XαF•,
and therefore define a coordinate patch for XαF•. If we set xk,αk

= 0, then we get
all matrices of the form (10.9), but for the index β.

If H is the row space of a matrix in this set (10.10), then pα(H) = xk,αk
.

Thus on this coordinate patch for XαF•, the vanishing pα = 2 of the Plücker
coordinate cuts out the Schubert variety XβF•, scheme-theoretically. Repeating
this local argument for each β⋖α, proves (10.2), at least at the generic point of each
component XβF• (which is sufficient for our purposes). More careful arguments
show this is true even at the level of their homogeneous ideals.

We prove a statement which implies Theorem 10.1 using induction on the
Bruhat order (sometimes called Schubert induction).

Lemma 10.3. There exist numbers s1, . . . , smp ∈ R such that for α ∈
(
[m+p]

p

)
,

(10.11) XαF• ∩
|α|⋂

i=1

X F•(si)

is transverse with all points of intersection real.

The statement of Theorem 10.1 is the case α = m+1,m+2, . . . ,m+p, when
XαF• is the Grassmannian.

Remark 10.4. It is not hard to see (it is equivalent to the Plücker formula [115]
for rational curves and was noted by Eisenbud and Harris [40, Theorem 2.3]) that
the intersection (10.11) lies in the Schubert cell X◦

αF• for the index α. That is,
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every point H in the intersection (10.11) has row-reduced echelon form (10.9), for
the index α. To see this, suppose that H ∈ XβF•. Then the expression (10.12)
derived below for H to lie in X F•(t) is a polynomial of degree |β| in t, and thus
H lies in X F•(t) for at most |β| different values of t, which implies that H cannot

lie in the intersection (10.11).

Proof of Lemma 10.3. When α = 1, 2, . . . , p, then |α| = 0 and the Schubert
variety XαF• consists of the single point {Fp}. Thus the base case of the induction
to prove Lemma 10.3 is trivial, as there is no intersection to contend with.

Suppose that we have real numbers s1, . . . , sj such that, for each index α with

|α| ≤ j the intersection (10.11) is transverse with all points real. Let α ∈
(
[m+p]

p

)

with |α| = j+1. By (10.8) the intersection XαF• ∩X F•(t) is defined by the single
polynomial equation

∑

β

tmp−|β|κβcpβ(H) = 0 for H ∈ XαF• .

Since pβ(H) = 0 unless β ≤ α, this becomes
∑

β≤α

tmp−|β|κβcpβ(H) = 0 .

Dividing by the lowest power tmp−|α| of t, this becomes

(10.12)
∑

β≤α

t|α|−|β|κβcpβ(H) = καcpα(H) + t ·
∑

β<α

t|α|−|β|−1κβcpβ(H) = 0 .

Since καc 6= 0, we see that in the limit as t → 0, this equation becomes pα(H) = 0.
Using the Schubert’s Lemma 10.2, we compute the scheme-theoretic limit

(10.13) lim
t→0

(XαF• ∩X F•(t)) = XαF• ∩ {H | pα(H) = 0} =
⋃

β⋖α

XβF• .

By our induction assumption on j, each intersection

XβF• ∩
j⋂

i=1

X F•(si)

is transverse with all points real, and by Remark 10.4, every point of the intersection
lies in the Schubert cell X◦

βF•. Since the Schubert cells are disjoint, we conclude
that the intersection

( ⋃

β⋖α

XβF•
)

∩
j⋂

i=1

X F•(si)

is transverse with all points real. By the computation of the limit (10.13) and
the observation that transversality is preserved by small perturbations, we see that
there is a number 0 < ǫα such that if 0 < t ≤ ǫα then

XαF• ∩ X F•(t) ∩
j⋂

i=1

X F•(si)

is transverse with all points real.
We complete the induction by setting sj+1 to be the minimum of the numbers

ǫα where |α| = j + 1. This completes the proof of Lemma 10.3.
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Similar asymptotic arguments are behind the proof of Theorem 9.11, which
proved reality in the quantum Schubert Calculus, as well as results for the classical
flag manifolds and for the orthogonal Grassmannian [144].

Remark 10.5. The proof of Lemma 10.3 used induction to show that the
intersection (10.11) is transverse with all points real. In fact, it gives an inductive
method to construct all the points of intersection. The induction began with α =
1, . . . , p so that |α| = 0 and the Schubert variety XαF• consists of the single point
{Fp}. When |α| = j + 1, the limit

lim
t→0

(
XαF• ∩X F•(t)

)
∩

j⋂

i=1

X F•(si) =
⋃

β⋖α

XβF• ∩
j⋂

i=1

X F•(si)

shows that each point in the intersection (10.11) is connected to a point in

(10.14)
⋃

β⋖α

XβF• ∩
j⋂

i=1

X F•(si) =
⋃

β⋖α

(
XβF•

j⋂

i=1

X F•(si)
)

along a path as t ranges from sj+1 to 0, and the union on the right is disjoint.
For the inductive construction, suppose that all points in the set (10.14) have

been previously constructed as β ⋖ α implies that |β| = j. Starting at one of the
points in (10.14) and tracing the path from t = 0 back to t = sj+1 gives a point in
the intersection (10.11) for α with |α| = j+1, and all such points in the intersec-
tion (10.11) arise in this manner. Following paths along a general curve in C (as
opposed to the line segment [0, sj+1]) constructs points in the intersection (10.11)
where sj+1 is any complex number. This is the germ of the idea behind the numeri-
cal Pieri homotopy algorithm, which was proposed in [72] and implemented in [73].
Its power was demonstrated in [93], which used the Pieri homotopy algorithm to
compute all solutions to a Schubert problem on Gr(3, 9) with 17589 solutions. The
Pieri homotopy algorithm does not use the flags F•(t), but rather a different fam-
ily degenerating to the standard flag which gives equations that are more stable
numerically.

If d(α) is the number of points in the intersection (10.11), then this limiting
process also gives the recursion for d(α) along the Bruhat order,

(10.15) d(1, 2, . . . , p) := 1 , and d(α) :=
∑

β⋖α

d(β) .

Schubert discovered this recursion [129] and used it to compute the intersection
number d(567) = 462 when m = 4 and p = 3. This is the number #4,3 given by
the formula,

(1.5) #m,p =
1!2! · · · (m−1)! · [mp]!

p!(p+1)! · · · (m+p−1)!
,

which is also due to Schubert, as he solved his recursion to obtain a closed formula.
This recursion shows that the number d(α) may be interpreted combinatorially as
the number of chains in the Bruhat order from its minimum element to α. In fact
to each solution we constructed in (10.11), we may associate a distinct path from
1, 2, . . . , p to α. Figure 10.1 shows the Bruhat order in this case when m = 4 and
p = 3 and Schubert’s recursion for the numbers d(α).
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Figure 10.1. Schubert’s recursion for Gr(3, 7).

In Section 10.1 we demonstrated that Theorem 1.9 is equivalent to Theo-
rem 9.13 when all Schubert conditions are simple (each αi = ). In fact this
case of Theorem 9.13 implies a weak form of the general case, in which we do not
require transversality. The main idea is to use the limit (10.13), which we must
first reinterpret. The flag F• is the osculating flag F•(t) when t = 0. In fact, the
limit (10.13) still holds if we replace F• by F•(s) and 0 by s for any point s of P1.
That is,

(10.16) lim
t→s

(
XαF•(s) ∩X F•(t)

)
=

⋃

β⋖α

XβF•(s) .

This is the limit (10.13) translated by the invertible matrix M(s) with i, j-entry

M(s)i,j =
1

(i− 1)!

(
d

dt

)i−1

tj−1
∣∣∣
t=s

,

as M(s).F•(t) = F•(s+ t).

Theorem 10.6. Suppose that Theorem 9.13 holds for the Schubert problem
in which all conditions αi are simple (αi = ). Then for any α1, . . . , αn with
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mp =
∑

i(mp− |αi|) and any distinct s1, . . . , sn ∈ RP1, the intersection

(10.17)

n⋂

i=1

XαiF•(si)

has all points real.

Proof. We prove this by downward induction on the number n of Schubert
conditions in (10.17), using the limit (10.16) and the simple idea that a limit of a
collection of real points is necessarily a collection of real points.

First, when n = mp, each αi = is simple and all points in the intersec-
tion (10.17) are real as that is our hypothesis in Theorem 10.6. Suppose that
n < mp. Then we have |αi| < mp− 1 for some i. Suppose that |αn| < mp− 1 and

let β ∈
(
[m+p]

p

)
be a Schubert condition with αn ⋖ β so that |β| = |α|+ 1. Then

lim
t→sn

[ n−1⋂

i=1

XαiF•(si)
]
∩
(
XβF•(sn) ∩X F•(t)

)

=
[ n−1⋂

i=1

XαiF•(si)
]
∩
( ⋃

α⋖β

XαF•(sn)
)
.

The elementary inclusion ⊂ of the limit in the set on the right is clear from (10.16).
The equality of the two sides follows as the intersection on the right is zero-
dimensional, and therefore cannot contain any excess intersection. By induction,
for general t ∈ R, every point in the left-hand intersection is real, and so every point
in the limit is real. Theorem 10.6 follows as αn ⋖ β and so the intersection (10.17)

is a subset of the right-hand side.

10.3. Grassmann duality

In Section 10.2 we showed how the Wronski formulation of the Shapiro Con-
jecture—m-dimensional spaces of polynomials of degree m+p−1 whose Wronskian
has distinct real roots—corresponds to an intersection of hypersurface Schubert
varieties in Gr(p,m+p) defined by flags that osculate the rational normal curve at
the roots of the Wronskian. The first formulation concerns Gr(m,m+p) while the
second concerns Gr(p,m+p). In our proof of this correspondence we considered
an m-dimensional space of polynomials as a space of linear forms on Cm+p, and
associated this to the p-plane annihilated by the linear forms. This gives a natural
bijection

(10.18) Gr(m, (Cm+p)∗) −→ Gr(p,Cm+p) .

Moreover, the annihilators of the subspaces in a flag F• in Cm+p form the dual
flag F ∗

• in (Cm+p)∗. Under the identification of Grassmannians (10.18), the Schu-
bert variety XαF• of Gr(p,Cm+p) is identified with the Schubert variety Xα∗F ∗

• in
Gr(m, (Cm+p)∗), where α∗ is the sequence

m+p+1− αc
m < m+p+1− αc

m−1 < · · · < m+p+1− αc
2 < m+p+1− αc

1 ,

that is, to obtain α∗, first form the complement αc of α in [m+p], then subtract
each component from m+p+1, and finally put the result in increasing order. This
identification of Schubert varieties is an exercise in combinatorial linear algebra,
and the relation |α| = |α∗| is an exercise in combinatorics.
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Write Cm+p−1[t] for the space of polynomials of degree at most m+p−1, which
we identified as the dual space to Cm+p. We describe the Schubert subvarieties of
Gr(m,Cm+p−1[t]) that correspond to the Schubert varieties XαF•(s).

Let V ⊂ Cm+p−1[t] be an m-dimensional space of polynomials. For any s ∈ P1,
V has a distinguished basis f1, . . . , fm whose orders of vanishing at the point s are
strictly increasing,

ords(f1) < ords(f2) < · · · < ords(fm) .

This follows by Gaussian elimination in the basis 1, (t−s), (t−s)2, . . . , (t−s)m+p−1

for Cm+p−1[t] applied to any basis f1, . . . , fm of V . Suppose that 0 ≤ a1 is the
minimal order of vanishing at s of some fi. Reordering the basis, we may assume
that ords(f1) = a1. Subtracting an appropriate multiple of f1 from the subsequent
elements gives a new basis, still written f1, . . . , fn, with a1 < ords(fi) for 1 < i.
Suppose that ords(f2) is minimal among the orders of vanishing at s of fi for 1 < i
and now subtract appropriate multiples of f2 from the subsequent elements, and
continue. The resulting sequence a := (a1, . . . , am) = (ords(f1), . . . , ords(fm)) is
the ramification sequence of V at s.

An elementary calculation shows that if V has ramification sequence a at a
point s ∈ P1, then the Wronskian of V vanishes at s to order

|a| = a1−0 + a2−1 + · · · + am−(m−1) .

Define a flag E•(s) ⊂ Cm+p−1[t] where Ei(s) is the space of all polynomials
that vanish to order at least m+p−i at s. With these definitions, we have the
following lemma.

Lemma 10.7. A space V of polynomials in Gr(m,Cm+p−1[t]) has ramification
sequence a at s if and only if

V ∈ XarE•(s) ,

where ar : m+p−am < · · · < m+p−ap ∈
(
[m+p]

m

)
.

A polynomial f(t) ∈ Ei(s) if and only if (t − s)m+p−i divides f , if and only if
f (j)(s) = 0 for j = 0, 1, . . . ,m+p−1−i. If we view f as a linear form on Cm+p so
that f(t) = f ◦ γ(t), we see that f (j)(t) = f ◦ γ(j)(t), and therefore f(t) ∈ Ei(s)
if and only if f annihilates the osculating subspace Fm+p−i(s) to γ at γ(s). Thus
Ei(s)

⊥ = Fm+p−i(s), and so E•(s) is the dual flag to F•(s). In particular, the
Schubert variety XαF•(s) corresponds to Xα∗E•(s) under Grassmann duality.

Theorem 10.8. The identification of Cm+p−1[t] as the dual space to Cm+p

induces an isomorphism of Grassmannians

Gr(m, (Cm+p)∗) −→ Gr(p,Cm+p) .

For any s ∈ P1, this restricts to an isomorphism of the Schubert varieties,

Xα∗E•(s) −→ XαF•(s) .





CHAPTER 11

The Shapiro Conjecture for Rational Functions

We continue our study of the Shapiro Conjecture in the case of m = 2 when
it becomes a statement about rational functions. Eremenko and Gabrielov [46]
originally gave a proof in this case using essentially the uniformization theorem from
complex analysis. They subsequently found a second, significantly more elementary
proof [42]. We begin with that second proof, and then discuss a generalization
concerning rational functions that are constant on prescribed sets, which leads to
a generalization of the Shapiro Conjecture described in Section 13.4.

The key to this elementary proof is the association of a discrete invariant (a
net) to each real rational function with only real critical points. Then the analytic
continuation of rational functions beginning from the rational functions constructed
in Theorem 10.1 with only real critical points is unobstructed, when the critical
points remain distinct. The reason is simple: if in the continuation a real rational
function became complex, it would have to first coincide with the continuation of
another real rational function, and therefore two nets would become identical. But
this cannot happen, which implies that the continuation is unobstructed.

11.1. Nets of rational functions

The Shapiro Conjecture for m = 2 asserts that if f(t) and g(t) are univariate
polynomials whose Wronskian

Wr(f, g) = f ′(t)g(t) − f(t)g′(t)

has only real roots, then the complex linear span 〈f, g〉 is real in that there are real
polynomials h and k with 〈f, g〉 = 〈h, k〉.

This is very natural for rational functions. The quotient of univariate polyno-
mials f and g defines a rational function ρ : P1 → P1 which on C ⊂ P1 is

ρ : t 7−→ f(t)/g(t) .

The critical points of ρ are points where its derivative vanishes. Since

ρ′(t) =
f ′(t)g(t) − f(t)g′(t)

g(t)2
=

Wr(f, g)

g(t)2
,

if f and g are coprime, the critical points are the roots of their Wronskian.
Rational functions that differ by a fractional linear transformation on the target

P1 are equivalent. As a fractional linear transformation on f/g is a change of basis in
the linear span 〈f, g〉, an equivalence class of rational functions is a two-dimensional
space of polynomials. An equivalence class is real if the corresponding linear space
is real. We state the theorem of Eremenko and Gabrielov.

Theorem 11.1. A rational function ρ : P1 → P1 with only real critical points
is equivalent to a real rational function.

133
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Theorem 10.1 and the Grassmann duality of Theorem 10.8 ensure the existence
of a polynomial Φ0(t) ∈ R2p[t] with only real roots such that every space of poly-

nomials with Wronskian Φ0(t) is real, and there are exactly #2,p = 1
p+1

(
2p
p

)
such

spaces of polynomials. The elementary proof of Theorem 11.1 analytically contin-
ues these #2,p real spaces of polynomials as the 2p distinct real roots of Φ0(t) vary.
This continuation will produce fewer than #2,p real spaces of polynomials for some
Φ(t) only if some of the spaces become complex during the continuation. But this
can happen only if two spaces of polynomials first become equal.

The proof shows that such a collision cannot occur by associating discrete
objects called nets to the real rational functions that are distinct for each of the
#2,p spaces of polynomials with Wronskian Φ0(t), and which are preserved under
a continuation that varies the roots of Φ0(t). Thus no collisions are possible, which
implies Theorem 11.1.

A point in the Grassmannian Gr(2,Rp+1[t]) ≃ GrR(2, p+2) is a two-dimensional
space of real univariate polynomials of degree at most p+1. Each point gives an
equivalence class of rational functions ρ : P1 → P1 of degree p+1−d, where d is the
number of common roots in P1 of the polynomials in this space. Working with this
equivalence is awkward, so we will instead use the real Stiefel manifold, StR(2, p+1),
which is a GL(2,R)-fiber bundle over Gr(2,Rp+1[t]).

The points of StR(2, p+1) are pairs of nonproportional real univariate polyno-
mials of degree at most p+1. Hence StR(2, p+1) is an open subset of R2p+4, with
coordinates the coefficients of the polynomials f and g. We give StR(2, p+1) the
subspace topology. The association StR(2, p+1) ∋ (f, g) 7→ f/g defines a map from
StR(2, p+1) to the space of rational functions. While this is not a continuous map
of spaces, it does have the weak continuity property given in Lemma 11.2 below.

Let Z ⊂ StR(2, p+1) be the locus of pairs (f, g) with either

deg(gcf(f, g)) > 0 or deg(f), deg(g) < p+1.

That is, f and g either have a common root in P1, and thus define a rational
function f/g of degree less than p+1.

Lemma 11.2. Let {(fi, gi) | i ∈ N} ⊂ StR(2, p+1) \ Z be a sequence that
converges to (f, g) ∈ Z. Let z1, . . . , zk be the common roots of f and g (including
∞ if deg(f) and deg(g) are both less than p+1). Then the sequence of rational
functions {fi/gi | j ∈ N} converges to f/g uniformly on compact subsets of P1 \
{z1, . . . , zk}.

Proof. Let K ⊂ P1 be a compact subset disjoint from the common roots
{z1, . . . , zk} of f and g. We may cover P1 by the standard affine charts C0 and C∞
whose coordinates are t and 1/t, respectively. Then we may write K = K0 ∪K∞,
where K0 ⊂ C0 and K∞ ⊂ C∞ are compact subsets of the two affine charts. It
suffices to show that the sequence of functions {fi/gi | i ∈ N} converges uniformly
to f/g on each set K0 and K∞.

Now K0 is itself covered by compact sets Kf
0 and Kg

0 , where Kf
0 contains no

roots of f and Kg
0 contains no roots of g. Removing finitely many members of the

sequence {(fi, gi) | i ∈ N}, we may assume that no fi has a root in Kf
0 and no gi

has a root in Kg
0 . As (fi, gi) converges to (f, g) in StR(2, p+1), and no gi has a root

in Kg
0 , both sequences of functions

{fi(t) | i ∈ N} and {(gi(t))−1 | i ∈ N}
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are uniformly bounded in Kg
0 . Therefore, the sequence of functions

fi(t)

gi(t)
: Kg

0 −→ C
∼−→ C0 ⊂ P1

is uniformly bounded and converges pointwise to f(t)/g(t) on the compact set Kg
0 .

This implies that the convergence is uniform on Kg
0 . The same arguments for Kf

0

and K∞ complete the proof.

This lemma is half of the engine of this proof of Eremenko and Gabrielov. The
other half is the asymptotic proof of the Shapiro Conjecture, Theorem 10.1.

We associate an embedded graph with distinguished vertices to each real ratio-
nal function. Let Rp+1 be the set of nonconstant real rational functions of degree
at most p+1, all of whose critical points are real. If ρ ∈ Rp+1, then ρ−1(RP1) ⊂ P1

defines an embedded (multi-) graph Γ with the following properties:

(i) Γ is stable under complex conjugation and RP1 ⊂ Γ.

Any edge in Γ \ RP1 is an interior edge. These occur in complex conjugate pairs.

(ii) The vertices of Γ lie on RP1 and are the critical points of ρ. The valence
of a vertex is even and it equals twice the order of ramification of ρ at the
critical point, which we call the local degree of Γ at the vertex.

The set-theoretic difference P1 \ Γ is a union of 2d cells, where d is the degree of ρ.
The closure of each cell is homeomorphic to a disc, and the boundary of each cell
maps homeomorphically onto RP1. This is because the cells (and their closures) are
the inverse images of one of the two discs in P1 \RP1 (or their closures), and there
are no critical points in the interior of any cell. We deduce the following additional
property of these multi-graphs.

(iii) No interior edge of Γ can begin and end at the same vertex.

Indeed, if an interior edge e begins and ends at the same vertex, then ρ(e) = RP1

as v is the only critical point on e. But then e must be the boundary of any cell
adjacent to e, which implies that Γ consists of only two cells and one edge e and
so ρ has degree 1 and therefore no critical points, and in fact e = RP1 was not an
interior edge after all.

Example 11.3. Below are three pictures of such embedded (multi-) graphs for
quintic rational functions. We draw RP1 as a circle with the upper half plane in its
interior. The point

√
−1 is at the center of the circle, −

√
−1 is the point at infinity,

and complex conjugation is inversion in the circle.

We seek to analytically continue rational functions whose Wronskians lie in
a curve of polynomials {Φz(t) | z ∈ [0, 1]} where each Φz(t) has degree 2p with
distinct real roots s1(z), s2(z), . . . , s2p(z), and where each si is a continuous func-
tion of z. The vertices of the graph ρ−1(RP1) associated to a rational function
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ρ with Wronskian Φz(t) are labeled by these roots, or equivalently by the num-
bers 1, 2, . . . , 2p. Since the relative order of these roots s1(z), s2(z), . . . , s2p(z) does
not change as z varies (because each polynomial Φz(t) has distinct roots), we may
capture this information by labeling only one root, say s1(z) (which is a vertex of
the corresponding graph), and assuming that the roots are ordered in a manner
consistent with a fixed orientation of RP1. It is these labeled graphs that we wish
to consider up to isotopy (deformation in P1).

Definition 11.4. A net is an (isotopy) equivalence class of such embedded

multi-graphs in P1 satisfying (i), (ii), and (iii), with a distinguished vertex.

Example 11.5. There are five nets with six vertices, each with local degree
two. These correspond to rational functions of degree four with simple ramification.

The number #2,p = 1
p+1

(
2p
p

)
is a Catalan number, and it is a pleasing exercise

to show that there are #2,p nets with 2p vertices each with local degree 2.
The uniform convergence of Lemma 11.2 implies a certain continuity of nets.

Two subsets X,Y ⊂ P1 lie within Hausdorff distance ǫ of each other if every point
of X lies within a distance ǫ of Y and vice-versa. This gives the Hausdorff metric
on subsets of P1.

Lemma 11.6. Let {(fi, gi) | i ∈ N} ⊂ StR(2, p+1) be a convergent sequence with
limit (f, g). Then the sets {(fi/gi)−1(RP1)} converge in the Hausdorff metric to
the set {(f/g)−1(RP1)}.

We deduce two corollaries from this lemma.

Corollary 11.7. Suppose that {ρz | z ∈ [0, 1]} is a continuous path in Rp+1

where each ρz has the same number of critical points. Let v1(z) be a continuous
function of z which is equal to a critical point of ρz, for each z. Then the net of
the pair

(
ρ−1
z (RP1), v1(z)

)

does not depend upon z.

This corollary holds as a continuous family of nets can only change isotopy
class if two vertices collide.

Corollary 11.8. Suppose that {(fz, gz) | z ∈ [0, 1]} is a continuous path in
StR(2, p+1) such that fz/gz is a rational function with n distinct critical points
for z > 0, but two critical points collide in the limit as z → 0, while the rest
remain distinct. These two critical points are continuous functions v1(z) and v2(z)
of z ∈ [0, 1] which are distinct for z > 0 but have v1(0) = v2(0). Then the degree of
fz/gz is constant for z ∈ (0, 1], and deg(f0/g0) < deg(f1/g1) if and only if the net
of f1/g1 has an interior edge between the two critical points v1(1) and v2(1).
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Example 11.9. Consider two nets for the quartic rational functions from Ex-
ample 11.5 as two of their vertices collide.

v1 v2

−→

v1 v2

−→

v1

v1
v2

−→

v1 v2

−→

v1

In the first row there is an interior edge of Γ \ RP1 between the vertices v2 and
v1. This edge collapses in the limit as v2 approaches v1, eliminating two regions of
P1\Γ. With two fewer regions, the limiting net corresponds to a rational function of
degree three. There is no such edge in the nets of the second row, and the limiting
net still has eight regions and thus its rational function still has degree four.

Proof of Corollary 11.8. The degree of a rational function ρ ∈ Rp+1 is
one-half the number of cells in the complement P1 \ ρ−1(RP1) of the net of ρ. Set
ρz := fz/gz. The only way for the number of cells in the complement of the net
of ρz to change at some z0 ∈ [0, 1] would be if some edge of ρ−1

z (RP1) disappeared
as z → z0. By the continuity of nets, this can only occur in the neighborhood of a
vertex. Since the vertices of ρ−1

z (RP1) are the critical points v1(z), . . . , vn(z), which
are distinct for z ∈ (0, 1], we see that the degree of ρz is constant for z ∈ (0, 1].

If the degree of ρ0 is less than that of ρ1, then some cell must disappear in the
limit as z → 0. Therefore that cell is bounded by an edge between v1(z) and v2(z)
which collapses, as they are the only critical points which collide in the limit as
z → 0. By (iii), such a cell must be bounded by more than one edge which implies
that there was an edge between v1(1) and v2(1) outside of RP1. This shows the
necessity of an interior edge between v1(1) and v2(1) for the degree to drop.

For sufficiency, note that if there is an interior edge between v1(1) and v2(1),
then it must collapse in the limit as z → 0 for otherwise condition (iii) for nets

would be violated.

11.2. Schubert induction for rational functions and nets

The proof of Theorem 10.1 used Schubert induction to construct a sequence of
numbers s1, . . . , smp ∈ R and sufficiently many real points in each Schubert variety
XαF•(0) which also lie in X F•(si) for i = 1, . . . , |α|. Without re-running that
proof, we will describe what that construction gives for rational functions.

The construction of Theorem 10.1 relevant for rational functions was in the
Grassmannian Gr(p, p+2). Under the Grassmann duality of Theorem 10.8, this
becomes a construction in Gr(2,Cp+1[t]) and involves a Schubert variety XαE•(t)
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with α ∈
(
[p+2]

2

)
. In fact, the statements become identical after replacing F•(t) by

E•(t). We will briefly recall them in this setting.
A point in the Schubert cell X◦

αE•(s) for α : α1 < α2 is a two-dimensional
subspace of polynomials of degree p+1 with a basis 〈f, g〉 where
(11.1) ords(f) = p+2−α2 and ords(g) = p+2−α1 .

In particular,

(t− s)p+2−α2 || f and (t− s)p+2−α1 || g .
(Here, ak || b means that ak divides b, but ak+1 does not divide b.)

Given 〈f, g〉 ∈ X◦
αE•(s), a consequence of (11.1) is that its Wronskian,

Wr(f, g) = f ′(t)g(t)− f(t)g′(t) ,

vanishes to order p+1−α2+p+2−α1 = 2p−|α| at s.
By Lemma 10.3, there exist numbers s1, . . . , s2p ∈ R (in fact they are ordered

s1 > · · · > s2p > 0) such that for all α ∈
(
[p+2]

2

)
, the intersection

(11.2) XαE•(0) ∩
|α|⋂

i=1

X E•(si)

is transverse, and it consists of d(α) real points. Any point 〈f, g〉 in the intersec-
tion (11.2) will have Wronskian

f ′(t)g(t)− f(t)g′(t) = constant · t2p−|α| ·
|α|∏

i=1

(t− si)

As noted in Remark 10.5, the proof of Lemma 10.3 did much more. Suppose
that |α| > 0, and define

β1 := α1−1 < α2 and β2 := α1 < α2−1 ,

when possible. (β1 is only defined if 1 < α1 and β2 is only defined if α1+1 < α2)
Then the proof constructed d(α) = d(β1)+d(β2) continuous families {〈fz, gz〉 | z ∈
[0, s|α|]} of polynomials such that

(1) For z 6= 0, 〈fz, gz〉 ∈ X◦
αE•(0).

(2) f ′
z(t)gz(t)− fz(t)g

′
z(t) = constant · t2p−|α| ·

( |α|−1∏

i=1

(t− si)
)
· (t− z).

(3) Exactly d(βi) of these families began in XβiE•(0). That is, for d(βi) of
these families, we have 〈f0, g0〉 ∈ XβiE•(0).

The main idea in the proof of Theorem 11.1 is that each of the rational functions
constructed in Lemma 10.3 has different nets.

Theorem 11.10. Each of the d(α) rational functions in X◦
αE•(0) constructed

in Lemma 10.3 have different nets.

Proof. Suppose that 〈f, g〉 is a point in the intersection (11.2) where f and g
satisfy (11.1) for s = 0. Then its Wronskian vanishes to order 2p−|α| at 0 and to
order 1 at the points s1, . . . , s|α|. In particular, 0 is the only common zero of f and

g. Removing the common factor tp+2−α2 from both f and g gives relatively prime
polynomials of degree at most α2−1. Indeed, if f and g had a common root s, then
a linear combination would vanish to order at least 2 at s and so their Wronskian
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would vanish to order at least 2 at s. It follows that the rational function ρ := f/g
has degree α2−1 with Wronskian

constant · tα2−α1−1 ·
|α|∏

i=1

(t− si) .

The point 〈f, g〉 corresponds to a unique path in the Bruhat order from (1, 2)
to α in the Bruhat order. This path may be recovered from the net ρ−1(RP1) of ρ.

Indeed, consider the ith step in the construction, when the critical point si was
created. By Corollary 11.8, the interior edge from si has its other endpoint 0 if
the degree of the rational function increased at the ith step, and if its degree did
not increase, then the other endpoint of that edge is at some critical point sk with
sk > si and so k < i. Subsequent steps in the construction will not affect an edge
from si to sk with k < i, but an edge between 0 and si will be moved to an edge
between si and sj for some j > i.

Thus the degree of the rational function increased at step i if and only if the
other endpoint of an interior edge from si is at sj with j > i. If β ⋖ β′ is the ith
step in the chain corresponding to our rational function ρ, then either

(1) β2+1 = β′
2, so the degree of the rational function increased, if the interior

edge from si has endpoint sj with j > i (so sj < si), or
(2) β1 + 1 = β′

1, so the degree of the rational function did not increase, if the
interior edge from si has endpoint sk with k < i (so sk > si).

This completes the proof.

Figure 11.1 illustrates the formation of the nets during the Schubert induction
for quartic rational functions, as well as the recursion for d(α).

We complete the proof of the Shapiro Conjecture for rational curves.

Theorem 11.11. Let Φ(t) be a real polynomial of degree 2p all of whose roots
are real. Then there are exactly d(p+1, p+2) real equivalence classes of rational
functions with Wronskian Φ(t).

Proof. Let s1 > s2 > · · · > s2p ∈ R be numbers such that the intersection

2p⋂

i=1

X E•(si)

transverse with all points real. Each point in the intersection is an equivalence class
of rational functions with Wronskian

Φ0(t) =

2p∏

i=1

(t− si) .

Let {Φz | z ∈ [0, 1]} be a continuous family of polynomials of degree 2p all
with distinct real roots and with Φ1(t) = Φ(t). We attempt to analytically con-
tinue each point in the fiber Wr−1(Φz) from z = 0 to z = 1. The only way this
continuation could fail would be if it encountered a fiber Wr−1(Φz) containing a
multiple point, so that some of the rational functions in this fiber coincide. In par-
ticular, two would have the same net, (where we have labeled the nets by the root
of the Φz(t) corresponding to s1). This implies that two of the original rational
functions in Wr−1(Φ0) have the same net, by Corollary 11.7. But this contradicts

Theorem 11.10.
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Figure 11.1. Formation of nets during Schubert induction.
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11.3. Rational functions with prescribed coincidences

The results of Sections 11.1 and 11.2 can be used to prove a result about real
rational functions that satisfy a certain interpolation condition. This is due to
Eremenko, Gabrielov, Shapiro, and Vainstein [47], and may be interpreted in the
Grassmannian Gr(p, p+2) as an appealing generalization of the Shapiro Conjecture.
We will discuss this generalization, the Secant Conjecture, in Section 13.4.

Let A1, . . . , An be disjoint finite subsets of P1 where the set Ai has 1 + ai
elements with 1 ≤ ai ≤ p and a1 + · · · + an = 2p. Write a for this sequence
(a1, . . . , an) of numbers. The interpolation problem is to determine the equivalence
classes of rational functions ρ of degree p+1 that satisfy

ρ|Ai
is constant for i = 1, . . . , n .

There are in fact finitely many such equivalence classes of rational functions when
the sets Ai are general. We will later prove this finiteness and show that the number
of equivalence classes is a Kostka number Ka [53, p.25],[96, I,6]. We expect finitely
many equivalence classes because the condition that a rational function is constant
on a set of 1+a elements gives a equations.

A collection of sets Ai ⊂ RP1 for i = 1, . . . , n is separated if there exist disjoint
intervals I1, . . . , In of RP1 with Ai ⊂ Ii for i = 1, . . . , n. We state the Theorem of
Eremenko, Gabrielov, Shapiro, and Vainstein [47].

Theorem 11.12. Let a = (a1, . . . , an) with 1 ≤ ai ≤ p and a1 + · · · + an =
2p. For general separated subsets of RP1, A1, . . . , An with |A1| = 1+ai, there are
exactly Ka real equivalence classes of rational functions ρ such that

(11.3) ρ|Ai
is constant for i = 1, . . . , n .

Given general separated subsets A1, . . . , An of RP1, we construct a real ra-
tional function satisfying (11.3) for every net with a certain property, described
below (11.5). We next relate this interpolation problem to a problem in the Schu-
bert Calculus with Ka solutions, and finally show that Ka is the number of nets
with the property (11.5). This implies that we have constructed all the solutions.

Theorem 11.12 generalizes Theorem 11.1. Suppose that we have a family of
subsets {Az | z ∈ (0, 1]} of RP1 depending continuously on z, each of cardinality
a+ 1, whose limit as z → 0 consists of a single point,

lim
z→0

Az = {s} .

Suppose further that we have a family {ρz | z ∈ [0, 1]} of rational functions that
depend continuously on z, and such that for z > 0, ρz is constant on Az. Then ρ0
will have a critical point at s of order at least a.

In this way, Theorem 11.12 implies Theorem 11.1 by simply considering the
limit as each set Ai collapses to a point. In fact, this analysis will enable us to
deduce a stronger form of Theorem 11.1.

Theorem 11.13. Let a1, . . . , an be integers with 1 ≤ ai ≤ p and a1 + · · · +
an = 2p. Then every rational function of degree p + 1 with n real critical points
of multiplicities a1, . . . , an is real. There are exactly Ka classes of such rational
functions, and the corresponding Schubert varieties meet transversally.

Let Rp+1 be the set of real rational functions of degree p+1 with exactly 2p
real critical points. We use two consequences of the work in Sections 11.1 and 11.2.
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(1) If ρ1, ρ2 ∈ Rp+1 have the same critical points and isotopic nets (distin-
guishing the same vertex each net), then ρ1 is equivalent to ρ2.

(2) For every net Γ ⊂ P1 with a given set V of 2p vertices (and distinguished
vertex v1), there is a unique equivalence class of rational functions in Rp+1

with critical set V and net (with distinguished vertex v1) isotopic to Γ.

Proof of Theorems 11.12 and 11.13. Fix separated subsets A1, . . . , An of
RP1 satisfying the hypotheses. Choose 2p additional points s1, . . . , s2p where, for
each i, ai of the points interlace the ai+1 points of Ai, and therefore lie in intervals
bounded by points of Ai. Write [xj , yj ] for the interval that contains sj and note
that xj , yj ∈ Ai, for some i. We show an example when p = 5 and a = (3, 2, 2, 2, 1).

(11.4) s1, . . . , s10 A1

A2A3

A4

A5

Consider nets with vertices s1, . . . , s2p, each of local degree 2, that satisfy the
additional hypothesis:

(11.5) There are no edges between points interlacing the same set Ai.

We show the five nets satisfying (11.5) for the points Ai of (11.4) (we only draw
the edges in the upper half plane, which is the interior of the circle).

Figure 11.2. Nets for the points Ai of (11.4).

Fix an isotopy class Γ of nets satisfying (11.5) and suppose that we have chosen
points s1, . . . , ŝj , . . . , s2p (sj is omitted) where si ∈ (xi, yi) is fixed but arbitrary
for each i = 1, . . . , 2p with i 6= j. For each s ∈ [xj , yj ], let ρs ∈ Rp+1 be a rational
function with the critical points s1, . . . , ŝj , . . . , s2p, s and net Γ. We may suppose
that {ρs | s ∈ [xj , yj ]} is a continuous family.

Lemma 11.14. There exists a point s ∈ (xj , yj) such that ρs(xj) = ρs(yj).

Proof. We assume that ρs is normalized so that ρs(s) = 0 and ρs maps the
interior edge of Γ terminating at s to [−∞, 0] ⊂ RP1. Then the difference

ρs(xj) − ρs(yj)
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is positive when s is near yj and negative when s is near xj , so it takes the value

zero at some point in [xj , yj ].

We illustrate this argument.

xj

yj
s

ρs(xj)− ρs(yj) > 0

xj

yj

s

ρs(xj)− ρs(yj) = 0

xj

yj

s

ρs(xj)− ρs(yj) < 0

The arrows point in the direction of increase of ρs(t) for t in the net.

Lemma 11.15. If Γ is a net satisfying (11.5), then there is a choice of criti-
cal points s1, . . . , s2p interlacing the points of the sets Ai such that every rational
function ρ of degree p+1 with the net Γ and critical points sj satisfies

(11.6) ρ|Ai
is constant for i = 1, . . . , n .

Proof. The set of possible critical points s = (s1, . . . , s2p) ∈ (RP1)2p interlac-
ing the sets Ai forms the interior of a closed cube

Q := [x1, y1]× [x2, y2]× · · · × [x2p, y2p] .

By the arguments in the proof of Lemma 11.14, for every j, the continuous function
ϕj(s) := ρs(xj) − ρs(yj) (defined as described in the proof of Lemma 11.14) is
positive on the face sj = yj and negative on the face sj = xj . Thus the map

ϕ := (ϕ1, . . . , ϕ2p) : Q −→ R2p

maps the boundary of Q to a set which encloses the origin. Therefore the origin lies
in the image of ϕ. That is, there is a point s in the interior of Q where ϕj(s) = 0
for all j, that is ρs(xj) = ρs(yj) for all j. Since these intervals interlace the sets Ai,

this implies (11.6).

The next step in the proof of Theorem 11.12 is to show that the number of nets
satisfying (11.5) for sets A1, . . . , An where Ai has 1+ai members and a1+· · ·+an =
2p is the Kostka number Ka. This Kostka number is the number of Young tableaux
of shape 2 × p and content a [53, p.25]. These are arrays consisting of two rows
of integers, each of length p such that the integers increase weakly across each
row and strictly down each column, and there are ai occurrences of i for each
i = 1, . . . , n. For example, here are the five Young tableaux of shape 2 × 5 and
content (3, 2, 2, 2, 1), showing that K(3,2,2,2,1) = 5.

(11.7)
1 1 1 2 2

3 3 4 4 5

1 1 1 3 4

2 2 3 4 5

1 1 1 3 3

2 2 4 4 5

1 1 1 2 4

2 3 3 4 5

1 1 1 2 3

2 3 4 4 5

We only describe the map from nets to Young tableaux, the interested reader
may fill in the details necessary to show that it is a bijection. Given a net satisfy-
ing (11.5), we successively place integers into a left-justified two-rowed array while
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traversing RP1. This starts from the first (in the canonical ordering on RP1) point
in A1 and begins with an empty array. When a critical point s interlacing points of
Ai is encountered, there will be an interior edge of the net with endpoint s. Place
the integer i in the second row if the other endpoint of that edge has already been
encountered, and in the first row if it has not been encountered. For example, the
tableaux in (11.7) correspond, in order, to the nets in Figure (11.2). (There, the
order on RP1 is counterclockwise on the circles.)

This bijection shows that we have constructedKa equivalence classes of rational
functions satisfying (11.3). To complete the proof of Theorem 11.12, we first show
that the Kostka numberKa is the expected number of equivalence classes of rational
functions satisfying (11.3), and then that there is some choice of the sets Ai for
which there are exactly Ka equivalence classes of rational functions. This last step
will also prove Theorem 11.13.

Recall that a polynomial f of degree p+1 corresponds to a linear map on Cp+2

so that the composition with the rational normal curve γ(t) : C → Cp+2 gives
the polynomial f(t). We used this to relate ramification to osculating flags in
Section 10.3. A two-dimensional space 〈f, g〉 of polynomials gives a map

C
γ(t)−−−−→ Cp+2 (f,g)−−−−→ C2 .

The kernel H of the map Cp+2 (f,g)−−−−→ C2 corresponds to 〈f, g〉 under Grassmann
duality.

Suppose that the rational function ρ = f/g is constant on a set A. Then the
line (f(a), g(a)) ⊂ C2 is constant for a ∈ A. Thus in Cp+2 we have

〈H, γ(a)〉 = 〈H, γ(b)〉 ( Cp+2 ,

for any a, b ∈ A. In particular, H has exceptional position with respect to the
|A|-plane S(A) := 〈γ(a) | a ∈ A〉 in that the two subspaces do not span Cp+2.

Thus, the equivalence classes of rational functions ρ of degree p + 1 that sat-
isfy (11.6) correspond to the p-planes H in Cp+2 such that

(11.8) span(H,S(Ai)) 6= Cp+2 for i = 1, . . . , n .

Those H which satisfy (11.8) are an intersection of Schubert varieties. Let α(a) :=

(2, . . . , a+1, a+3, . . . , p+2) ∈
(
[p+2]

p

)
. Then Xα(a)F• consists of the H ∈ Gr(p, p+2)

such that
span(H,Fa+1) 6= Cp+2 .

We will also writeXα(a)Fa+1 for this Schubert variety, which has dimension |α(a)| =
2p − a. Thus the solutions to the interpolation problem (11.6) correspond to the
intersection of Schubert varieties

Xα(a1)S(A1) ∩ Xα(a2)S(A2) ∩ · · · ∩ Xα(an)S(An) ,

which is expected to be zero-dimensional. These are special Schubert varieties, so
the expected number of points in this intersection may be computed using the Pieri
formula, and it is the Kostka number Ka [54, p.25].

All that remains to show is that there is some choice of the sets Ai for which
there are finitely many equivalence classes of rational functions satisfying the in-
terpolation condition (11.6). We show that indirectly, by passing to the limit as
each set Ai collapses to a single point, si. If we consider the rational functions for
a given net in this limit, then the limiting rational function still has degree p+1, by
Corollary 11.8 as no interior edges were collapsed in the limit, by Condition (11.5).
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The limiting rational function has a critical point at each si of multiplicity ai, and
is necessarily real.

There are still Ka nets with critical points of multiplicity ai at points si—the
same bijection works. For example, here are the nets of rational functions of degree
five with indicated critical points having multiplicities (3, 2, 2, 2, 1).

Moreover, the corresponding intersection of Schubert varieties is expected to have
Ka points. For the same reason as in Remark (10.4), the Plücker formula [115]
for rational curves implies that the intersection of Schubert varieties is zero-dimen-
sional. More elementarily, if there were a positive-dimensional component in the
intersection, there would be rational functions of degree p+1 whose total ramifica-
tion exceeded 2p. This implies that we have constructed the expected number of
real rational functions with the desired critical points. This completes the proofs
of Theorems 11.12 and 11.13.





CHAPTER 12

Proof of the Shapiro Conjecture for

Grassmannians

The Shapiro Conjecture for Grassmannians was proven by Mukhin, Tarasov,
and Varchenko [104]. Like the proofs when m = 2 by Eremenko and Gabrielov [46,
42] (see in Chapter 11) the proof in the general case did not use much algebraic
geometry. Instead it used results from mathematical physics, specifically the theory
of integrable systems, with some representation theory. This chapter contains a
sketch of some of the main ideas in their proof, but it by no means complete, and
we recommend that the serious reader go to the original sources. The coup-de-
grâce of the proof, the fundamental fact forcing reality, is that the eigenvalues and
eigenvectors of a symmetric matrix are real. The genius and depth of this proof
lies in its reducing the Shapiro Conjecture to this elementary fact of linear algebra.
An account of the Shapiro Conjecture and its proof appeared in the Bulletin of the
AMS [146]. What follows is an expanded version of Sections 2, 3, and 4 of that
article.

By Theorem 10.6, the general case of the Shapiro Conjecture follows from
the special case when all the Schubert conditions are equal to , and this case
is equivalent to the Wronski formulation of Theorem 1.9. A further reduction is
possible: as the Wronski map Wr: Gr(m,m+p) → Pmp is a finite map in that it
has finite fibers, a standard limiting argument (given, for example, in Section 1.3
of [104] or Remark 3.4 of [144]) shows that it suffices to prove Theorem 1.9 when
the Wronskian has distinct real roots that are sufficiently general. Since #m,p is
the upper bound for the number of spaces of polynomials with a given Wronskian,
it suffices to construct this number of distinct spaces of real polynomials with a
given Wronskian, when the Wronskian has distinct real roots that are sufficiently
general. In fact, this is exactly what Mukhin, Tarasov, and Varchenko do [104].

Theorem 1.9′. If s1, . . . , smp are generic real numbers, there are #m,p real
spaces of polynomials in Gr(m,Cm+p−1[t]) whose Wronskian has roots s1, . . . , smp.

The proof first constructs #m,p distinct spaces of polynomials with a given
Wronskian having generic complex roots, which we describe in Section 12.1. This
uses a Fuchsian differential equation given by the critical points of a remarkable
symmetric function, called the master function. The next step uses the Bethe
Ansatz in a certain representation V of slmC: each critical point of the master
function gives a Bethe eigenvector of the Gaudin Hamiltonians which turns out to
be a highest weight vector for an irreducible submodule of V . This is described in
Section 12.2, where the eigenvalues of the Gaudin Hamiltonians on a Bethe vector
are shown to be the coefficients of the Fuchsian differential equation giving the
corresponding spaces of polynomials. This is the germ of the new, deep connection
between representation theory and Schubert Calculus that led to the proof of the

147
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Critical points of the master function
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Figure 12.1. Schematic of proof of the Shapiro Conjecture for Grassmannians.

full statement of Theorem 9.13 (reality and transversality). Finally, the Gaudin
Hamiltonians are real symmetric operators when the Wronskian has only real roots,
so their eigenvalues are real, and thus the Fuchsian differential equation has real
coefficients and the corresponding space of polynomials is also real. Figure 12.1
presents a schematic of this extraordinary proof, where Φ is a generic Wronski
polynomial with all roots real.

12.1. Spaces of polynomials with given Wronskian

The construction of #m,p spaces of polynomials with a given Wronskian begins
with the critical points of a symmetric rational master function that arose in the
study of hypergeometric solutions to the Knizhnik-Zamolodchikov equations [125]
and the Bethe Ansatz for the Gaudin model.

The master function depends upon parameters s := (s1, . . . , smp), which are
the roots of our Wronskian Φ, and an additional

(
m
2

)
· p variables

x := (x
(1)
1 , . . . , x(1)

p , x
(2)
1 , . . . , x

(2)
2p , . . . , x

(m−1)
1 , . . . , x

(m−1)
(m−1)p) .

Each set of variables x(i) := (x
(i)
1 , . . . , x

(i)
ip ) will turn out to be the roots of certain

intermediate Wronskians.
Define the master function Ξ(x; s) by the (rather formidable) formula

(12.1) Ξ(x; s) :=

m−1∏

i=1

∏

1≤j<k≤ip

(x
(i)
j − x

(i)
k )2 ·

∏

1≤j<k<mp

(sj − sk)
2

m−2∏

i=1

ip∏

j=1

(i+1)p∏

k=1

(x
(i)
j − x

(i+1)
k ) ·

(m−1)p∏

j=1

mp∏

k=1

(x
(m−1)
j − sk)

.

This is separately symmetric in each set of variables x(i) and in the parameters

s. The Cartan matrix for slm appears in the exponents of the factors (x
(i)
∗ − x

(j)
∗ )

in (12.1). This hints at the relation of these master functions to Lie theory, which
we do not discuss. It is a master function in the sense of Chapters 6 and 9 for a
highly structured arrangement of hyperplanes.
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Example 12.1. Consider this in the first nontrivial case of m = p = 2.
Then there is one set of two variables, x(1) = (x, y), and four parameters s =
(s1, s2, s3, s4), and the master function is

Ξ2,2(x, y; s) :=
(x− y)2

(x−s1)(y−s1) · · · (x−s4)(y−s4)
·

∏

1≤i<j≤4

(sj − sk)
2 .

Critical points of the master function are solutions to the system of equations

(12.2) ∂
x
(i)
j

log
(
Ξ(x; s)

)
=

1

Ξ

∂

∂x
(i)
j

Ξ(x; s) = 0 ,

for i = 1, . . . ,m−1 and j = 1, . . . , ip. When the parameters s are generic, these
Bethe Ansatz equations have finitely many solutions. This follows from Theorem 9.8
and the remarks following its proof. All solutions to the critical point equations
are real and simple, and their number is the number of bounded chambers of the
hyperplane complement when the exponents are positive. For nonpositive expo-
nents but general parameters, there will still be the same number of solutions to
the critical point equations, but they will not necessarily be real.

The master function is invariant under the group

S := Sp × S2p × · · · × S(m−1)p ,

where SN is the group of permutations of {1, . . . , N}, and the factor Sip permutes

the variables in x(i). Thus S acts on the critical points. The invariants of this
action are polynomials whose roots are the coordinates of the critical points.

Example 12.2. For the master function Ξ2,2, the Bethe Ansatz equations are

∂x log Ξ2,2(x, y; s) =
2

x− y
−

4∑

i=1

1

x− si
,

∂y log Ξ2,2(x, y; s) = − 2

x− y
−

4∑

i=1

1

y − si
.

Clearing denominators and writing W (z) =
∏4

i=1(z − si), this becomes

2W (x)− (x− y)W ′(x) = −2W (y)− (x− y)W ′(y) = 0 .

If we add these two equations, they become

(12.3) 2(W (x)−W (y))− (x− y)(W ′(x) +W ′(y))

!
= (x− y)3(2(x+ y)− (s1 + s2 + s3 + s4)) = 0 .

Subtracting the two Bethe Ansatz equations gives

2(W (x) +W (y))− (x− y)(W ′(x)−W ′(y)) .

Writing in terms of a := x+ y and b := xy, this becomes

(12.4) 12b2 − (12a2 − 6e1a+ 4e2)b + 2a4 − e1a
3 − 2e3a− 4e4 = 0 ,

where e1, e2, e3, and e4 are the elementary symmetric polynomials in s1, . . . , s4,
which are the coefficients of the polynomial W . Assuming x 6= y, we solve (12.3)
to get a = x + y = e1/2, which we substitute into (12.4) to obtain the quadratic
polynomial in b,

(12.5) 12b2 − 4e2b + e1e3 − 4e4 = 0 .
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Given a critical point x, define monic polynomials gx := (g1, . . . , gm−1) where
the components x(i) of x are the roots of gi,

(12.6) gi :=

ip∏

j=1

(t− x
(i)
j ) for i = 1, . . . ,m−1 .

Also write gm for the Wronskian Φ, the monic polynomial with roots s. The
master function is greatly simplified by this notation. The discriminant Discr(f)
of a polynomial f is the square of the product of differences of its roots and the
resultant Res(f, h) is the product of all differences (root of f − root of h) [31].
Then the formula for the master function (12.1) becomes

(12.7) Ξ(x; s) =
m∏

i=1

Discr(gi)

/
m−1∏

i=1

Res(gi, gi+1) .

The connection between the critical points of Ξ(x; s) and spaces of polynomials
with Wronskian Φ is through a Fuchsian differential equation (every singular point is
regular). Given (an orbit of) a critical point x represented by the list of polynomials
gx, define the fundamental differential operator Dx of the critical point x by

(12.8)
( d

dt
− dlog

( Φ

gm−1

))
· · ·

( d

dt
− dlog

(g2
g1

))( d

dt
− dlog(g1)

)
,

where dlog(f) := d
dt ln f . The kernel Vx of Dx is the fundamental space of the

critical point x.

Example 12.3. Since
( d

dt
− dlog(f)

)
f =

( d

dt
− f ′

f

)
f = f ′ − f ′

f
f = 0 ,

we see that g1 is a solution of Dx. Consider Dx and Vx when m = 2. Suppose that
g is a solution to Dx that is linearly independent from g1. Then

0 =
( d

dt
− dlog

( Φ

g1

))( d

dt
− dlog(g1)

)
g =

( d

dt
− dlog

( Φ

g1

))(
g′ − g′1

g1
g
)
.

This implies that
Φ

g1
= g′ − g′1

g1
g =

1

g1

(
g1g

′ − g′1g
)
,

so Φ = Wr(g1, g), and the kernel of Dx is a two-dimensional space of functions with

Wronskian Φ.

What we just saw is always the case. The following result is due to Scherbak
and Varchenko [127] for m = 2 and to Mukhin and Varchenko [107, §5] for all m.

Theorem 12.4. Suppose that Vx is the fundamental space of a critical point x
of the master function Ξ with generic parameters s which are the roots of Φ.

(1) Then Vx ∈ Gr(m,Cm+p−1[t]) has Wronskian Φ.
(2) The critical point x is recovered from Vx in some cases as follows. Suppose

that f1, . . . , fm are monic polynomials in Vx with deg fi = p−1+i, each fi
is square-free, and that the pairs fi and fi+1 are relatively prime. Then,
up to scalar multiples, the polynomials g1, . . . , gm−1 in gx are

f1 , Wr(f1, f2) , Wr(f1, f2, f3) , . . . , Wr(f1, . . . , fm) .
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Remark 12.5. Statement (2) includes a general result about factoring a linear
differential operator into differential operators of degree 1. Linearly independent
C∞ functions f1, . . . , fm span the kernel of the differential operator of degree m,

det




f1 f2 · · · fm 1
f ′
1 f ′

2 · · · f ′
m

d
dt

...
...

. . .
...

...

f
(m)
1 f

(m)
2 · · · f

(m)
m

dm

dtm


 .

If we set gi := Wr(f1, . . . , fi), then (12.8) is a factorization over C(t) of this deter-
minant into differential operators of degree 1. This follows from some interesting
identities among Wronskians shown in the Appendix of [107].

To get an idea of this, suppose that g1, g2, g3 are continuous functions and
f1, f2, f3 are linearly independent functions such that

0 =
( d

dt
− dlog(g1)

)
f1 =

( d

dt
− dlog

(g2
g1

))( d

dt
− dlog(g1)

)
f2

=
( d

dt
− dlog

(g3
g2

))( d

dt
− dlog

(g2
g1

))( d

dt
− dlog(g1)

)
f3

Then, by what we have seen,

g1 = f1 and g2 = Wr(f1, f2) ,

by the first two equations. We substitute these into the third equation and evaluate
the last factor on f3 to get

(12.9) 0 =
( d

dt
− dlog

( g3
Wr(f1, f2)

))( d

dt
− dlog

(Wr(f1, f2)

f1

))
· Wr(f1, f3)

f1
.

Applying the second factor to Wr(f1, f3)/f1 gives

Wr(f1, f3)
′

f1
− Wr(f1, f3)

f2
1

f ′
1 − Wr(f1, f2)

′

Wr(f1, f2)
f ′
1 +

Wr(f1, f2)

f2
1

f ′
1

=
1

f1 Wr(f1, f2)
·
(
Wr(f1, f3)

′ Wr(f1, f2) − Wr(f1, f3)Wr(f1, f2)
′
)

!
=

1

f1 Wr(f1, f2)
· f1 ·Wr(f1, f2, f3) =

Wr(f1, f2, f3)

Wr(f1, f2)
.

And so (12.9) becomes

0 =
( d

dt
− dlog

( g3
Wr(f1, f2)

))Wr(f1, f2, f3)

Wr(f1, f2)
,

which implies that g3 = Wr(f1, f2, f3).

Theorem 12.4 is deeper than this curious fact. When the polynomials g1, . . . , gm
and Φ are square-free, consecutive pairs are relatively prime, and s is generic,
Theorem 12.4 implies that the kernel of an operator of the form (12.8) is a space
of polynomials with Wronskian Φ having roots s if and only if the polynomials
g1, . . . , gm come from the critical points of the master function (12.1) corresponding
to Φ.

This gives an injection from S-orbits of critical points of the master function Ξ
with parameters s to spaces of polynomials whose Wronskian has roots s. Mukhin
and Varchenko showed that this is a bijection when s is generic.
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Theorem 12.6 (Theorem 6.1 in [108]). For generic complex numbers s, the
master function Ξ has nondegenerate critical points that form #m,p distinct orbits.

The structure of their proof is remarkably similar to the structure of the proof
of Theorem 10.1 using Schubert induction; they allow the parameters to collide
one-by-one, and study how the orbits of critical points behave. Ultimately, they
obtain the same recursion as in (10.15), which mimics the Pieri formula for the
branching rule for tensor products of representations of slm with its last fundamen-
tal representation Vωm−1

. This same structure is also found in the main argument
in [45]. In fact, this is the same recursion in α that Schubert established for inter-
section numbers d(α), and then solved to obtain the formula (1.5) in [129]. Thus
Theorem 12.6 uses a coincidence of numbers: #m,p counts solutions to Schubert
problems, orbits of critical points of master functions, and the multiplicity of the
trivial module in a certain tensor product of representations of slm.

12.2. The Gaudin model

The (periodic) Gaudin model is a quantum integrable system consisting of a
family of commuting operators called the Gaudin Hamiltonians that act on rep-
resentations V of slmC, commuting with slmC. The Bethe Ansatz is a general
(conjectural) method to find pure states, called Bethe vectors, of quantum inte-
grable systems. For the Gaudin model, the Bethe vectors turn out to be highest
weight vectors generating irreducible submodules of V , and so this also gives a
method for decomposing V into irreducible submodules. We explain the essentials
of the (periodic) Gaudin model and discuss the Bethe Ansatz in the next section.

The Lie algebra slmC (or simply slm) is the space of m by m matrices with
trace zero. It has a decomposition

slm = n− ⊕ h⊕ n+ ,

where n+ (n−) are the strictly upper (lower) triangular matrices, and h consists of
the diagonal matrices with trace zero. The universal enveloping algebra Uslm of slm
is the associative algebra generated by slm subject to the relations uv− vu = [u, v]
for u, v ∈ slm, where [u, v] is the Lie bracket in slm,

Uslm :=
⊕

n≥0

(slm)⊗n
/〈

u⊗ v − v ⊗ u− [u, v] | u, v ∈ slm
〉
.

We consider only finite-dimensional representations (modules) of slm (equiva-
lently, of Uslm). For a more complete treatment, see [55]. Any module V of slm
decomposes into joint eigenspaces of h, called weight spaces,

V =
⊕

µ∈h∗

V [µ] ,

where, for v ∈ V [µ] and h ∈ h, we have h.v = µ(h)v. The possible weights µ
of modules lie in the integral weight lattice. This has a distinguished basis of
fundamental weights ω1, . . . , ωm−1 that generate the cone of dominant weights.

The roots of slm are the weights of n− ⊕ n+. For i 6= j, let Ei,j ∈ slm be
the elementary matrix with all entries 0 except for a 1 in position (i, j) (row i and
column j). If h = diag(h1, . . . , hn) ∈ h, then

hEi,j −Ei,jh = (hi − hj)Ei,j .
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Thus Ei,j spans a weight space with weight αi,j , where αi,j(h) = hi − hj , which is
Li(h) − Lj(h) where L1, . . . , Lm is the standard basis of the dual of the diagonal
matrices [55, Ch. 15]. On slm, 0 = L1 + · · ·+Lm. Thus {αi,j | 1 ≤ i 6= j ≤ m} are
the roots of slm. The simple (positive) roots are α1,2, α2,3, . . . , αm−1,m, which we
write as α1, . . . , αm−1. The fundamental weights are ωi = L1 + · · ·+ Li.

An irreducible module V has a unique one-dimensional weight space that is
annihilated by the nilpotent subalgebra n+ of slm. The associated weight µ is
dominant, and it is called the highest weight of V . Any nonzero vector with this
weight is a highest weight vector of V , and it generates V as a slm or Uslm-
module. Furthermore, any two irreducible modules with the same highest weight
are isomorphic. Write Vµ for the highest weight module with highest weight µ.
Lastly, there is one highest weight module for each dominant weight.

More generally, if V is any module for slm and µ is a weight, then the singular
vectors in V of weight µ, written sing(V [µ]), are the vectors in V [µ] annihilated
by n+. If v ∈ sing(V [µ]) is nonzero, then the submodule Uslm.v it generates is
isomorphic to the highest weight module Vµ. Thus V decomposes as a direct sum
of submodules generated by the singular vectors,

(12.10) V =
⊕

µ

Uslm. sing(V [µ]) ,

so that the multiplicity of the highest weight module Vµ in V is simply the dimension
of its space of singular vectors of weight µ.

When V is a tensor product of highest weight modules, the Littlewood-Richard-
son rule [54] gives formulas for the dimensions of the spaces of singular vectors.
Since this is the same rule for the number of points in an intersection (9.6) of
Schubert varieties from a Schubert problem, these geometric intersection numbers
are equal to the dimensions of spaces of singular vectors. In particular, if Vω1

≃ Cm

is the defining representation of slm and Vωm−1
=

∧m−1
Vω1

= V ∗
ω1

(these are the
first and last fundamental representations of slm), then

(12.11) dim(sing(V ⊗mp
ωm−1

[0])) = #m,p ,

as #m,p is the multiplicity of the trivial module in V ⊗mp
ωm−1

, as we remarked following
Theorem 12.6. This equality of numbers is purely formal, in that the same formula
governs both numbers. A direct connection remains to be found.

The Gaudin Hamiltonians act on V ⊗n
ωm−1

and depend upon n distinct complex
numbers s1, . . . , sn and a complex variable t. Let glm be the Lie algebra of m by m
complex matrices. For each i, j = 1, . . . ,m, let Ei,j ∈ glm be the matrix whose only
nonzero entry is a 1 in row i and column j. These include the elementary matrices
Ei,j ∈ slm, but also the diagonal matrices Eii, which do not lie in slm. Consider
the differential operator Xi,j(t) acting on V ⊗n

ωm−1
-valued functions of t,

Xi,j(t) := δi,j
d

dt
−

n∑

k=1

E
(k)
j,i

t− sk
,

where E
(k)
j,i acts on tensors in V ⊗n

ωm−1
by Ej,i in the kth factor and by the identity

in other factors. This reversal of the order of indices in Ej,i is intentional. Define
a differential operator acting on V ⊗n

ωm−1
-valued functions of t,

M :=
∑

sign(w) X1,w(1)(t) X2,w(2)(t) · · · Xm,w(m)(t) ,
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the sum over all permutations m of {1, . . . ,m} where sign(w) = ± is the sign of w.
Write M in standard form

M =
dm

dtm
+ M1(t)

dm−1

dtm−1
+ · · · +

d

dt
Mm−1(t) + Mm(t) .

These coefficients M1(t), . . . ,Mm(t) are called the (higher) Gaudin Hamiltonians.
They are linear operators that depend rationally on t and act on V ⊗n

ωm−1
.

Example 12.7. When m = p = 2, we have

M = det




d

dt
−

4∑

k=1

E
(k)
11

t− sk
−

4∑

k=1

E
(k)
21

t− sk

−
4∑

k=1

E
(k)
12

t− sk

d

dt
−

4∑

k=1

E
(k)
22

t− sk




=
d2

dt2
−

( 4∑

k=1

E
(k)
11 + E

(k)
22

t− sk

) d

dt
(12.12)

+
∑

k<j

1

t−sk

1

t−sj

(
E

(k)
11 E

(j)
22 + E

(k)
22 E

(j)
11 − E

(k)
21 E

(j)
12 −E

(k)
12 E

(j)
21

)
.(12.13)

As E
(k)
11 +E

(k)
22 is the identity on the kth factor, M1(t) is a rational multiple of the

identity acting on V ⊗4
ω1

, while M2(t) is more interesting.

We collect together some properties of the Gaudin Hamiltonians.

Theorem 12.8. Suppose that s1, . . . , sn are distinct complex numbers. Then

1. The Gaudin Hamiltonians commute, that is, [Mi(u),Mj(v)] = 0 for all
i, j = 1, . . . ,m and u, v ∈ C.

2. The Gaudin Hamiltonians commute with the action of slm on V ⊗n
ωm−1

.

Proofs of Theorem 12.8 are given in [89], as well as Propositions 7.2 and 8.3
in [103], and are based on results of Talalaev [157]. A consequence of the second
assertion is that the Gaudin Hamiltonians preserve the weight space decomposition
of the singular vectors of V ⊗n

ωm−1
. Since they commute, the singular vectors of V ⊗n

ωm−1

have a basis of common eigenvectors of the Gaudin Hamiltonians.

12.3. The Bethe Ansatz for the Gaudin model

The Bethe Ansatz is a (conjectural) method to obtain a complete set of eigen-
vectors for the integrable system on V := V ⊗n

ωm−1
given by the Gaudin Hamiltonians.

Since these Gaudin Hamiltonians commute with slm, the Bethe Ansatz also gives
an explicit basis for sing(V [µ]), thus explicitly giving the decomposition (12.10).

This begins with a rational function taking values in a weight space V ⊗n
ωm−1

[µ],

v : Cl × Cn −− → V ⊗n
ωm−1

[µ] .

Schechtman and Varchenko introduced [125] this universal weight function to solve
the Knizhnik-Zamolodchikov equations with values in V ⊗n

ωm−1
[µ]. When (x, s) is

a critical point of a master function, the vector v(x, s) is both singular and an
eigenvector of the Gaudin Hamiltonians. (This master function is a generalization
of (12.1).) The Bethe Ansatz Conjecture for the periodic Gaudin model asserts that
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the vectors v(x, s) for critical points (x, s) form a basis for the space of singular
vectors.

We fix some notation to describe the universal weight function. In the stan-
dard basis e1, . . . , em of the defining representation Vω1

of slm, the vector ei is
(0, . . . , 0, 1, 0 . . . , 0) with the 1 in position i. We have Ei,j .ek = δj,kei and em is the
highest weight vector. The last fundamental representation Vωm−1

has a basis

v1 := e2∧e3∧· · ·∧em , v2 := e1∧e3∧· · ·∧em , . . . , vm := e1∧e2∧· · ·∧em−1 .

Then Ei,j .vk = (−1)j−i−1δk,ivj and the highest weight vector is vm ∈ Vωm−1
[ωm−1].

In particular Ei+1,i.vk is zero unless k = i+1, and then it equals vi.

Note that v⊗n
m generates V ⊗n

ωm−1
as a Uslm

⊗n-module. In particular, any vector

in V ⊗n
ωm−1

is a linear combination of vectors that are obtained from v⊗n
m by applying

a sequence of operators E
(k)
i+1,i, for 1 ≤ k ≤ n and 1 ≤ i ≤ m−1. The universal

weight function is a linear combination of such vectors of weight µ.
When n = mp, l = p

(
m
2

)
, and µ = 0, the universal weight function is a map

v : Cp(m2 ) × Cmp −→ V ⊗mp
ωm−1

[0] .

To describe it, note that a vector Ea+1,aEb+1,b · · ·Ec+1,c.vm is nonzero only if

(a, b, . . . , c) = (a, a+1, . . . ,m−2,m−1) ,

and then it is the vector va. Thus only some sequences of operators E
(k)
i+1,i applied

to v⊗mp
m give a nonzero vector. These sequences are completely determined once

we know the weight of the result. The operator E
(k)
i+1,i lowers the weight of a weight

vector by the root αi. Since

(12.14) mωm−1 = α1 + 2α2 + · · ·+ (m−1)αm−1 ,

there are ip occurrences of E
(k)
i+1,i, which is the number of variables in x(i). To

see (12.14), recall that αi = Li − Li+1, so that the right hand side is

L1 − L2 + 2L2 − 2L3 + · · ·+ (m−1)Lm−1 − (m−1)Lm

= L1 + L2 + · · ·+ Lm−1 − (m−1)Lm .

Add 0 = (m−1)(L1 + · · ·+ Lm) to this to get

m(L1 + L2 + · · ·+ Lm−1) = mωm−1 ,

as ωm−1 = L1 + · · ·+ Lm−1, which is the weight of vm = e1 ∧ · · · ∧ em−1.
Let B be the set of all sequences (b1, b2, . . . , bmp) of integers 1 ≤ bk ≤ m where

each integer 1 ≤ i ≤ m occurs exactly p times. Given a sequence B in B, define
vB := vb1 ⊗ vb2 ⊗ · · · ⊗ vbmp

=

mp⊗

k=1

(
E

(k)
bk+1,bk

· · ·E(k)
m−1,m−2 · E

(k)
m,m−1

)
.vm ,

where the operator E
(k)
bk+1,bk

· · ·E(k)
m−1,m−2 ·E

(k)
m,m−1 is the identity if bk = m. Then

vB is a vector of weight 0, by (12.14). The universal weight function is a linear
combination of these vectors vB ,

(12.15) v(x; s) =
∑

B∈B
wB(x; s) · vB ,
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where the function wB(x, s) is separately symmetric in each set of variables x(i).
To describe wB(x; s), suppose that

z = (z(1), z(2), . . . , z(mp))

is a partition of the variables x into mp sets of variables where the kth set z(k)

of variables has exactly one variable from each set x(i) with bk ≤ i (and is empty
when bk = m). That is, if bk ≤ m−1, then

(12.16) z(k) = (x(bk)
cbk

, x(bk+1)
cbk+1

, . . . , x(m−1)
cm−1

) ,

for some indices cbk , . . . , cm−1. If bk = m, set wk(z) := 1, and otherwise

wk(z; s) :=
1

x
(bk)
cbk

− x
(bk+1)
cbk+1

· · · 1

x
(m−2)
cm−2 − x

(m−1)
cm−1

· 1

x
(m−1)
cm−1 − sk

,

in the notation (12.16). Then we set

w(z; s) :=

mp∏

k=1

wk(z; s) .

Finally, wB(x; s) is the sum of the rational functions w(z; s) over all such partitions
z of the variables x. (Equivalently, it is the symmetrization of any single w(z; s).)

While v(x, s) (12.15) is a rational function of x and hence not globally defined,
if the coordinates of s are distinct and x is a critical point of the master function
Ξ (12.1), then the vector v(x, s) ∈ V ⊗mp

ωm−1
[0] is well-defined, nonzero and it is in fact

a singular vector (Lemma 2.1 of [108]). Such a vector v(x, s) when x is a critical
point of the master function is called a Bethe vector. Mukhin and Varchenko also
prove the following, which is the second part of Theorem 6.1 in [108].

Theorem 12.9. When s ∈ Cmp is general, the Bethe vectors form a basis of
the space sing

(
V ⊗mp
ωm−1

[0]
)
.

These Bethe vectors are the joint eigenvectors of the Gaudin Hamiltonians.

Theorem 12.10 (Theorem 9.2 in [103]). For any critical point x of the master
function Ξ (12.1), the Bethe vector v(x, s) is a joint eigenvector of the Gaudin
Hamiltonians M1(t), M2(t), . . . ,Mm(t). Its eigenvalues µ1(t), . . . , µm(t) are given
by the formula

(12.17)
dm

dtm
+ µ1(t)

dm−1

dtm−1
+ · · · + µm−1(t)

d

dt
+ µm(t) =

( d

dt
+dlog(g1)

)( d

dt
+dlog

(g2
g1

))
· · ·

( d

dt
+dlog

(gm−1

gm−2

))( d

dt
+dlog

( Φ

gm−1

))
,

where g1(t), . . . , gm−1(t) are the polynomials (12.6) associated to the critical point
x and Φ(t) is the polynomial with roots s.

Observe that (12.17) is similar to the formula (12.8) for the differential operator
Dx of the critical point x. This similarity is made more precise if we replace
the Gaudin Hamiltonians by a different set of operators. Consider the differential
operator formally conjugate to (−1)mM ,

K :=
dm

dtm
− dm−1

dtm−1
M1(t) + · · · + (−1)m−1 d

dt
Mm−1(t) + (−1)mMm(t)

=
dm

dtm
+ K1(t)

dm−1

dtm−1
+ · · · + Km−1(t)

d

dt
+ Km(t) .
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These coefficients Ki(t) are operators on V ⊗mp
ωm−1

that depend rationally on t and are
also called the Gaudin Hamiltonians. Here are the first three,

K1(t) = −M1(t) , K2(t) = M2(t) − (m−1)M ′
1(t) ,

K3(t) = −M3(t) + (m−2)M ′
2(t) −

(
m−1

2

)
M ′′

1 (t) ,

and in general Ki(t) is a differential polynomial in M1(t), . . . ,Mi(t).
Like the Mi(t), these operators commute with each other and with slm, and

the Bethe vector v(x, s) is a joint eigenvector of these new Gaudin Hamiltonians
Ki(t). The corresponding eigenvalues λ1(t), . . . , λm(t) are given by the formula

(12.18)
dm

dtm
+ λ1(t)

dm−1

dtm−1
+ · · · + λm−1(t)

d

dt
+ λm(t) =

( d

dt
− dlog

( Φ

gm−1

))( d

dt
− dlog

(gm−1

gm−2

))
· · ·

( d

dt
− dlog

(g2
g1

))( d

dt
− dlog(g1)

)
,

which is (!) the fundamental differential operator Dx of the critical point x.

Corollary 12.11. Suppose that s ∈ Cmp is generic.

1. The Bethe vectors form an eigenbasis of sing(V ⊗mp
ωm−1

[0]) for the Gaudin

Hamiltonians K1(t), . . . ,Km(t).
2. The Gaudin Hamiltonians K1(t), . . . ,Km(t) have simple spectrum in that

their eigenvalues separate the basis of eigenvectors.

Statement (1) follows from Theorems 12.9 and 12.10. For Statement (2),
suppose that two Bethe vectors v(x, s) and v(x′, s) have the same eigenvalues.
By (12.18), the corresponding fundamental differential operators would be equal,
Dx = Dx

′ . But this implies that the fundamental spaces coincide, Vx = Vx
′ . By

Theorem 12.4 the fundamental space determines the orbit of critical points, so the
critical points x and x′ lie in the same orbit, which implies that v(x, s) = v(x′, s).

12.4. Shapovalov form and the proof of the Shapiro Conjecture

The last step in the proof of Theorem 1.9 is to show that if s ∈ Rmp is generic
and x is a critical point of the master function (12.1), then the fundamental space
Vx of the critical point x has a basis of real polynomials. The ultimate reason for
this reality is that the eigenvectors and eigenvalues of a symmetric matrix are real.

We begin with the Shapovalov form. The map τ : Ei,j 7→ Ej,i induces an
antiautomorphism on slm. Given a highest weight module Vµ and a highest weight
vector v ∈ Vµ[µ], the Shapovalov form 〈·, ·〉 on Vµ is defined recursively by

〈v,v〉 = 1 and 〈g.v,w〉 = 〈v, τ(g).w〉 ,

for g ∈ slm and v,w ∈ V . In general, this Shapovalov form is nondegenerate on Vµ

and positive definite on the real part of Vµ.
The Shapovalov form on Vωm−1

is 〈vi,vj〉 = δi,j , in the basis v1, . . . ,vm of
Section 12.3. This is the standard positive definite Euclidean inner product on the
real part of Vωm−1

. This induces the symmetric (tensor) Shapovalov form on the
tensor product V ⊗mp

ωm−1
, which is positive definite on the real part of V ⊗mp

ωm−1
.
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Theorem 12.12 (Proposition 9.1 in [103]). The Gaudin Hamiltonians are sym-
metric with respect to the tensor Shapovalov form,

〈Ki(t).v, w〉 = 〈v, Ki(t).w〉 ,
for all i = 1, . . . ,m, t ∈ C, and v,w ∈ V ⊗mp

ωm−1
.

Example 12.13. We examine Theorem 12.12 when m = p = 2. The defining
representation V of sl2 is spanned by vectors e1 and e2 with weights −1 and 1,
respectively. Write eabcd for the basis element ea ⊗ eb ⊗ ec ⊗ ed ∈ V ⊗4. Then the
generator E12 of n+ sends eabcd to the sum

(12.19) δa,1e2bcd + δb,1ea2cd + δc,1eab2d + δd,1eabc2 ,

where δij is the Kronecker δ-function.
We determine sing(V ⊗4[0]). There are six vectors spanning V ⊗4[0],

e1122 , e1212 , e1221 , e2112 , e2121 , e2211 ,

which are orthonormal with respect to the tensor Shapovalov form, 〈·, ·〉. Us-
ing (12.19), we see that sing(V ⊗4[0]) is two-dimensional and is spanned by

v := e1122 + e2211 − e1221 − e2112 and w := e1221 + e2112 − e1212 − e2121 .

We have 〈v,v〉 = 〈w,w〉 = 4 and 〈v,w〉 = −2.
The Gaudin Hamiltonians are K1(t) = −M1(t) and K2(t) = −M2(t) −M ′

1(t),
where M1(t) is the coefficient of d

dt in (12.12) and M2(t) is given by (12.13). Thus
K2(t) is

∑

k<j

E
(k)
21 E

(j)
12 + E

(k)
12 E

(j)
21 −E

(k)
11 E

(j)
22 − E

(k)
22 E

(j)
11

(t− sk)(t− sj)
−

4∑

k=1

1

(t− sk)2
.

Since K1(t) is a scalar multiple of the identity, it suffices consider K2(t). We give
a sketch as the full calculation is tedious. First, note that when k = 1 and j = 2,

the constant operator E
(k)
21 E

(j)
12 +E

(k)
12 E

(j)
21 −E

(k)
11 E

(j)
22 −E

(k)
22 E

(j)
11 in the sum above

annihilates e1122 and e2211, but its action on the other basis elements of V ⊗4[0] is

e1212 7−→ e2112 − e1212 e2121 7−→ e1221 − e2121

e1221 7−→ e2121 − e1221 e2112 7−→ e1212 − e2112

Thus we see that it sends v 7→ w and w 7→ −2w. Similar calculations for the other
five pairs of indices k < j shows that K1(t) and K2(t) act on sing(V ⊗4[0]).

Set τk,j := (t− sk)
−1(t− sj)

−1 and σ := τ11 + τ22 + τ33 + τ44, then the matrix

(12.20)

(
−2τ13 − 2τ24 − τ14 − τ23 − σ τ13 + τ24 − τ14 − τ23

τ12 + τ34 − τ14 − τ23 −2τ12 − 2τ34 − τ14 − τ23 − σ

)

gives the action of K2(t) on the basis {v,w} of sing(V ⊗4[0]). Then 〈K2(t).v,w〉 is

〈(−2τ13 − 2τ24 − τ14 − τ23 − σ)v + (τ12 + τ34 − τ14 − τ23)w, w〉
= 4τ12 + 4τ34 + 4τ13 + 4τ24 − 2τ14 − 2τ23 − 2σ

= 〈v, (τ13 + τ24 − τ14 − τ23)v + (−2τ12 − 2τ34 − τ14 − τ23 − σ)w〉
= 〈v,K2(t).w〉 .

Thus K2(t) is a symmetric operator on sing(V ⊗4[0]).

We give the most important consequence of this result for our story.
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Corollary 12.14. When the parameters s and variable t are real, the Gaudin
Hamiltonians K1(t), . . . ,Km(t) are real linear operators with real spectrum.

Proof. The Gaudin Hamiltonians M1(t), . . . ,Mm(t) are real linear operators
which act on the real part of V ⊗mp

ωm−1
, by their definition. The same is then also

true of the Gaudin Hamiltonians K1(t), . . . ,Km(t). But these are symmetric with

respect to the Shapovalov form and thus have real spectrum.

Proof of Theorem 1.9. Suppose that s ∈ Rmp is general. The Gaudin
Hamiltonians for t ∈ R acting on sing(V mp

ωm−1
[0]) are symmetric operators on a

Euclidean space, and so have real eigenvalues, By Corollary 12.14. The Bethe vec-
tors v(x, s) for critical points x of the master function with parameters s form an
eigenbasis for the Gaudin Hamiltonians. As s is general, the eigenvalues are distinct
by Corollary 12.11 (2), and so the Bethe vectors must be real.

Given a critical point x, the eigenvalues λ1(t), . . . , λm(t) of the Bethe vectors
are then real rational functions, and so the fundamental differential operator Dx

has real coefficients. But then the fundamental space Vx of polynomials is real.
Thus each of the #m,p spaces of polynomials Vx whose Wronskian has roots s that

were constructed in Section 12.1 is in fact real. This proves Theorem 1.9.

We conclude this chapter with the following (obvious) remark. While this work
of Mukhin, Tarasov, and Varchenko [104] establishes the Shapiro Conjecture for
Grassmannians, it does not necessarily illuminate it, and it remains an open prob-
lem to give a more elementary proof, as was done by Eremenko and Gabrielov [42]
and described in Sections 11.1 and 11.2.





CHAPTER 13

Beyond the Shapiro Conjecture for the

Grassmannian

The result of Mukhin, Tarasov, and Varchenko [104] settles the reality por-
tion of the original conjecture by Boris Shapiro and Michael Shapiro in the case
of Grassmannians. The original conjecture however was broader—it included all
(type A) flag manifolds. Early study [143] suggested that for Grassmannians, in-
tersections of Schubert varieties for real osculating flags were transverse, and that
while the conjecture failed for flag varieties beyond the Grassmannian, it could be
repaired and generalized [123]. Currently, much more is known and there are re-
finements and extensions of the original conjecture. We conclude this book with
a survey of the landscape that is emerging beyond this work of Mukhin, Tarasov,
and Varchenko. This chapter will tell this story for Grassmannians and the next
will treat other flag manifolds.

13.1. Transversality and the Discriminant Conjecture

The second proof of the Shapiro Conjecture by Mukhin, Tarasov, and Varchen-
ko [106] showed that the intersection of Schubert varieties in a Grassmannian given
by real osculating flags was transverse (as well as real)—this extended an earlier
transversality result for Gr(2, p+2) of Eremenko and Gabrielov [46]. Transversality
is mathematically appealing, and it appears to be fundamental to the Shapiro
Conjecture and its generalizations, which is why we start with it.

Chapter 11 presented Eremenko and Gabrielov’s elementary proof [42] of the
Shapiro Conjecture for rational functions. Its main point was that there is no
obstruction to analytically continuing the rational functions that were constructed
in Theorem 10.1 to give rational functions with any given Wronskian having distinct
real zeroes. The key to this was the association of a net to each rational function
with only real critical points.

A consequence of analytic continuation being unobstructed is the statement
that when min(m, p) = 2, the Wronski map

Wr : Gr(p,Cm+p) −→ CPmp

is unramified over the locus of polynomials with distinct real roots. This is in fact
true for all Grassmannians, as Mukhin, Tarasov, and Varchenko showed [106].

Theorem 13.1. The Wronski map is unramified over the locus of polynomials
with distinct real roots, for any m and p.

We give a simple proof of this due to Eremenko and Gabrielov, showing that
the original reality result of Mukhin, Tarasov, and Varchenko [104] implies Theo-
rem 13.1. We next discuss what we conjecture is behind this transversality, that
the discriminant of these Schubert problems is a sum of squares.

161
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Theorem 13.2 (Eremenko and Gabrielov). Let F : X → Y be a real analytic
map between real complex analytic manifolds of the same dimension whose differ-
ential DF is not identically zero. If U ⊂ YR is an open set with F−1(U) ⊂ XR then
F is unramified over U .

By “real”, we mean defined by real analytic functions. This can be derived
from the following observation which is sometimes called Rellich’s Theorem.

Lemma 13.3. Let f be a germ at 0 of a nonconstant real analytic function of
one complex variable with f(0) = 0. If for every real t in a neighborhood of 0, the
full preimage f−1(t) is real, then f ′(0) 6= 0.

Proof. Suppose that f ′(0) = 0. Since f(0) = 0, f(z) has has a power series
expansion f(z) = czm + · · · with c ∈ R∗ and m ≥ 2. Solving w = f(z) for z as a
Puiseaux series in w, we obtain z = (w/c)1/m + · · · . Thus for all small real w some

preimages are not real, which completes the proof.

Lemma 13.3 also holds for vector-valued functions—simply apply it to one
coordinate of the function that is not constant.

Proof of Theorem 13.2. Because the result is local, we may assume that
X = Y = Cn. Let J be the Jacobian determinant of F . Then J is not identically
equal to zero. Suppose that J(a) = 0 for some a ∈ F−1(U). This means that the
Jacobi matrix DF (a) is singular, so we can choose a vector v ∈ ker(DF (a)). As
DF (a) is a real matrix, we can choose v to be real. Now f(t) := F (a+ vt)− F (a)
is a real analytic function of one variable t with f ′(0) = 0. For all sufficiently small
real t, the full preimage f−1(t) is real because a + vt belongs to U . If f is not
identically equal to zero, then Lemma 13.3 implies a contradiction.

If f is identically equal to zero, we replace a+ vt by a real holomorphic curve
φ from a neighborhood of 0 in C to X with φ(0) = a, φ′(0) = v such that f(t) :=

F (a+ φ(t))− F (a) is not identically equal to zero.

Theorem 13.1 is simply Theorem 13.2 when F is the Wronski map and U is
the set of polynomials with distinct real zeros.

The Shapiro Conjecture more generally concerned intersections of the form

(13.1) Xα1F•(s1) ∩ Xα2F•(s2) ∩ · · · ∩ XαnF•(sn) ,

where α1, α2, . . . , αn form a Schubert problem and s1, s2, . . . , sn ∈ P1. A con-
sequence of the second proof [106] of Mukhin, Tarasov, and Varchenko is the
strengthening of Theorem 13.1.

Transversality Theorem 13.4. If the points s1, s2, . . . , sn are real and dis-
tinct, then the intersection (13.1) is transverse.

This Transversality Theorem may be rephrased in terms of discriminants, which
leads to a conjectural strengthening in terms of real algebra.

Definition 13.5. The discriminant of the Wronski map is the locus in Pmp of
its critical values (points over which it is ramified). It is an algebraic hypersurface

and defined by a single polynomial, also called the discriminant.

The Transversality Theorem asserts that the discriminant does not meet the
set of polynomials with distinct roots.
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We consider a simultaneous reparametrization and generalization of this Wron-
ski discriminant. Suppose that α1, α2, . . . , αn form a Schubert problem and con-
sider the family of all intersections of the form (13.1). Then the discriminant is
the set of points (s1, s2, . . . , sn) ∈ (P1)n for which this intersection is not trans-
verse. Again, this discriminant is a polynomial ∆(s1, s2, . . . , sn) in the parameters
(s1, s2, . . . , sn) ∈ (P1)n, and the Transversality Theorem asserts that ∆ does not
vanish when the parameters are real and distinct, that is, when si 6= sj , for all i, j.
We conjecture something much stronger.

Conjecture 13.6 (Discriminant Conjecture). The discriminant polynomial ∆
is a positive sum of monomials in the squared differences (si − sj)

2.

There is some fascinating evidence for this conjecture.

Example 13.7. In the problem of four lines from Example 1.10, suppose that
each line is real and tangent to the rational normal curve. In local coordinates
x = (x13, x14, x23, x24) for the Grassmannian Gr(2, 4), the Schubert variety X (s)
is given by the single polynomial

f(s;x) := det




1 s s2 s3

0 1 2s 3s2

1 0 x13 x14

0 1 x23 x24


 ,

and so the intersection X F•(s1)∩X F•(s2)∩X F•(s3)∩X F•(s4) is modeled by
the system of equations

f(s1;x) = f(s2;x) = f(s3;x) = f(s4;x) = 0 ,

which reduces to

x23 = 1
2e1 , x14 = − 1

2e3 , x13 = 1
3 (x24 − e2) , and

4x2
24 − 4e2x24 + 3e1e3 − 12e4 = 0 ,(13.2)

where e1, e2, e3, e4 are the elementary symmetric polynomials in the parameters
s1, s2, s3, s4. The quadratic’s (13.2) discriminant is the symmetric sum of squares

8
(
(s1−s2)

2(s3−s4)
2 + (s1−s3)

2(s2−s4)
2 + (s1−s4)

2(s2−s3)
2
)
.

Example 13.8. For Gr(2, 5), the discriminant of the Schubert intersection

X F•(0) ∩ X F•(s1) ∩ X F•(s2) ∩ X F•(s3) ∩ X F•(s4) ∩ X F•(∞) ,

has degree 20 in the parameters s1, s2, s3, s4, and it has 711 different terms. Ad
hoc methods [143] showed that it was a sum of squares. This was quite surprising,
for Hilbert [69] showed that not every polynomial of even degree greater than 2 in
four variables that is nonnegative can be written as a sum of squares. Several other
discriminants for small Schubert problems were also computed in [143] and shown

to be sums of squares of the form in the Discriminant Conjecture.

A promising approach to the Discriminant Conjecture is through the work
of Mukhin, Tarasov, and Varchenko [104, 106], for the discriminant of a real
symmetric matrix (the discriminant of its characteristic polynomial) is canonically
a sum of squares [20, 74]. The first proof of the Shapiro Conjecture [104] crucially
involved the eigenvalues of the Gaudin Hamiltonians, which are symmetric linear
operators on the span of Bethe vectors, and the second proof [106] showed an
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isomorphism between the action of a commutative algebra (the Bethe algebra) on
the span of the Bethe vectors and the action of the the coordinate ring of a big cell
of the Grassmannian on the coordinate ring of the intersection (13.1). We give two
intriguing hints about this approach to the Discriminant Conjecture.

Example 13.9. In Example 12.2, we showed how the Bethe Ansatz equations
for the master function Ξ2,2(x, y; s) reduce to

x+ y = 1
2e1 and 12(xy)2 − 4e2(xy) + e1e3 − 4e4 = 0 .

The substitution xy = x24/3 converts this quadratic equation into (13.2), showing
that the discriminant of the Bethe Ansatz equations for Ξ2,2 coincides with the
discriminant for the problem of four lines of Example (13.7).

Now consider the matrix (12.20) of Example 12.13, which gives the action of
the Gaudin Hamiltonian K2(t) on the basis {v,w} of sing(V ⊗4[0]). Dividing its
discriminant by 2(t− s1)

6(t− s2)
6(t− s3)

6(t− s4)
6 we obtain,

( (s1 − s2)
2(s3 − s4)

2 + (s1 − s3)
2(s2 − s4)

2 + (s1 − s4)
2(s2 − s3)

2 ) ,

which is the discriminant for the problem of four lines of Example (13.7).

13.2. Maximally inflected curves

A list f1(t), . . . , fk(t) of degree d polynomials defines a map ϕ : P1 → Pk−1,

ϕ : P1 ∋ t −→ [f1(t) : f2(t) : · · · : fk(t)] ∈ Pk−1 ,

which is a parametrized rational curve of degree d. The image of the curve is
convex at a point ϕ(t) if and only if the first k−1 derivatives of ϕ(t) are linearly
independent. The failure to be convex is measured exactly by the vanishing of the
Wronskian of the polynomials f1(t), . . . , fk(t). The curve that ϕ is ramified at a
point t if this Wronskian vanishes at t. Another geometric term is that the curve
ϕ has an inflection point (or flex) at t. This corresponds to the usual notion of
an inflection point for plane curves. A rational curve ϕ of degree d in Pk−1 has
k(d+1−k) flexes, counted with multiplicity.

The connection between the Schubert Calculus and rational curves in projec-
tive space (linear series on P1) originated in work of Castelnuovo [27] on g-nodal
rational curves. This led to the use of Schubert Calculus in Brill-Noether theory
(see Chapter 5 of [65] for an elaboration). In turn, the theory of limit linear series
of Eisenbud and Harris [40, 41] provided essential tools to show reality of the spe-
cial Schubert Calculus [141]. (That result on the special Schubert Calculus was a
generalization of Theorem 10.1 of Chapter 10.)

Mukhin, Tarasov, and Varchenko Theorem for rational curves. If
a rational curve in Pk−1 has all of its flexes real, then it must be real.

A real rational curve with all of its flexes real is maximally inflected. The The-
orem of Mukhin, Tarasov, and Varchenko asserts that there are many (maximally
many, in fact) maximally inflected curves. Let us examine them in the plane RP2.

Up to projective transformation and reparameterization, there are only three
real rational plane cubic curves. These are represented by the equations

y2 = x3 + x2 , y2 = x3 − x2 , and y2 = x3 ,



13.2. MAXIMALLY INFLECTED CURVES 165

and they have the shapes shown below.

All three have a real flex at infinity and are singular at the origin. The first has a
node and no other real flexes, the second has a solitary point and two real flexes
at ( 43 ,± 4

3
√
3
) (we indicate these with dots and the complex conjugate tangents at

the solitary point with dashed lines), and the third has a cusp. The last two are
maximally inflected, while the first is not.

By the Schubert Calculus, there will be five rational quartics with six given
points of inflection and Figure 13.1 shows five maximally inflected curves with
flexes at {−3,−1, 0, 1, 3,∞}. (Each nodal curve has two flexes at its node, which is a
consequence of the symmetry.) We indicate the differences in the parameterizations
of these curves, labeling the flex at −3 by the larger dot and the flex at −1 by the

Figure 13.1. The five curves with flexes at {−3,−1, 0, 1, 3,∞}.

circle. The solitary points are not drawn. The first three curves have two solitary
points, while the last two have three solitary points.

Figure 13.2 shows eight smooth maximally inflected quintics and four that are
singular. The flexes are indicated (the symmetric curves have one additional flex
at infinity), but we do not draw the solitary points. Also, the open circles represent
two flexes which have merged into a planar point. None of these curves has many
nodes. There are three types of ordinary double points of a real curve; nodes (both
branches at the singular point have real tangents), solitary points (the tangents
are complex conjugate), and the third type is a pair of complex conjugate double

points. Since plane rational curves of degree d have arithmetic genus
(
d−1
2

)
, rational

quartics without cusps have three ordinary double points and quintics without cusps
have six, but none of the quartics of Figure 13.1 have more than one node, and none
of the quintics in Figure 13.2 have more then three nodes.

More generally, consider a maximally inflected curve with only flexes and cusps,
and whose other singularities are ordinary double points. Let ι be its number of
flexes and κ be its number of cusps. Then by the Plücker [115] formula, we have

ι + 2κ = 3(d − 2). By the genus formula, it has
(
d−1
2

)
− κ double points. The

following theorem is an easy consequence of the Klein [87] formula.

Theorem 13.10 (Topological Restrictions [82]). A maximally inflected curve
with only flexes, cusps, and ordinary double points has at least d−2−κ solitary
points and at most

(
d−2
2

)
nodes, where κ is its number of cusps.
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Figure 13.2. Some maximally inflected plane quintics.

Thus maximally inflected cubics have at most
(
3−2
2

)
= 0 nodes, quartics have

at most
(
4−2
2

)
= 1 node, and quintics have at most

(
5−2
2

)
= 3 nodes, which we have

seen.
The existence of curves satisfying the hypotheses of Theorem 13.10 is not guar-

anteed, even given the Theorem of Mukhin, Tarasov, and Varchenko. Also, the
construction in Theorem 4 of Chapter 10 says nothing about the ordinary double
points of a maximally inflected curve. There are however two constructions which
guarantee curves having only double points. The first uses Shustin’s patchworking
of singular curves [133] to obtain degenerate Harnack curves with

(
d−1
2

)
solitary

points. The second perturbs d − 2 lines tangent to a conic to obtain maximally
inflected curves of degree d with minimally many solitary points (and up to d − 2
cusps). Figure 13.3 shows these constructions when d = 5.

The topological classification of maximally inflected plane quintics is open. For
example, computations [82, § 6.2] suggest that the number of solitary points is
a deformation invariant of maximally inflected quintics. We do not know which
combinations of nodes, solitary points, and cusps are possible for quintics (see
Table 6.1 of [82]). We also do not know which embeddings of RP1 into RP2 (up
to isotopy) are possible for maximally inflected quintics. For example, the curves
of Figure 13.2 realize the seven different embeddings we have observed for quintics
without cusps, and while we have ruled out some other possibilities, we do not know
if the two embeddings illustrated in Figure 13.4 occur.

Lastly, maximally inflected curves in higher-dimensional space have not been
investigated. For example, which knot types can occur for maximally inflected space
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=⇒

Figure 13.3. Constructions of quintics.

Figure 13.4. Embeddings of quintics that have not been observed.

curves? Another possibility, analogous to nodes, is whether there are restrictions
on the number of real quadrisecants of a maximally inflected space curve.

13.3. Degree of Wronski maps and beyond

Recall from Sections 1.5 and 8.2 that Eremenko and Gabrielov computed the
degree of oriented double cover of the real Wronski map

WrR : Gr(m,Rm+p−1[t]) −→ P(Rmp[t]) ≃ RPmp ,

They showed (Theorem 1.14) that if m+p is even then this map has degree zero,
and if m+p is odd then it has degree σm,p, which is

(13.3)
1!2! · · · (m−1)!(p−1)!(p−2)! · · · (p−m+1)!(mp

2 )!

(p−m+2)!(p−m+4)! · · · (p+m−2)!
(
p−m+1

2

)
!
(
p−m+3

2

)
! · · ·

(
p+m−1

2

)
!
.

We assume in (13.3) thatm ≤ p; Otherwise set σm,p := σp,m, and set σm,p = 0 when
m+p is even. Then, for any regular value Φ(t) ∈ Rmp[t] of the complex Wronski

map, the fiber Wr−1
R

(Φ(t)) consists of at least σm,p real points. For example, σ2,5 =
2, so that there will be at least two real points of Gr(2,C6[t]) with a general real
Wronskian Φ(t) ∈ R10[t], out of the the #2,5 = 42 complex points.

The Shapiro Conjecture for Grassmannians states that if Φ(t) ∈ Rmp[t] has dis-
tinct real roots, then each of the #m,p points of Gr(m,Cm+p−1[t]) with Wronskian
Φ(t) will be real. Theorem 1.14 implies that some (at least σm,p) reality remains
if we only require that the set of roots be real (that is, they are the roots of a real
polynomial and so are stable under complex conjugation).

When m = 2, Eremenko and Gabrielov [43, 44] showed that this lower bound
σ2,p is attained. The question remains whether or not σm,p is the tight lower bound
when min(m, p) > 2. Likely this is not the case as σ3,3 = 0, but computations (see
Table 13.4) suggest that the lower bound is 2.
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Fibers of the Wronski map over a general real polynomial Φ(t) have the form

(13.4) X F•(s1) ∩X F•(s2) ∩ · · · ∩X F•(smp) ,

where s1, . . . , smp are the roots of Φ(t). Let r be the number of real roots of Φ(t)
and c the number of complex conjugate pairs of roots. Then the pair (r, c) (or just c
if r is understood) determines the type of {s1, . . . , smp} as a real zero scheme. When
c = 0, we are in the case of the Shapiro Conjecture and the intersection (13.4) has
only real points. For 0 < c ≤ mp/2, the result of Eremenko and Gabrielov shows
there are at least σm,p real points in the intersection (13.4). It is natural to ask
what is the lower bound on the number of real points in the intersection (13.4),
as a function of c. This should be quite interesting, as we can see in Table 13.1,
which displays the result of an experiment [66] which tested 100,000 instances of

Table 13.1. Lower bounds for 8 = 14 on Gr(2, 6).

Number of real solutions
c 0 2 4 6 8 10 12 14
1 35613 16702 14707 6754 1900 24324
2 31317 27221 20417 11343 3407 1121 5174
3 9449 37204 17382 25600 6880 1538 496 1451
4 88180 9511 1207 290 812

the intersection (13.4) with (m, p) = (2, 4) for each possible value 1,2,3, and 4 of
c 6= 0, and used 5.2 gigahertz-hours of computing. Each cell records the number of
instances with a given value of c and number of real solutions. Empty cells indicate
that no instances were observed. These computations suggest an apparent lower
bound which is different for different values of c.

The caption of Table 13.1 introduces a shorthand notation for Schubert prob-
lems. This problem involves eight simple conditions, , and it has 14 solutions, so
we write 8 = 14.

More generally, if we are given a Schubert problem α1, . . . , αn where some of
the conditions coincide, we can consider an intersection

(13.5) Xα1F•(s1) ∩Xα2F•(s2) ∩ · · · ∩XαnF•(sn) ,

where the numbers si are real, except in some cases when αi = αj , we may have
si = sj , for then the intersection (13.5) defines a real variety. For a given pattern of
pairs of complex conjugates, we can ask about lower bounds for the number of real
points in the intersection. For example, in Gr(3, 7), if we set := (3, 6, 7), then
| | = 10. Since dim(Gr(3, 7)) = 12, six conditions give a Schubert problem
which has 16 solutions, and we may consider intersections of the form

X F•(s1) ∩X F•(s2) ∩ · · · ∩X F•(s5) ∩X F•(s6) ,

where {s1, . . . , s6} = {s1, . . . , s6}. As before, let c be the number of complex
conjugate pairs in {s1, . . . , s6}. Table 13.2 displays the results of an experiment
testing 30,000 instances of this intersection for each of the different values of c.
From this computation, we suspect that there is a lower bound of 2c on the number
of real solutions to this problem, when the set of points {s1, . . . , s6} is real with
c > 0 complex conjugate pairs. This computation took 48.8 Gigahertz-days.
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Table 13.2. Lower bounds for 6 = 16 on Gr(3, 7).

Number of real solutions
c 0 2 4 6 8 10 12 14 16
1 4051 4395 9097 4959 2236 647 689 3926
2 17397 6880 2693 1332 454 324 920
3 22537 2390 4302 95 196 480

In addition to lower bounds that are dependent upon the number of com-
plex conjugate pairs, there appear to be other interesting phenomena. Consider

instances of the Schubert problem · 7 = 20 in Gr(4, 8),

X F•(∞) ∩X F•(s1) ∩ · · · ∩X F•(s7) ,

where {s1, . . . , s7} = {s1, . . . , s7} with c = 1, 2, or 3. Table 13.3 displays the result
of an experiment computing 200,000 instances of this problem for different values

Table 13.3. Lower bounds and gaps for · 7 = 20 on Gr(4, 8).

Number of real solutions
c 0 2 4 6 8 10 12 14 16 18 20

1 163874 36126
2 117572 73117 9311
3 49316 106851 39708 4125

of c. It took 8.5 gigahertz-hours. This computation suggests both an interesting
restriction modulo 4 on the numbers of real solutions, as well as a gap (as in
Section 8.3). A similar restriction modulo 4 is seen in computations for the problem

9 = 42 on Gr(3, 6) as given in Table 13.4. This has an apparent lower bound of

Table 13.4. Lower bounds and gaps for 9 = 42 on Gr(3, 6).

Number of real solutions
c 0 2 4 6 8 10 12 14 16 18 20

1 1099 7975 42235 9081 6102
2 24495 30089 25992 5054 3632
3 39371 35022 15924 3150 1990
4 76117 14481 3754 1375

Number of real solutions
c 22 24 26 28 30 32 34 36 38 40 42

1 8827 1597 4207 1343 172 17362
2 4114 955 1586 832 63 3188
3 2183 494 622 367 35 842
4 2925 271 364 204 32 477

2, despite σ3,3 = 0. This computation used 6.9 gigahertz-days.
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We close with a brief remark on how these tables were generated. Using a
version of local coordinates (10.9) valid for the full Grassmannian, the condition
that a point of the Grassmannian lie in a given Schubert variety XαF•(s) may be
formulated as a system of polynomial equations, similar to (10.8). A given inter-
section (13.5) may be formulated as a system of equations, and Algorithm 2.9 may
be used to determine its numbers of real solutions. This may be partially or wholly
automated to compute hundreds to billions of instances of Schubert problems. For
an explanation of this, see [70].

13.4. The Secant Conjecture

In Section 11.3, we gave the result of Eremenko, Gabrielov, Shapiro, and Vain-
shtein [47] (Theorem 11.12) about real rational functions with prescribed coinci-
dences. This suggests a generalization of the Shapiro Conjecture which replaces
flags osculating a rational normal curve by flags that are secant to the rational
normal curve, and which satisfy a condition analogous to the separated condition
of Theorem 11.12. Let γ be a real rational normal curve and I an interval (arc)
of γ. A flag F• is secant along I if each subspace of F• is spanned by its intersec-
tions with I. Such a flag is a secant flag. A collection of flags that are secant to
γ is separated if they are secant along pairwise disjoint intervals of γ. We offer a
generalization of the Shapiro Conjecture.

Conjecture 13.11 (Secant Conjecture). Let α1, α2, . . . , αn be a Schubert prob-
lem. Then for any separated secant flags F 1

• , F
2
• , . . . , F

n
• , the intersection

Xα1F 1
• ∩Xα2F 2

• ∩ · · · ∩XαnFn
•

is transverse with all points real.

Theorem 11.12 establishes the Secant Conjecture for Gr(m,m+2), giving ev-
idence for its validity. In the same way that Theorem 11.1 is a limiting case of
Theorem 11.12, the Shapiro Conjecture is a limiting case of the Secant Conjecture.
The osculating subspace Fi(s) is the unique i-plane having maximal order of con-
tact with the rational normal curve γ at the point γ(s). This and compactness of
RP1 (or a direct calculation) implies that it is a limit of secant flags.

Lemma 13.12. Let {s(j)1 , . . . , s
(j)
i } for j = 1, 2, . . . be a sequence of lists of i

distinct complex numbers with the property that for each p = 1, . . . , i, we have

lim
j→∞

s(j)p = s ,

for some number s. Then

lim
j→∞

span{γ(s(j)1 ), . . . , γ(s
(j)
i )} = Fi(s) .

We may deduce that the Shapiro Conjecture is the limiting case of the Secant
Conjecture by a standard limiting argument.

Theorem 13.13. Let α1, . . . , αn be a Schubert problem and s1, . . . , sn be dis-
tinct points of the rational normal curve γ. Then there exists a number ǫ > 0 such
that if for each i = 1, . . . , n, F i

• is a flag secant to γ along an interval of length ǫ
containing ti, then the intersection

Xα1F 1
• ∩ Xα2F 2

• ∩ · · · ∩ XαnFn
•

is transverse with all points real.



13.4. THE SECANT CONJECTURE 171

It is instructive to interpret the Secant Conjecture in the problem of four lines.
Figure 13.5 shows three lines secant to the rational normal curve γ in three-space,

γ ❍❍❍❥

✻

I

Figure 13.5. The problem of four secant lines.

and the hyperboloid of one sheet that they lie upon. The three lines are secant
along disjoint intervals, which are disjoint to the indicated interval I. Any line
secant along I will meet the hyperboloid in two points, giving two real solutions to
this instance of the Secant Conjecture, as the four lines are separated. This always
occurs, as the problem of four lines is one of the cases of the Secant Conjecture
implied by the result of Eremenko, Gabrielov, Shapiro, and Vainshtein [47].

Further evidence for the Secant condition comes from work of Mukhin, Tarasov,
and Varchenko [105] which implies the following for the Schubert problem mp =
#m,p. If the points of secancy defining each flag form an arithmetic sequence with
the same step size for all flags, then the intersection is transverse with all points
real. (See either their paper, or the discussion [59, § 3.1.1] for more details.)

Some of the strongest evidence for the Secant Conjecture comes from a com-
puter experiment studying it and related phenomena [70, 59]. This considered 703
different Schubert problems on 13 different Grassmannians, verifying the Secant
Conjecture in each of the 448, 381, 157 instances it computed. In all it determined
the number of real solutions in 1, 855, 810, 000 instances of these Schubert problems
and used 1.065 teraHertz-years of computing, mostly on computers in instructional
labs at Texas A&M University which moonlight as a supercomputer outside of
teaching hours. This work was done using the symbolic methods of Algorithm 2.9.

The remaining 1, 407, 428, 843 instances involved flags that were not secant
along disjoint intervals, but had some overlap in their intervals of secancy. This
overlap is measured by a statistic called the overlap number, which is zero if and
only if the flags are separated. Table 13.5 shows part of the data obtained for
the Schubert problem · 6 = 16 on Gr(3, 6). There were 2, 500, 000 computed
instances of this Schubert problem, all involving flags secant to the rational normal
curve. This computation took 16.327 gigahertz-years. The rows are labeled with
the even integers from 0 to 16, for the number of observed real solutions. The first
column with overlap number 0 represents tests of the Secant Conjecture. Since the
only entries are in the row for 16 real solutions, the Secant Conjecture was verified in
560, 827 instances. The column labeled overlap number 1 is empty because flags for
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Table 13.5. Real solutions vs. overlap number for · 6 = 16.

Overlap Number
R
e
a
l
S
o
lu
ti
o
n
s

\ 0 1 2 3 4 5 6 7 · · · Total

0 3 · · · 566

2 10 32 · · · 7452

4 406 1699 176 191 411 · · · 51416

6 1926 5233 958 662 1184 · · · 160629

8 2821 7382 1691 1130 1975 · · · 321827

10 2484 6500 2591 1116 2026 · · · 430179

12 3288 6185 3296 1320 2250 · · · 417358

14 1610 2832 2346 767 1376 · · · 244259

16 560827 19741 61429 50832 17096 8527 9674 · · · 866314

Total 560827 19741 73964 80663 28154 13723 18931 · · · 2500000

this problem cannot have overlap number 1. Perhaps the most interesting feature
is that for overlap number 2, all computed solutions were real, while for overlap
numbers 3, 4, and 5, at least four of the 16 solutions were always real. This inner
border, which indicates that some solutions are forced to be real when there is low
overlap or that there is a lower bound on the number of real solutions for small
overlap number, is found on many of the other problems that we investigated and
is a new phenomenon that we do not understand.

In addition to the symbolic computation of this experiment, the Secant Con-
jecture was also verified in 25,000 instances of the Schubert problem 8 = 126
on Gr(4, 8), using numerical methods, as this problem is beyond the capabilities
of the symbolic software we used for the other computations. This verification
used the Bertini package [6] (based on numerical homotopy continuation [137]) to
compute the solutions, whose reality was certified using Smale’s α-theory [135] as
implemented in the package alphaCertified [67].



CHAPTER 14

The Shapiro Conjecture Beyond the Grassmannian

There is a version of the Shapiro Conjecture for any flag manifold. How-
ever, the conjecture typically fails in this generality. In some cases this failure
is quite interesting and the Shapiro Conjecture may be repaired. We will discuss
the Shapiro Conjecture for flag manifolds that are similar to the Grassmannian.
The Shapiro Conjecture is true for the orthogonal Grassmannian, by a theorem
of Purbhoo [116], but the Shapiro Conjecture for the Lagrangian Grassmannian is
false: while transversality appears to hold, no points of intersection are real. Failure
for the classical flag manifold is more subtle, but the Shapiro Conjecture can be
repaired through the Monotone Conjecture for which there is compelling evidence.
We close with an appealing common generalization of the Secant and Monotone
Conjectures.

14.1. The Shapiro Conjecture for the orthogonal Grassmannian

The orthogonal Grassmannian is a flag manifold for the orthogonal group whose
properties are quite similar to those of the classical Grassmannian. Fix a positive
integer m and suppose that C2m+1 is equipped with a nondegenerate symmetric
bilinear form 〈·, ·〉 that is split over R. Then R2m+1 has a basis e1, e2, . . . , e2m+1

for which this form is anti-diagonal,

(14.1) 〈ei , e2m+2−j〉 = δi,j .

A subspace V ⊂ C2m+1 is isotropic if 〈V, V 〉 ≡ 0 (equivalently, V ⊂ V ⊥) and so
an isotropic subspace V may have any dimension up to m. The existence of real
isotropic subspaces of this dimension, such as the span of e1, . . . , em, is equivalent
to the form (14.1) being split. The orthogonal Grassmannian OG(m) is the set of all
maximal (m-dimensional) isotropic subspaces. It is a manifold of dimension

(
m+1
2

)
.

A source for further information about isotropic flag manifolds is the book [56].
The Shapiro Conjecture for OG(m) requires a rational normal curve γ whose

geometry is related to that of OG(m). Let γ be the curve with parametrization

(14.2) t 7−→ e1 + te2 +
t2

2
e3 + · · · +

tm

m!
em+1

− tm+1

(m+1)!
em+2 +

tm+2

(m+2)!
em+3 − · · · + (−1)n

t2m

(2m)!
e2m+1 .

The flag F•(t) osculating γ at a point γ(t) is isotropic in that

(14.3) 〈Fi(t) , F2m+1−i(t)〉 ≡ 0 for all i = 1, . . . , 2m,

so that Fi(t)
⊥ = F2m+1−i(t). In general, an isotropic flag F• of C2m+1 is one with

F⊥
i = F2m+1−i for all i. While it is a pleasant exercise to verify (14.3), a more

intrinsic understanding of the curve γ (14.2) and its osculating flags comes from

173
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the theory of algebraic groups [21], which also explains how the Shapiro Conjecture
may be posed in any flag manifold. We discuss this in Section 14.3.

Schubert varieties of OG(m) are defined with respect to an isotropic flag F•. In
fact, they are the intersections of certain Schubert varieties XαF• of Gr(m, 2m+1)
with OG(m). Schubert varieties of OG(m) are indexed by subsets κ of [m] :=
{1, 2, . . . ,m}. Given κ ⊂ [m], let λ := [m] \ κ be its complement and define
α(κ) ∈

(
2m+1

m

)
to be the Schubert condition

(14.4) (m+1−λ1,m+1−λ2, . . . ,m+1−λl, m+1+κk, . . . ,m+1+κ2,m+1+κ1) ,

where λ : λ1 > λ2 > · · · > λl and κ : κ1 > κ2 > · · · > κk. For example, when m = 6
and κ = {5, 3}, we have λ = {6, 4, 2, 1} and α(κ) = (1, 3, 5, 6, 10, 12).

Given an isotropic flag F• and a subset κ ⊂ [m],

OκF• := OG(m) ∩Xα(κ)F•

is the Schubert subvariety of OG(m) indexed by κ. This has dimension ‖κ‖ := κ1+
· · ·+ κk and codimension

(
m+1
2

)
− ‖κ‖ = ‖λ‖. The Kleiman-Bertini Theorem [86]

implies that if κ1, . . . , κn are subsets of [m] that satisfy

(14.5)
n∑

i=1

((
m+1
m

)
− ‖κi‖

)
=

n∑

i=1

‖λi‖ = dim(OG(m)) =
(
m+1
m

)
,

(such a list κ1, . . . , κn is a Schubert problem for OG(m)), then for general isotropic
flags F 1

• , . . . , F
n
• , the intersection

(14.6) Oκ1F 1
• ∩Oκ2F 2

• ∩ · · · ∩OκnFn
•

is transverse (and hence also zero-dimensional).
Purbhoo established the Shapiro Conjecture for OG(m) [116].

Theorem 14.1. Let κ1, . . . , κn be a Schubert problem for OG(m). Then for
every choice of n points s1, . . . , sn ∈ RP1, the intersection

Oκ1F•(s1) ∩ Oκ2F•(s2) ∩ · · · ∩ OκnF•(sn)

is transverse with all points real.

We deduce this from the Theorem of Mukhin, Tarasov, and Varchenko [106].
The key observation is that κ1, . . . , κn form a Schubert problem for OG(m) if and
only if the conditions α(κ1), . . . , α(κn) form a Schubert problem for Gr(m, 2m+1).
To see this, we compare the dimensions and codimensions of the Schubert varieties
OκF• and Xα(κ)F•, for an isotropic flag F•. By (14.4), |α(κ)| is

= m+1−λ1 + · · ·+m+1−λl + m+1+κk + · · ·+m+1+κ1 − 1− · · · −m

= m(m+1)− ‖λ‖+ ‖κ‖ −
(
m+1
2

)
= m(m+1)− 2‖λ‖ = 2‖κ‖ .

Since dim(OG(m)) =
(
m+1
2

)
= 1

2m(m+1) and dim(Gr(m, 2m+1)) = m(m+1), the

condition (14.5) holds for κ1, . . . , κn if and only if

n∑

i=1

(
m(m+1)− |α(κi)|

)
= m(m+1) = dim(Gr(m, 2m+1)) ,

which establishes this observation.
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Proof of Theorem 14.1. Suppose that κ1, . . . , κn forms a Schubert problem
for OG(m). Then α(κ1), . . . , α(κn) is a Schubert problem for Gr(m, 2m+1). For
any s1, . . . , sn ∈ RP1, the isotropic flags F•(s1), . . . , F•(sn) are real flags which
osculate the rational normal curve γ (14.2). By the Theorem of Mukhin, Tarasov,
and Varchenko [106] (their second proof of the Shapiro Conjecture), the intersection

Xα(κ1)F•(s1) ∩ Xα(κ2)F•(s2) ∩ · · · ∩ Xα(κn)F•(sn)

is transverse with all points real. Thus its intersection with OG(m), which is

Oκ1F•(s1) ∩ Oκ2F•(s2) ∩ · · · ∩ OκnF•(sn) ,

consists only of real points. But this intersection is transverse in OG(m), by our
observation about the dimensions and codimensions of the Schubert varieties OκF•
and Xα(κ)F•.

14.2. The Shapiro Conjecture for the Lagrangian Grassmannian

The Lagrangian Grassmannian is remarkably similar to the orthogonal Grass-
mannian, having identical Schubert decomposition, and closely related cohomology.
However, it behaves dramatically different with respect to the Shapiro Conjecture.
Fix a positive integer m ≥ 1 and let 〈·, ·〉 be a nondegenerate skew-symmetric
bilinear form on C2m. Then C2m has a basis e1, . . . , e2m such that

〈ei , e2m+1−j〉 =

{
δij if i ≤ m

−δij if i > m
.

A subspace V ⊂ C2m is isotropic if 〈V, V 〉 ≡ 0 (equivalently, V ⊂ V ⊥) and so an
isotropic subspace V may have any dimension up to m. A subspace L is Lagrangian
if it is isotropic with maximal dimension m. The Lagrangian Grassmannian LG(m)
is the set of all Lagrangian subspaces of C2m. It is a manifold of dimension

(
m+1
2

)

and is naturally a subvariety of Gr(m, 2m).
Schubert varieties of LG(m) are indexed by subsets κ ⊂ [m] and are the inter-

section of certain Schubert subvarieties of Gr(m, 2m) with LG(m). Given κ ⊂ [m],
let λ := [m] \ κ be its complement and define β(κ) ∈

(
2m
m

)
to be the Schubert

condition

(m+1−λ1,m+1−λ2, . . . ,m+1−λl, m+κk, . . . ,m+κ2,m+κ1) ,

where λ : λ1 > λ2 > · · · > λl and κ : κ1 > κ2 > · · · > κk. For example, when m = 6
and κ = {5, 3}, we have λ = {6, 4, 2, 1} and β(κ) = (1, 3, 5, 6, 9, 11).

A flag F• in C2m is isotropic if

F⊥
i = F2m−i for i = 1, . . . , 2m−1 .

The Schubert variety LκF• of LG(n) where κ ⊂ [m] and F• is an isotropic flag is

LκF• := LG(m) ∩Xβ(κ)F• .

The dimension of LκF• is ‖κ‖ and its codimension in LG(m) is ‖λ‖.
The special rational normal curve in the Shapiro Conjecture for LG(m) is

(14.7) γ : t 7−→ e1 + te2 +
t2

2
e3 + · · · +

tm

m!
em+1 −

tm+1

(m+1)!
em+2

+
tm+2

(m+2)!
em+2 − · · · + (−1)m−1 t2m−1

(2m−1)!
e2m .
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The flag F•(s) osculating this rational normal curve is isotropic, Fi(t)
⊥ = F2m−i(t)

for all t and i = 1, . . . , 2m−1.
The natural extension of the Shapiro Conjecture for LG(m) (which was not

posed by Boris Shapiro or by Michael Shapiro) considers intersections of the form

(14.8) Lκ1F•(s1) ∩ Lκ2F•(s2) ∩ · · · ∩ LκnF•(sn) ,

where κ1, · · · , κn form a Schubert problem for LG(m), and posits that this inter-
section is transverse with all points real. This turns out to be false, but in a very
interesting way.

Example 14.2. Consider LG(2), which has dimension 1+2 = 3. Its one inter-
esting Schubert problem involves Lagrangian 2-planes that meet each of three fixed
Lagrangian 2-planes nontrivially. We solve this problem when the three 2-planes
osculate the rational normal curve γ of (14.7). In the standard basis e1, e2, e3, e4
of C4, this curve is

γ(t) := (1, t, 1
2 t

2, − 1
6 t

3) .

The osculating 2-plane F2(t) is the linear span of {γ(t), γ′(t)}. A general Lagrangian
plane in C4 (point in LG(2)) is the row space L of the 2 by 4 matrix

L :=

(
1 0 a b
0 1 c a

)
.

Then the equation for L to meet F2(t) is f(a, b, c; t) = 0, where

f(a, b, c; t) := det




1 0 a b
0 1 c a
1 t 1

2 t
2 − 1

6 t
3

0 1 t − 1
2 t

2


 = a2 − bc+ bt+ at2 + 1

3ct
3 − 1

12 t
4 .

The system for L to meet F2(s), F2(t), and F2(u),

f(a, b, c; s) = f(a, b, c; t) = f(a, b, c;u) = 0 ,

is equivalent to the vanishing of the polynomials

12a+ 4e1c− e21 + e2 , 12b− 4e2c+ e1e2 − e3 , and

(16e21 − 48e2)c
2 + (−8e31 + 20e1e2 + 36e3)c+ e41 − 2e21e2 + e22 − 12e1e3 ,

where e1, e2, e3 are the elementary symmetric polynomials in s, t, u. The discrimi-
nant of this quadratic in c is

−48(s− t)2(s− u)2(t− u)2 ,

which is always negative when s, t, u are real and distinct.

We summarize the conclusion of this example.

Proposition 14.3. When κ = 2, the unique codimension one Schubert condi-
tion for LG(3), and s, t, u are distinct real numbers, the intersection

LκF•(s) ∩ LκF•(t) ∩ LκF•(u)

is transverse with no points real.
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In [144], this computation was coupled with a limiting argument using Schu-
bert induction (similar to the proof of Theorem 10.1) show that there are intersec-
tions (14.8) in any Lagrangian Grassmannian with no real points. Specifically, let
κ := [m] \ {1}, the unique codimension one Schubert condition. Then there exist
numbers s1, s2, . . . , s(m+1

2 ) ∈ R such that the intersection

(14.9) XκF•(s1) ∩XκF•(s2) ∩ · · · ∩XκF•(s(m+1
2 ))

is zero-dimensional with no points real. There is no conclusion of transversality.
It is compelling to posit that all Shapiro-type intersections (14.8) in LG(m) will

contain no real points, but this is also false. The same argument as in the proof of
Theorem 14.1 gives the following result.

Theorem 14.4. Let κ1, . . . , κn be a Schubert problem for LG(m). If the cor-
responding indices β(κ1), . . . , β(κn) also form a Schubert problem for Gr(m, 2m),
then for every choice of n distinct points s1, . . . , sn ∈ RP1, the intersection

Lκ1F•(s1) ∩ Lκ2F•(s2) ∩ · · · ∩ LκnF•(sn) ,

is transverse with all points real.

These results motivate the following conjecture.

Conjecture 14.5 (Shapiro and Discriminant Conjectures for LG(m)). Let
κ1, . . . , κn be a Schubert problem for the Lagrangian Grassmannian LG(m). Then
for every choice of n distinct points s1, , . . . , sn ∈ RP1, the intersection

(14.10) Lκ1F•(s1) ∩ Lκ2F•(s2) ∩ · · · ∩ LκnF•(sn)

is transverse. None of the points in the intersection are real, unless β(κ1), . . . , β(κn)
form a Schubert problem for Gr(m, 2m), in which case all of the points are real.

Lastly, the discriminant of the intersection (14.10) is a sum of squares, with
each term a monomial in the differences (si − sj)

2.

Tables 14.1 and 14.2 display some of the computational evidence for Conjec-
ture 14.5.

We characterize when κ1, . . . , κn and β(κ1), . . . , β(κn) both form Schubert
problems. Suppose that F• is an isotropic flag and let κ ⊂ [m]. Then the Schubert
variety LκF• has dimension ‖κ‖ and codimension ‖λ‖, where λ := [m] \ κ. The
dimension of Xβ(κ)F• is

|β(κ)| = m+1−λ1 + · · ·+m+1−λl + m+κk + · · ·+m+κ1 − 1− · · · −m

= m2 + l − ‖λ‖+ ‖κ‖ −
(
m+1
2

)
= m2 + l − 2‖λ‖ = 2‖κ‖ − k ,

as the cardinalities l of λ and k of κ sum to m. Thus the codimension of Xβ(κ)F•
is 2‖λ‖ − l.

Suppose that κ1, . . . , κn form a Schubert problem for LG(m) and also that
β(κ1), . . . , β(κn) form a Schubert problem for Gr(m, 2m). For each i = 1, . . . , n,
set λi := [m] \ κi and let li be its cardinality. Then the sum of the codimensions of
the Schubert varieties LκiF• equals the dimension of LG(m),

(
m+ 1

2

)
= ‖λ1‖ + ‖λ2‖ + · · · + ‖λn‖ ,
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and the sum of the codimensions of the Schubert varieties Xβ(κi)F• equals the
dimension of Gr(m, 2m),

m2 = 2‖λ1‖ − l1 + ‖λ2‖ − l2 + · · · + ‖λn‖ − ln

= m(m+1) − l1 − l2 − · · · − ln .

From this we deduce our characterization.

Lemma 14.6. Let κ1, . . . , κn be a Schubert problem for LG(m) and define li so
that m − li is the cardinality of κi. Then β(κ1), . . . , β(κn) is a Schubert problem
for Gr(m, 2m) if and only if l1 + · · ·+ ln = m.

Since n ≤ m, these Schubert problems involve few Schubert conditions.

As in Section 13.3, we may consider intersections (14.10) which are real, but
where some pairs of the points si are complex conjugates. For example, if we
let := {3, 2} be the unique codimension 1 condition in LG(3), then Table 14.1
records how often a given number of real solutions were observed in an experiment

Table 14.1. Upper bounds for 6 = 16 on LG(3).

c
Number of Real Solutions

0 2 4 6 8 10 12 14 16
0 25000
1 25000
2 172291 23874 194932 67798 135189 4741 175
3 26229 4717 6312 2902 6889 395 714 122 1720

computing 300,000 instances of the Schubert problem 6 = 16 on LG(3), for differ-
ent numbers c of complex conjugate pairs. The first row consists of verifications of
the Shapiro Conjecture for this Schubert problem. In contrast to the computations
of Section 13.3, there appear to be upper bounds on the possible numbers of real
solutions. This computation took 3.6 gigahertz-days.

More intriguing is Table 14.2 which is for 1900 instances of the Schubert prob-
lem 5 = 24 on LG(4), where = {4, 3, 1}. There appears to be a clear upper
bound on the number of real solutions. This computation took 1.25 gigahertz-years.

Table 14.2. Computations for 5 = 24 on LG(4).

c
Number of Real Solutions

0 2 4 6 8 10 12 14 16 18 20 22 24
0 500
1 315 441 744 113 253 134
2 500
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14.3. The Shapiro Conjecture for flag manifolds

The Shapiro Conjecture may be posed for any flag manifold. We explain this in
the language of linear algebraic groups. Definitions and background may be found
in [21].

Let G be a reductive linear algebraic group. A Borel subgroup is a maximal
connected solvable subgroup B of G, and a parabolic subgroup P is any subgroup
containing a Borel subgroup. The quotient G/P is a compact space called the flag
manifold. Its points are identified with the parabolic subgroups conjugate to P .

A Borel subgroup B has finitely many orbits on a flag manifold G/P—these
correspond to double cosets BgP of B and P in G. Assuming, as we may, that
B ⊂ P , these orbits are naturally indexed by cosets W/WP of the Weyl group WP

of P in the Weyl group W of G. Each coset has a canonical representative in the
Coxeter group W of minimal length. Let WP ⊂ W be the set of these minimal
representatives, which we will call Schubert conditions. For w ∈ WP , the orbit
BwP/P is isomorphic to Clg(w), where lg(w) is the length of w. Its closure is the
Schubert variety XwB.

A Schubert problem is a list w1, . . . , wn of Schubert conditions satisfying

n∑

i=1

(dim(G/P )− lg(wi)) = dim(G/P ) .

Given a Schubert problem w1, . . . , wn, the Kleiman-Bertini Theorem [86] implies
that for any Borel subgroup B and general elements g1, . . . , gn ∈ G, the intersection
of translates

(14.11) g1.Xw1
B ∩ g2.Xw2

B ∩ · · · ∩ gn.Xwn
B

is transverse and zero-dimensional. If Bi := gi.B = gi ·B ·g−1
i , then (14.11) becomes

Xw1
B1 ∩ Xw2

B2 ∩ · · · ∩ Xwn
Bn ,

which we may compare to (9.6) and (14.6).
The Shapiro Conjecture involves real points of intersections (14.11). For it, we

will need to choose an appropriate real form of the group G, as not just any real form
will do. For example, the orthogonal group of Section 14.1, which is the subgroup of
GL(2m+1,R) preserving the form 〈·, ·〉 was not the orthogonal group of rotations in
R2m+1. We must use the split real form of the group G. Concretely, this means that
every semisimple element of G(R) has only real eigenvalues in any representation
of G. That is, their characteristic polynomials split completely into linear factors
over R. Equivalently, every maximal torus T of G(R) is isomorphic to (R∗)r, where
r is the rank of G. Then if we choose T ⊂ B ⊂ P and g1, . . . , gn ∈ G(R), we may
ask for real points in an intersection (14.11).

The Shapiro Conjecture uses a special choice of elements g1, . . . , gn in (14.11).
Let g be the Lie algebra of G. The adjoint (conjugation) action of G on g preserves
the nilpotent elements of g. A nilpotent element η ∈ g is principal if its orbit under
G is dense in the set of nilpotent elements. Associated to a principal nilpotent
element η is a 1-parameter unipotent subgroup of G,

t 7−→ Γ(t) := eηt .
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When G and g are expressed in terms of matrices, then eηt = 1+η · t+η2 · t22! + · · · .
This group Γ lies in a unique Borel subgroup B+ of G. Let B be any Borel subgroup
having minimal intersection with B+ so that B+B is dense in G.

Conjecture 14.7 (Shapiro Conjecture for G/P ). For any Schubert problem
w1, . . . , wn for G/P and any distinct real numbers s1, . . . , sn, the intersection

Γ(s1).Xw1
B ∩ Γ(s2).Xw2

B ∩ · · · ∩ Γ(sn).Xwn
B

is transverse with all points real.

This conjecture, while true for the classical Grassmannians Gr(b,m) and the or-
thogonal Grassmannians OG(m), does not hold for the Lagrangian Grassmannians
LG(m). As we saw in Section 14.2, it can be repaired for LG(m) and transversal-
ity appears to hold. We will see that it fails for the classical flag manifolds when
G = SL(m,R) that are not Grassmannians, but may also be repaired. While this
conjecture has not been systematically investigated for other flag manifolds, it has
been shown to fail for the manifold of isotropic 2-planes in C6—a flag manifold for
the symplectic group Sp(6,C), and there is no clear way to repair it.

The results and conjectures for the Grassmannians Gr(b,m), OG(m), and
LG(m) suggest that some variant of Conjecture 14.7 may hold for flag manifolds
that are similar to these three families. One attractive class is the class of minuscule
and cominuscule [91] flag manifolds. Besides these three families, this class only
includes the quadrics, a second form of OG(m) for the even orthogonal groups and
two sporadic spaces E6/D5 and E7/E6.

14.4. The Monotone Conjecture

The most familiar flag manifolds beyond the Grassmannians are the classical
flag manifolds for the special linear groups. Let E• be a (partial) flag in Cm, which
is an increasing sequences of subspaces

E• : Ea1
⊂ Ea2

⊂ · · · ⊂ Eak
⊂ Cm ,

where dim(Eai
) = ai. The type of E• is the sequence a := (a1, a2, . . . , ak) of

dimensions of dimensions, and we write Fℓ(a;m) for the set of all flags of type a.
This is a manifold of dimension

dim(a) :=

k∑

i=1

(ai − ai−1)(m− ai) ,

where we set a0 := 0. For background on these flag manifolds, see [53].
A Schubert variety of Fℓ(a;m) is the set of flags E• having specified position

with respect to a fixed flag F•. The Shapiro Conjecture for the flag manifold
Fℓ(a;m) considers intersections of Schubert varieties when the fixed flags osculate
a real rational normal curve. It turns out that such intersections need not have
any real points and they need not be transverse, so the Shapiro Conjecture is false
for the flag manifold Fℓ(a;m). There is however a way to repair it, which we call
the Monotone Conjecture. We give a detailed example of the failure of the Shapiro
Conjecture, formulate the Monotone Conjecture, and discuss evidence for it.

Example 14.8. The flag manifold Fℓ(2, 3; 4) may be realized as the set of flags
consisting of a line h lying on a plane H in P3. The natural Schubert conditions
for these flags h ⊂ H are either that h meets a given line ℓ, or that H contains a
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given point p. Consider the Schubert problem of flags h ⊂ H where h meets three
given lines ℓ1, ℓ2, and ℓ3 and H contains two given points p and q. We solve this by
reducing it to the problem of four lines. The plane H contains the line p, q spanned
by the points p and q. Then h is constrained to meet a fourth line, p, q as h ⊂ H.
Thus there are two lines h1 and h2 meeting the lines ℓ1, ℓ2, ℓ3, and p, q. The planes
Hi are determined by the lines, Hi := span{hi, p} = span{hi, q}.

For this problem, the Shapiro Conjecture asks for the flags h ⊂ H when the
lines ℓi osculate a rational normal curve γ and p, q are points of γ. Suppose that γ
is the rational curve of (1.6) from Example 1.10,

γ : t 7−→
(
6t2 − 1, 7

2 t
3 + 3

2 t,
3
2 t− 1

2 t
3
)
,

the three tangent lines are ℓ(−1), ℓ(0), and ℓ(1), and the two points are γ(v) and
γ(w), where v 6= w. The quadric Q containing the three tangent lines is shown in
Figure 1.1. As we have seen, the lines h meeting the four given lines, and hence
the solutions h ⊂ H to our Schubert problem will be real if and only if the secant
line ℓ(v, w) := γ(v), γ(w) meets the quadric in real points.

This reality depends upon the configuration of the points v, w. Suppose first
that the secant line ℓ(v, w) is close to a tangent line. Figure 14.1 shows such a
secant line ℓ(v, w) which meets the quadric in two real points, and therefore these

ℓ(1)
ℓ(−1)

ℓ(0)γ(w)

❄

γ(v)

❄

γ

ℓ(v, w)

Q

h2

h1

❄

Figure 14.1. Secant line meeting Q, giving two real solutions.

choices for v and w give two real solutions to our Schubert problem. There is also a
secant line meeting the quadric Q in two complex conjugate points, so that neither
flag solving our problem is real. We show this configuration in Figure 14.2.

To investigate this failure of the Shapiro Conjecture, note that as a curve in
P3, γ has the parametrization

γ : t 7−→ [2 : 12t2−2 : 7t3+3t : 3t−t3] .

Then the lines tangent to γ at γ(−1), γ(0), and γ(1) lie on the quadric

Q : x2
0 − x2

1 + x2
2 − x2

3 = 0 .

If we parameterize the secant line ℓ(v, w) as ( 12 + t)γ(v) + ( 12 − t)γ(w) and then
substitute this into the equation for Q, we obtain a quadratic polynomial in t. Its
discriminant is

(14.12) 16(v − w)2 (2vw + v + w)(3vw + 1)(1− vw)(v + w − 2vw) .
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ℓ(1)

ℓ(−1)

ℓ(0)

γ

ℓ(v, w) γ(w)

✄
✄
✄
✄
✄
✄
✄
✄✄✎

γ(v)
✡
✡
✡
✡
✡
✡
✡
✡
✡✣

Figure 14.2. Secant line with no real solutions.

Figure 14.3 shows this discriminant in the square v, w ∈ [−2, 2] ⊂ RP1 × RP1,
shading the regions where it is negative. The broken lines are v, w = ±1, the
diagonal line is v = w, the cross is the value of (v, w) in Figure 14.1, and the dot is
the value in Figure 14.2. The discriminant is nonnegative if (v, w) lies in one of the

v

w

Figure 14.3. Discriminant of the Schubert problem of Example 14.8.

squares (−1, 0)2, (0, 1)2, or if ( 1v ,
1
w ) ∈ (−1, 1)2 and it is positive on the triangles

into which the line v = w subdivides these squares. These squares are when v and
w both lie within one of the three intervals of RP1 determined by −1, 0, 1. Write
Y (s) for those flags h ⊂ H where h meets ℓ(s) and Z(s) for those flags h ⊂ H
where H contains γ(s). Then our Schubert problem is

(14.13) Y (s) ∩ Y (t) ∩ Y (u) ∩ Z(v) ∩ Z(w) ,
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for general s, t, u, v, w ∈ RP1. Möbius transformations of RP1, together with our
analysis of this discriminant imply following proposition.

Proposition 14.9. If there are disjoint intervals I1 and I2 of RP1 so that
s, t, u ∈ I1 and v, w ∈ I2, then the intersection (14.13) is transverse with both
points real.

Figure 14.4 displays cartoons of the configurations of secant and tangent lines
to the rational normal curve γ (represented as a circle) of Figures 14.1 and 14.2. In

Fig. 14.1 Fig. 14.2

Figure 14.4. Configuration of secants and tangents.

the configuration for Figure 14.1, one may travel along the circle, first encountering
the three points of the tangent lines and then the two secant points. Recording
the dimension of the piece of the flag h ⊂ H affected by the tangent line or point
gives the weakly increasing sequence (1, 1, 1, 2, 2). The configuration of Figure 14.2
gives either (1, 1, 2, 1, 2), or (2, 1, 2, 1, 1), or (1, 2, 1, 2, 1), none of which are weakly
increasing. We believe that this is the key to understanding reality.

Schubert varieties in Fℓ(a;m) are indexed by permutations w in the symmetric
group on m letters whose descents {i | w(i) > w(i+1)} lie in a. These descents
have a geometric interpretation. For each b ∈ a, there is a natural projection

(14.14) πb : Fℓ(a;m) −→ Gr(b,m)

obtained by forgetting all subspaces of the flag E• except for Eb. The image of a
Schubert variety XwF• of Fℓ(a;m) under the projection πb is the Schubert variety
Xπb(w)F• of Gr(b;n) where πb(w) is the increasing rearrangement of the sequence

(n+1−w(1) , n+1−w(2) , · · · , n+1−w(b)) .

These projections define the Schubert variety XwF•,

(14.15) XwF• =
⋂

b∈a

π−1
b

(
Xπb(w)F•

)
.

This explains the significance of the descent set of w.

Lemma 14.10. The intersection (14.15) may be taken over the descents of w,

XwF• =
⋂

b : w(b)>w(b+1)

π−1
b

(
Xπb(w)F•

)
.

In particular, if w has only a single descent at b, then XwF• = π−1
b

(
Xπb(w)F•

)
.

A Grassmannian Schubert condition w for Fℓ(a;m) is a permutation which has
only a single descent, necessarily at some position in a. Write des(w) for the position
of this descent. By Lemma 14.10, a Schubert variety given by a Grassmannian
condition w with descent b is the pullback of a Schubert variety in the Grassmannian
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Gr(b,m) along the projection πb : Fℓ(a;m) → Gr(b,m). In Example 14.8, both
conditions were Grassmannian—one had descent 2 (for the requirement that h
meet a tangent line) and the other had descent 3 (for the requirement that H meet
a point on the rational normal curve.) These differed from the dimension of the
linear spaces h and H, as we were working in P3, rather than in C4.

A set of points {s1 . . . , sn} ⊂ RP1 may be cyclically ordered by the order
in which they appear along RP1 starting from some point and moving in some
direction. There are 2n such cyclic orderings of a given set of n points. A collection
of points {s1, . . . , sn} ⊂ RP1 is monotone with respect to a Grassmannian Schubert
problem w1, . . . , wn if there is a cyclic order ≺ of {s1, . . . , sn} such that for all i 6= j,

(14.16) des(wi) < des(wj) =⇒ si ≺ sj .

Fix a real rational normal curve γ and let F•(s) be the flag of subspaces osculating
the curve γ at the point γ(s).

Conjecture 14.11 (Monotone Conjecture). Let w1, . . . , wn be a Grassman-
nian Schubert problem on Fℓ(a;m). Then for any collection {s1, . . . , sn} of n points
in RP1 that is monotone with respect to w1, . . . , wn,

(14.17) Xw1
F•(s1) ∩ Xw2

F•(s2) ∩ · · · ∩ Xwn
F•(sn)

is transverse with all points real.

If we have ordered the Schubert conditions so that des(w1) ≤ des(w2) ≤ · · · ≤
des(wn), then we may reparameterize RP1 so that the points si all lie in R and
satisfy s1 < s2 < · · · < sn.

The Monotone Conjecture is an extension of the Shapiro Conjecture for Grass-
mannians. Indeed, the monotone condition (14.16) is vacuous when all permuta-
tions have the same descent, which is the case when the flag manifold Fℓ(a;m)
is a Grassmannian. Besides this reduction to the Shapiro Conjecture, other evi-
dence for the Monotone Conjecture was provided by Eremenko, Gabrielov, Shapiro,
and Vainshtein, whose main theorem in [47] implied it for the flag manifolds
Fℓ(m−2,m−1;m) and Fℓ(1, 2;m).

As with the Shapiro Conjecture for Gr(b,m), OG(m), and LG(m), there is also
a related Discriminant Conjecture. The discriminant of a Grassmannian Schubert
problem w1, . . . , wn is the polynomial defining the hypersurface in Cn consisting of
points (s1, . . . , sn) where the intersection (14.17) fails to be transverse.

The preprime generated by polynomials g1, g2, . . . , gn is the collection of poly-
nomials f of the form

(14.18) f = S0 + S1g1 + S2g2 + · · · + Sngn ,

where the polynomials Si are sums of squares. A polynomial f in this preprime is
obviously positive on the set

K := {x | gi(x) > 0}
and a representation (14.18) of f as an element of this preprime is a certificate for
its positivity on K.

Conjecture 14.12 (Discriminant Conjecture). The discriminant of a Grass-
mannian Schubert problem w1, . . . , wn lies in the preprime generated by (si − sj)
for des(wi) > des(wj).
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The point of this conjecture is that not only is the discriminant positive on
the set {(s1, s2, . . . , sn) | des(wi) > des(wj) ⇒ si > sj} of monotone parameters,
but that it has a special form for which this positivity is transparent. Not all
polynomials that are positive on a set of this form can lie in the preprime generated
by the differences si − sj for des(wi) > des(wj) [126, §6.7].

The Monotone Conjecture was formulated in [123]. That paper also reported
on a computer experiment studying the Monotone Conjecture for 1126 different
Schubert problems on 29 different flag manifolds and using 15.76 gigahertz-years
of computing. The Monotone Conjecture was verified in each of the 165, 666, 089
instances checked. That experiment tested much more, also computing intersec-
tions (14.17) where monotonicity did not hold, recording the numbers of real and
complex solutions in each instance. We describe a small part of these data.

We may decorate the points s1, . . . , sn ∈ RP1 of an intersection (14.17) with
the corresponding Schubert conditions w1, . . . , wn. This configuration of labeled
points, considered up to isotopy and reversal, is called a necklace. Write necklaces
as a word using one of their cyclic orderings, so that

Y Y Y ZZ , Y Y ZZY , Y ZZY Y , ZZY Y Y , and ZY Y Y Z ,

all represent the same necklace. For example, the configurations of Figure (14.4)
have necklaces Y Y Y ZZ and Y Y ZY Z (equivalently, (1, 1, 1, 2, 2) and (1, 1, 2, 1, 2)).
In this experiment the number of real solutions was recorded as a function of the
necklace. Table 14.3 shows the result of testing 400, 000 instances for each of eight
necklaces for the Schubert problem

X(s1) ∩ X(s2) ∩ X(s3) ∩ X(s4) ∩ Y (s5) ∩ Y (s6) ∩ Y (s7) ∩ Y (s8)

on Fℓ(2, 3; 5), where X(s) is the Schubert variety of flags E2 ⊂ E3 where E2 meets
the osculating 3-plane to γ at γ(s) and Y (s) is the Schubert variety where E3 meets
the osculating 2-plane. This computation took 213 gigahertz-days. The first row
represents computations testing the Monotone Conjecture. The other rows show
that even when there are nonmonotone evaluations, some reality survives, and only
for the most interlacing necklace of the last row is it possible to get no real solutions.

Table 14.3. The Schubert problem X4Y 4 on Fℓ(2, 3; 5).

Necklace Number of Real Solutions

0 2 4 6 8 10 12

XXXXYYYY 400000
XXYXXYYY 118 65425 132241 117504 84712
XXXYYXYY 104 65461 134417 117535 82483
XXYYXXYY 1618 57236 188393 92580 60173
XXYXYYXY 25398 90784 143394 107108 33316
XXYYXYXY 2085 79317 111448 121589 60333 25228
XXXYXYYY 7818 34389 58098 101334 81724 116637
XYXYXYXY 15923 41929 131054 86894 81823 30578 11799
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For example, there are no real points in the intersection

X(−8) ∩ Y (−4) ∩ X(−2) ∩ Y (−1) ∩ X(1) ∩ Y (2) ∩ X(4) ∩ Y (8) .

Table 14.4 shows calculations for a Schubert problem on Fℓ(2, 3; 6) with 21
solutions. Here, W represents the Grassmannian Schubert condition that is T

pulled back from Gr(2, 6) and X is the codimension one Grassmannian Schubert
condition pulled back from Gr(3, 6). This took 191 gigahertz-days of computing.
The first row represents instances of the Monotone Conjecture. Unlike the previous

Table 14.4. Enumerative Problem W 3X5 = 21 on Fℓ(2, 3; 6).

Necklace Number of Real Solutions
1 3 5 7 9 11 13 15 17 19 21

WWWXXXXX 200000
WWXWXXXX 82 4173 36937 46363 25298 87147
WWXXWXXX 1471 11933 49180 82745 36295 18376
WXWXWXXX 2570 27139 61578 55244 23863 29606
WXWXXWXX 4544 31410 79160 55345 22079 7462

Total 8667 74655 226855 239697 107535 342591

Schubert problem, there is a clear and near-uniform lower bound on the number of
real solutions to this problem. There is currently no explanation for this and many
other lower bounds and gaps observed in the data.

14.5. The Monotone Secant Conjecture

The Monotone Secant Conjecture is the common generalization of the Secant
Conjecture for the Grassmannians and the Monotone Conjecture for flag manifolds.
It involves flags that are secant to a rational normal curve along disjoint intervals,
where the intervals are monotone with respect to the Schubert problem in the same
way that the osculating points were monotone in the Monotone Conjecture.

As with points, a collection I1, . . . , In of pairwise disjoint intervals of a rational
normal curve γ has 2n cyclic orderings as do flags F 1

• , . . . , F
n
• which are secant

along disjoint intervals of γ. Such a set of flags is monotone with respect to a
Grassmannian Schubert problem w1, . . . , wn if there is a cyclic ordering ≺ of the
flags such that for all i, j,

des(wi) < des(wj) =⇒ F i ≺ F j .

Conjecture 14.13 (Monotone Secant Conjecture). Let w1, . . . , wn be a Grass-
mannian Schubert problem on Fℓ(a;m) and γ a rational normal curve. Then for
any flags F 1

• , . . . , F
n
• secant to γ along disjoint intervals that are monotone with

respect to w1, . . . , wn, the intersection

(14.19) Xw1
F 1
• ∩ Xw2

F 2
• ∩ · · · ∩ Xwn

Fn
•

is transverse with all points real.

The Monotone Secant Conjecture reduces to the Secant Conjecture when the
flag manifold is a Grassmannian. It also reduces to the Monotone Conjecture in
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the limit as the intervals of secancy shrink to points, so that the secant flags be-
come osculating flags, as in Lemma 13.12. While these reductions provide some
justification for the Monotone Secant Conjecture, there is also considerable experi-
mental evidence supporting it. As of February 2011, an experiment at Texas A&M
University studying the Monotone Secant Conjecture in about 720 Schubert prob-
lems on 17 flag manifolds had used over 600 gigahertz-years of computing. This
tested not only instances of the Monotone Secant Conjecture, but also instances
of nonmonotone secant flags, and related instances of the Monotone Conjecture, in
order to compare the two conjectures. The results are tabulated on-line and the
similarity of the tables for the two conjectures is striking.

For example, Table 14.5 displays computations for the same Schubert problem
as Table 14.4. This computation required 7.670 gigahertz-years of computing. In

Table 14.5. Enumerative Problem W 3X5 = 21 on Fℓ(2, 3; 6).

Necklace Number of Real Solutions
1 3 5 7 9 11 13 15 17 19 21

WWWXXXXX 80000
WWXWXXXX 921 16549 26267 14475 21788
WWXXWXXX 39 1208 24559 39013 13947 1234
WXWXWXXX 3244 19887 31931 13688 3632 7618
WXWXXWXX 612 9544 43256 23583 2927 78

Total 3895 31560 116295 102551 34981 110718

both, there is an observed lower bound on the number of real solutions, and the
conjectures are verified in all cases tested (corresponding to the first rows in each
table). However, there is one cell that is empty in Table 14.5 but which is occupied
in Table 14.4 (it is shaded). There is currently no theory or conjectures for these
observed phenomena that are beyond the Monotone Secant Conjecture.
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63. B. Grünbaum, Convex polytopes, second ed., Graduate Texts in Mathematics, vol. 221,
Springer-Verlag, New York, 2003, Prepared and with a preface by Volker Kaibel, Victor Klee
and Günter M. Ziegler.

64. B. Haas, A simple counterexample to Kouchnirenko’s conjecture, Beiträge Algebra Geom.
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69. D. Hilbert, Über die Darstellung definiter Formen als Summe von Formenquadraten,
Math. Ann. 32 (1888), 342–350.
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J. reine agnew. Math. 12 (1834), 105–108.
116. K. Purbhoo, Reality and transversality for Schubert calculus in OG(n, 2n + 1), Math. Res.

Lett. 17 (2010), no. 6, 1041–1046.
117. M. Raghavan, The Stewart platform of general geometry has 40 configurations, ASME Design

and Automation Conf., vol. 32-2, 1991, pp. 397–402.

118. Z. Ran, Enumerative geometry of singular plane curves, Invent. Math. 97 (1989), no. 3,
447–465.

119. F. Ronga, A. Tognoli, and Th. Vust, The number of conics tangent to 5 given conics: the

real case, Rev. Mat. Univ. Complut. Madrid 10 (1997), 391–421.

120. F. Ronga and Th. Vust, Stewart platforms without computer?, Real Analytic and Algebraic
Geometry, Proceedings of the International Conference, (Trento, 1992), Walter de Gruyter,
1995, pp. 196–212.

121. J. Rosenthal and F. Sottile, Some remarks on real and complex output feedback, Systems

Control Lett. 33 (1998), no. 2, 73–80.
122. F. Rouillier, Solving zero-dimensional systems through the rational univariate representation,

Appl. Algebra Engrg. Comm. Comput. 9 (1999), no. 5, 433–461.

123. J. Ruffo, Y. Sivan, E. Soprunova, and F. Sottile, Experimentation and conjectures in the real

Schubert calculus for flag manifolds, Experiment. Math. 15 (2006), no. 2, 199–221.
124. K. Rusek, J. Shakalli, and F. Sottile, Dense fewnomials, arXiv.org/1010.2962, 2010.
125. V. Schechtman and A. Varchenko, Arrangements of hyperplanes and Lie algebra homology,

Invent. Math. 106 (1991), no. 1, 139–194.
126. C. Scheiderer, Sums of squares of regular functions on real algebraic varieties, Trans. Amer.

Math. Soc. 352 (2000), no. 3, 1039–1069.

127. I. Scherbak and A. Varchenko, Critical points of functions, sl2 representations, and Fuchsian

differential equations with only univalued solutions, Mosc. Math. J. 3 (2003), 621–645, 745.
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⋖, cover in a poset, 91, 126

A, support of a polynomial, 3, 26

A+, lift of A, 30

α(κ), sequence associated to a subset

κ ⊂ [m], 174

β(κ), sequence associated to a subset
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([m+p]

p

)

, Bruhat order, 97

, Schubert condition (m,m+2, . . . ,m+p),
117, 122

C, complex numbers, 1

C∗, nonzero complex numbers, 1

Cm,p, product of chains, 96

C{t}, field of Puiseaux series, 34
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Im,p, Plücker ideal, 98

inω(F ), facial system, 33

inω(f), initial form, 33, 40

inω(XA), initial scheme, 40

Ka, Kostka number, 143

‖κ‖ = κ1 + · · ·+ κk, sum of a sequence, 174

λ(P ), number of linear extensions of poset
P , 92

LG(m), Lagrangian Grassmannian, 175

lg(w), length of a permutation, 103, 179

mdeg(ρ), mapping degree of ρ, 19

MH, complement of hyperplane
arrangement, 63

m(ω,A), minimum value of ω on A, 33

MV(K1, . . . ,Kn), mixed volume of convex
bodies K1, . . . ,Kn, 3, 27

N, natural numbers, 1

[n], set of integers {1, 2, . . . , n}, 2

OG(m), orthogonal Grassmannian, 173

OP , order polytope of poset P , 92

PA, projective space with coordinates

indexed by A, 27

ϕA, monomial parameterization, 27

Pn, complex projective space, 2

Pω , lifted polytope, 42

ψ, affine-linear map, 63

Q, rational numbers, 1

R, real numbers, 1

R∗, nonzero real numbers, 1

R>, positive real numbers, 1, 65

Rn
>, positive orthant, 49

ρ, rational function, 19

195



196 INDEX OF NOTATION

Rp+1, real rational functions of degree p+1
with only real critical points, 135

RPA
≥0, nonnegative orthant, 83

RPn, real projective space, 2

σm,p, degree of real Wronski map, 10
σ(ω), signature of a foldable triangulation,

85

σ(P ), sign-imbalance of poset P , 92
sign(w), sign of permutation w, 93
SN , symmetric group, 149
Sn, n-dimensional sphere, 80

Sω , regular subdivision, 42
St(p,m+p), Stiefel manifold, 96
StR(2, p+1), real Stiefel manifold, 134

T, nonzero complex numbers C∗, 1, 3, 26

TR, nonzero real numbers R∗, 1, 65
TxX, tangent space of X at x, 11

ubcD(C), number of unbounded

components of curve C, 67

VD(g1, . . . , gm), common zeroes of gi in D,
67

var(c), variation in a sequence c, 14

var(F, a), variation in a sequence F of
polynomials at a ∈ R, 14

Vµ, highest weight module, 153

volume(∆), volume of polytope ∆, 3, 26

Wκ,c(x), Wronski polynomial, 85
Wr, Wronski map, 5
Wr(f1, . . . , fm), Wronskian of f1, . . . , fm, 5

WrR, real Wronski map, 11

XA, toric variety, 29
XA, toric degeneration, 40
xa, monomial, 3

XαF•, Schubert variety, 117
X◦

αF•, Schubert cell, 126
X(l, n), Khovanskii number, 4, 49, 50

XR(l, n), Khovanskii number, 50
XwB, Schubert variety, 179

YA, real part of toric variety XA, 79
Y +
A , spherical toric variety, 80

YA,>, positive part of toric variety XA, 88

Z, integers, 1
ZA, integer affine span of A, 28

Zn, integer lattice, 2
[Zn : ZA], lattice index, 28



Index

2875, lines on a quintic threefold, 77

3264, conics tangent to five conics, 105, 109

affine span, 5, 26, 28

algebraic moment map, 83

algorithm

Buchberger, 18

Euclidean, 16, 20, 23

Pieri homotopy, 128

Avendaño, Mart́ın, 55
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