
8.3 Central Projection
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Chapter 9

Schubert Calculus

9.1 Grassmann Varieties

Grassmann varieties (or Grassmannians) are a class of algebraic varieties which are
extremely important in mathematics and its applications. One reason for this is that
many problems involving matrices have a geometric reformulation in terms of the
Grassmannian. This leads to the use of the Grassmannian in some applications, which
we will cover in in Part III. This geometric reformulation often turns a question about
matrices into a question about certain Schubert subvarieties of the corresponding
Grassmannian.

Fortunately for us, these Grassmann varieties have been intensively studied. They
have many interesting structures which have useful properties. In this chapter, we
will describe some of these structures which will be important in Part III.

Definition 9.1 Let 0 < p,m be integers, set n := m + p and suppose V is an n-
dimensional F-vector space. The set of all p-dimensional linear subspaces of V is
called the Grassmannian of p-planes in V . We will write Grass(p, V ) or Grass(p, n)
for this set. By Definition 8.1 of projective space, Grass(1, V ) = P(V ).

The row space of a p×n matrix X = (xi,j) with full rank is a p-dimensional linear
subspace M of Fn. Let Mat◦p×nF be the collection of matrices with full rank, also
called the affine Steifel manifold. The association

X 7−→ row space X

defines a surjective map

Mat◦p×nF −։ Grass(p, n) . (9.1)

This map is not injective. If T ∈ GLpF, then TX and X have the same row space.
Conversely, if matrices X and X ′ have the same row space M , then X = TX ′, where
T ∈ GLpF is the matrix transforming the basis of M given by the row vectors of
X ′ into the basis of row vectors of X. In this way, we identify the Grassmannian
Grass(p, n) as the set of orbits of GLpF acting on the affine Steifel manifold Mat◦p×nF.

We realize Grass(p, n) as a projective variety via its Plücker embedding. Suppose
a p-plane M is the row space of a p × n matrix X. The

(

n

p

)

maximal (p × p) minors
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of X are the Plücker coordinates of M . (A maximal minor of X is the determinant
of any p × p-submatrix of X:

zα(X) := det







x1,α1 · · · x1,αp

...
. . .

...
xp,α1 · · · xp,αp







where 1 ≤ α1 < · · · < αp ≤ n are the columns of X involved in this determinant.)
Any other matrix with row space M has the form TX, for some T ∈ GLpF, and
the p × p minors of TX differ from those of X by the scalar multiple detT . Thus
the Plücker coordinates of M ∈ Grass(p, n) determine a point in the projective space

P
(n

p)−1.
Write

(

[n]
p

)

for the set of increasing sequences α : 1 ≤ α1 < · · · < αp ≤ n which

index these maximal minors. For each α ∈
(

[n]
p

)

, let zα be the corresponding Plücker

coordinate of P
(n

p)−1.
We give another description of the Plücker embedding of Grass(p, V ) using the

pth exterior power
∧p V of V . If M is a linear subspace of V , then

∧p M is a linear
subspace of

∧p V . When M is p-dimensional,
∧p M is 1-dimensional, and hence is a

point in P(
∧p V ). In this way, we get the Plücker embedding

Grass(p, V ) −→ P(
∧pV )

M 7−→ ∧pM

To see that this coordinate-free description gives the same map as before, suppose
V has a basis e1, . . . , en. Recall that

∧p V has a basis consisting of the decomposable
tensors

eα := eα1 ∧ · · · ∧ eαp
for α ∈

(

[n]

p

)

.

Let X = (xij) be a p × n matrix with row space M ∈ Grass(p, V ). Then M has a
basis given by the row vectors vi :=

∑n

j=1 xijej of X. Using the multilinearity and
alternating relations, we see that

v1 ∧ · · · ∧ vp =
∑

α∈([n]
p )

zα(X)eα .

Since the decomposable tensor v1∧· · ·∧vp spans the 1-dimensional subspace
∧p M , the

zα(X) provide homogeneous coordinates for
∧p M with respect to the basis {eα} of

∧p V . We call them the Plücker coordinates of M . This shows the equality of the two
descriptions of the Plücker embedding, and also that the image of the Grassmannian
is the collection of all decomposable tensors.

We now prove that this Plücker map is actually an embedding.

Theorem 9.2 The association of a p-plane M to its Plücker coordinates defines an

injective map Grass(p, n) → P
(n

p)−1 whose image is a smooth irreducible subvariety of
dimension mp = p(n − p).
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We will identify Grass(p, n) with its image under the Plücker embedding.

Proof: We show that the intersection of the image with each affine piece Uα := {[zβ] ∈
P
(n

p)−1 | zα 6= 0} for α ∈
(

[n]
p

)

of Plücker space is a smooth irreducible subvariety

isomorphic to Matp×m, and this intersection is in bijection with those M ∈ Grass(p, n)
whose αth Plücker coordinate is non-zero. It suffices to do this for the index α =
(1, 2, . . . , p), as the general case follows by permuting the basis e1, . . . , en of Fn = V .

Let Gα ⊂ Grass(p, n) be the subset consisting of those p-planes whose αth Plücker
coordinate is non-zero. Then Gα is the inverse image of the affine piece Uα under the
Plücker map. If we represent a p-plane M ∈ Gα as the row space of a p × n matrix
X, then the first p columns of X form an invertible matrix T ∈ GLpF, as its (non-
vanishing) determinant is the αth Plücker coordinate of M . Replacing X by T−1X,
we see that we may assume that a p-plane M ∈ Gα is the row space of a matrix of
the form

[Ip : Y ] , (9.2)

where Ip is the p × p identity matrix and Y ∈ Matp×m. Conversely, given a matrix
Y ∈ Matp×m, the row space M of the matrix (9.2) is a p-plane in Gα. Thus the
association

Matp×m −→ Gα

Y 7−→ row space [Ip : Y ]

defines a bijection of Matp×m with Gα.

For each i = 1, . . . , p and j = 1, . . . ,m, let β(i, j) ∈
(

[n]
p

)

be the index

β(i, j) = 1, 2, . . . , i−1, i+1, . . . , p, p + j .

Then the β(i, j)th maximal minor of the matrix (9.2) is (−1)p−iyij, where yij is the
i, jth entry in the matrix Y . In this way, we see that the composition

Matp×m −→ Gα −→ Uα (9.3)

is one to one, and hence Gα is in bijection with its image. Since the maximal minors of
the matrix (9.2) are polynomials in the entries of Y ∈ Matp×m, the composition (9.3)
is a regular map. We claim that its image is an affine subvariety of Uα, which proves

that the image of Grass(p, n) in P
(n

p)−1 is a closed subvariety.
For this, we identify Matp×m with the coordinate subspace of Uα spanned by the

zβ(i,j) for i = 1, . . . , p and j = 1, . . . ,m, where yij corresponds to (−1)p−izβ(i,j) and
set AN to be the complementary coordinate subspace. Then the image of Gα in Uα ≃
Matp×m × AN is the graph of the map obtained by following the composition (9.3)
with the projection Uα ։ AN . This shows that the image of Gα is a closed subvariety
of Uα, as the graph of a regular map is Zariski closed, by Lemma 8.15.

Since the image of Gα is the graph of a regular map Matp×m → AN, it is isomor-
phic to Matp×m, and hence smooth and irreducible. Since each Gα is dense in the
Grassmannian and the Grassmannian is the union of the Gα, this completes the proof
of the theorem.
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Remark 9.3 Another way to see that Grass(p, n) is smooth and irreducible uses
group actions. The general linear group acts on

∧p V by g(v1 ∧ · · · ∧ vp) = (gv1) ∧
(gv2) ∧ · · · ∧ (gvp). This functoriality of exterior powers gives and action of GL(V )
in P(

∧p V ), and Grass(p, V ) is a single orbit of this action. Thus it is smooth, by
Theorem 6.58. Similarly, the irreducibility of GL(V ) implies that Grass(p, V ) is
irreducible. Since Grass(p, V ) is a closed subvariety of Plücker space, it is a minimal
orbit of this action, by Theorem 6.58.

Remark 9.4 In the proof of Theorem 9.2, we identify Matp×m with an affine open
subset G(1,2,...,p) of Grass(p, n) via

Matp×m ∋ Y 7−→ row space [Ip : Y ] ∈ Grass(p, n) . (9.4)

This shows that the set of p×m matrices give a system of local coordinate charts for
the Grassmannian.

The identification (9.4) of Matp×m with an open subset of Grass(p, n) shows that
Grass(p, n) is a compactification of the set of p×m matrices. Under this identification,
the Plücker coordinates are all minors of all possible sizes of the p × m matrix Y .
This suggests that the Grassmannian is a good choice of compactification for Matp×m

when we are studying equations involving various minors of matrices in Matp×m.
This identification of an open subset of Grass(p, V ) as a set of matrices has a

coordinate-free description. Choose a p-plane H ∈ Grass(p, V ) and a complementary
m-plane K ⊂ V with K ∩ H = {0} so that H ⊕ K = V . Given a linear map
ϕ : H → K, its graph

Γϕ := {(x, ϕ(x)) | x ∈ H}
is a p-plane in V which is complementary to K, and every p-plane complementary
to K arises as the graph of a linear map ϕ : H → K. In this way, we identify
{M ∈ Grass(p, V ) | M ∩ K = {0}} with the space Hom(H,K) of linear maps from
H to K, which is isomorphic to Matp×m.

Thus we see that the (Zariski) tangent space ThGrass(p, V ) to the Grassmannian
Grass(p, V ) at a point H is isomorphic to Hom(H,K) or to Matp×m. We remove
the dependence of this identification on the choice of K by observing that if K is
complementary to H, then the composition

K →֒ V ։ V/H

is an isomorphism, and so we may canonically identify Hom(H,K) with Hom(H,V/H),
and hence we obtain the following proposition.

Proposition 9.5 The Zariski tangent space to the Grassmannian Grass(p, V ) at a
point H is naturally identified with Hom(H,V/H).

Remark 9.6 In the proof of Theorem 9.2, we identified Matp×m with a coordinate
subspace of U(1,2,...,p) and we also showed that Grass(p, n) ∩ U(1,2,...,p) is the graph
of the map Matp×m → AN given by the p × p maximal minors of the matrix (9.4)
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involving at least 2 columns in the range p + 1, . . . , p + m. This gives the following
inhomogeneous system of equations for Grass(p, n) ∩ U(1,2,...,p)(= G(1,2,...,p):

zγ = γth maximal minor of [Ip : Y ] , (9.5)

under the substitution yij = (−1)p−izβ(i,j). These maximal minors include minors
of all sizes of the matrix X. Homogenizing these equations with the coordinate
function z(1,2,...,p), we obtain a set of valid equations for Grass(p, n), which defines

Grass(p, n) ∩ U(1,2,...,p). For each index α ∈
(

[n]
p

)

, we obtain a similar set of valid

equations for Grass(p, n) by considering equations for Grass(p, n) ∩ Uα.

We close with a discussion of the homogeneous ideal Im,p of Grass(p, n) in P
(n

p)−1,
called the Plücker ideal. By Remark 9.6, the Plücker ideal has generators of degree
at most min{m, p}.

When p = 2 we have β(1, j) = (2, 2+j) and β(2, j) = (1, 2 + j), and the equa-
tions (9.5) are relevant when γ is not equal to (1, 2) or to some β(i, j). That is, when
γ = k < l with 2 < k. Then we obtain the equation.

zkl = det

(

y1,k−2 y1,l−2

y2,k−2 y2,l−2

)

= det

(

−z2k −z2l

z1k z1l

)

= −z1lz2k + z1kz2l .

Homogenizing with respect to the coordinate z12, we obtain z1lz2k−z1kz2l+z12zkl = 0.
If we permute the indices (changing α), then we obtain the system of equations

0 = zilzjk − zikzjl + zijzkl for 1 ≤ i < j < k < l ≤ n . (9.6)

For example, when n = 4, we obtain the equation (4.3) of Section 4.3. When n = 5,
the Grassmannian Grass(2, 3) is defined by the 5 equations

z14z23 − z13z24 + z12z34

z15z23 − z13z25 + z12z35

z15z24 − z14z25 + z12z45

z15z34 − z14z35 + z13z45

z25z34 − z24z35 + z23z45

(9.7)

This collection of quadratic trinomials turns out to be the reduced Gröbner basis for
the Plücker ideal, which we analyze in detail in the next section.

9.2 Equations for the Grassmannian

We describe a quadratic Gröbner basis for the homogeneous Plücker ideal of the
Grassmannian which generalizes the equations given in the last section when p = 2.
The combinatorics of this Gröbner basis enable the computation of the Hilbert series
of the Grassmannian.

A first step is to identify the Plücker ideal of the Grassmannian. For each α ∈
(

[n]
p

)

,
let zα be an indeterminate—these are the Plücker coordinates. Let xi,j for i = 1, . . . , p
and j = 1, . . . , n be indeterminates, which we view as entries of a generic p×n matrix,
X = (xi,j). Let φm,p be the map

φm,p : F[zα] 7−→ F[xi,j] ,

which sends a coordinate zα to the αth maximal minor of the matrix X = (xi,j).
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Theorem 9.7 The Plücker ideal Im,p is the kernel of the map φm,p.

Proof: Under the algebraic-geometric dictionary of Theorem 6.39, the map φm,p cor-

responds to the map Matp×n → A
(n

p) which sends a matrix to its
(

n

p

)

-tuple of maximal
minors. The image of this map is the affine cone over the Grassmannian, and thus it

is the subvariety of A
(n

p) defined by the Plücker ideal Im,p.

Thus the Plücker ideal is the ideal of algebraic relations among the maximal minors
of a generic matrix. It has an important corollary for Linear Algebra, which is valid
over any field.

Corollary 9.8 An
(

n

p

)

-tuple of numbers (zα | α ∈
(

[n]
p

)

) are the
(

n

p

)

maximal minors
of a matrix Y ∈ Matp×n if and only if every polynomial in the Plücker ideal vanishes
at that

(

n

p

)

-tuple.

Thus a finite list of generators for Im,p, gives an effective algorithm to decide when
a given list of numbers are the maximal minors of a matrix. We deduce another,
algebraic corollary to Theorem 9.7.

Corollary 9.9 The coordinate ring of the Grassmannian is isomorphic to the subring
of F[xi,j] generated by the maximal minors of the matrix X = (xi,j).

We will study this subring and use it to show that a certain collection of monomials
in F[zα] are linearly independent in the coordinate ring of the Grassmannian. After
we construct a Gröbner basis for the Plücker ideal, we will see that these monomials
are the standard monomials from the theory of Gröbner bases, and thus are a basis
for the coordinate ring of the Grassmannian.

We introduce some algebraic combinatorics to help describe this Gröbner basis.
The set

(

[n]
p

)

of sequences α : 1 ≤ α1 < · · · < αp ≤ n has a natural partial order,
called the Bruhat order

α ≤ β ⇐⇒ αi ≤ βi for i = 1, . . . , p .

We write Ym,p for the resulting partially ordered set (or poset) and call it Young’s
lattice. Figure 9.1 shows Y3,2.

A monomial zα · zβ · · · zγ in the Plücker coordinates is standard if it is sorted, that
is, if α ≤ β ≤ · · · ≤ γ in the Bruhat order on Ym,p. We derive some facts about these
standard monomials to show that we have a Göbner basis for the Plücker ideal.

Theorem 9.10 The set of standard monomials are linearly independent in the coor-
dinate ring F[zα]/Im,p of the Grassmannian.

We work in the ring F[xi,j] to prove this. Linearly order the variables xi,j in this
ring by the lexicographic order on (i,−j). Thus

x1,n < · · · < x1,2 < x1,1 < x2,n · · · xp,n < · · · < xp,2 < xp,1 .

Let ≺drl be the resulting degree reverse lexicographic monomial order on the ring
F[xi,j].
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Figure 9.1: Young’s Lattice, Y3,2, for p = 2 and m = 3.

Lemma 9.11 The initial term of a maximal minor φm,p(zα) ∈ F[xi,j] is

x1,α1 x2,α2 · · · xp,αp
.

Proof: Consider the minor φm,p(zα)

φm,p(zα) = det







x1,α1 · · · x1,αp

...
. . .

...
xp,α1 · · · xp,αp






.

In any term of this minor, the largest variable is the one from the last row. Thus
the largest term in the reverse lexicographic order must include the smallest such
variable xp,αp

. Among all such terms, the largest term must include the smallest next
variable xp−1,αp−1 . Continuing in this fashion, we see that the largest term of φm,p(zα)
is x1,α1x2,α2 · · ·xp,αp

.

Let f = c · zαzβ · · · zγ with zαzβ · · · zγ a standard monomial (so that α ≤ β ≤
· · · ≤ γ in the Bruhat order). By Lemma 9.11, the initial term of φm,p(f) is

c · x1,γ1 · · ·x1,β1x1,α1 x2,γ2 · · ·xp−1,αp−1 xp,γp
· · ·xp,βp

xp,αp
,

and this term is written in order from smallest to largest variable.
Observe that we can recover the standard monomial f from this initial term. Thus

the polynomials {φm,p(f) | f is a standard monomial} have distinct initial terms,
which implies they are linearly independent. By Corollary 9.9, this proves Theo-
rem 9.10.

We derive a collection of valid quadratic relations in the Plücker ideal, called
the Van der Waerden syzygies. To simplify our notation, we extend our indexing of
Plücker coordinates to arbitrary sequences i1, . . . , ip of integers between 1 and n by
setting

zi1,...,ip = −zi1,...,ij−1,ij+1,ij ,ij+2,...,ip .
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That is, if we permute the indices i1, . . . , ip, the coordinate zi1,...,ip changes by the
sign of the corresponding permutation, and if there are repeated indices, then the
coordinate is zero.

Let A,B, and C be sequences of numbers from [n] of respective lengths t − 1,
p+1, and p− t. For a subset I ⊂ [p+1] let BI be the subsequence of B consisting of
the elements in the positions indexed by I, and BIc the complementary subsequence
of B. Define the Van der Waerden syzygy [AḂC] to be

[AḂC] :=
∑

I∈([p+1]
t )

(−1)
P

j ij−j zA, BIc · zBI , C .

Example 9.12 When A = 1, B = 2, 3, 4, 5, and C = 6, we have p = 3 and t = 2 and
so [AḂC] is

z145 z236 − z135 z246 + z134 z256 + z125 z346 − z124 z356 + z123 z456 . (9.8)

Theorem 9.13 Each Van der Waerden syzygy is a valid relation in the Plücker ideal.

Proof: Let X,Y , and Z be sequences of vectors in Fp of respective lengths t−1, p+1,
and p−t. For each I ∈

(

[p+1]
t

)

, define xI and yI to be the determinants

xI := det[X : YIc ] and yI := det[YI : Z] ,

where the matrices are the concatenation of the given lists of column vectors, YI is
the subsequence of Y consisting of the elements in the positions indexed by I, and
YIc the complementary subsequence.

Consider the following expression

Φ(X,Y, Z) :=
∑

I∈([p+1]
t )

(−1)
P

j ij−j xI · yI .

If the vectors in X and Z are fixed, then Φ(X,Y, Z) is a function of the sequence
of vectors Y ⊂ Fp. This is in fact a multilinear p + 1 form, as each summand is
multilinear, being a product of determinants. We claim that it is alternating, which
implies it is identically zero. (Recall from multilinear algebra that an alternating
p + 1-form on p-dimensional space is identically zero.)

To show that Φ is alternating, suppose Ya = Ya+1. There are three kinds of
summands in Φ(X,Y, Z):

1. Those in which a ∈ I and a + 1 6∈ I,

2. those in which a 6∈ I and a + 1 ∈ I, and

3. those in which either a, a + 1 ∈ I or else a, a + 1 6∈ I.

Switching the positions of a and a + 1 pairs each term of the first kind with a term
of the second. These terms are equal, but have opposite signs, and so they cancel.
Terms of the third kind are zero, since they involve a determinant with two equal
columns. Thus Φ(X,Y, Z) = 0, for every choice of X,Y, Z.
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To see this implies that φm,p([AḂC]) = 0 for any choice of A,B,C, let M be a
p × n matrix and let X, Y , and Z be column vectors of M from columns A, B, and
C, respectively. Under this specialization, φm,p([AḂC])(M) = Φ(X,Y, Z) = 0. Thus
φm,p([AḂC]) vanishes on any p×n matrix, and so [AḂC] ∈ Im,p, as claimed.

These Van der Waerden syzygies in fact form a Gröbner basis for the Plücker
ideal, and a subset gives a minimal Gröbner basis. We describe that subset. Suppose
we are given a pair α, β ∈ Ym,p with α 6≤ β. There there is some index t with αi ≤ βi

for i < t but αt > βt. We say that the pair (α, β) has violation t. The violation of a
pair (γ, δ) with γ ≤ δ is p + 1.

Given α 6≤ β, set A := α1 < · · · < αt−1, B := β1 < · · · < βt < αt · · · < αp, and
C := βt+1 < · · · < βp. Then the straightening syzygy S(α, β) of the pair α, β is the
Van der Waerden syzygy [AḂC]. For example, the syzygy of Example 9.12 is the
straightening syzygy when α = 145 and β = 236. Also the polynomial in (9.6) is the
straightening syzygy S((i, l), (j, k)). These are called straightening syzygies because
of the following lemma.

Lemma 9.14 Suppose α, β ∈ Ym,p with α 6≤ β. Then every term of the straightening
syzygy S(α, β) has the form ±zγzδ with γ, δ ∈ Ym,p where γ ≤ α and β ≤ δ. Further-
more, the violation of the pair (γ, δ) is at least that of (α, β), with equality only when
(γ, δ) = (α, β).

Thus if α 6≤ β, S(α, β) rewrites the term zαzβ as a linear combination of products
zγzδ with later violation, modulo the Plücker ideal. Rewriting any resulting incom-
parable pairs using their straightening syzygies, and so on, we see that zαzβ is equal
to a linear combination of terms zγzδ with γ ≤ δ, that is, a linear combination of
standard monomials.

Proof: Suppose α, β ∈ Ym,p with α 6≤ β. Consider the term of S(α, β) indexed by

I ∈
(

[p+1]
t

)

(−1)
P

j ij−j zA, BIc · zBI , C ,

where A,B,C are as given in the definition of straightening syzygy.
Let zγ := ±zA, BIc with γ ∈

(

[n]
p

)

, so that γ is obtained by sorting the list (A,BIc).

Let i ∈ [p]. If i < t, then γi is the ith smallest element of (A,BIc), which is at most
αi, the ith smallest element of A. If i ≥ t, then γi is the (p + 1− i)th largest element
of (A,BIc), which is at most αi, the (p + 1 − i)th largest element of (A,B). Thus
γ ≤ α in the Bruhat order. Let δ be obtained by sorting the list (BI , C) so that
zδ = ±zBI ,C . Similar arguments show that β ≤ δ in the Bruhat order.

Let s be the violation of (γ, δ) and t the violation of (α, β). We must have s ≥ t
as γi ≤ αi ≤ βi ≤ δi for i < t. Assume that α 6= γ and so β 6= δ. Let c be the smallest
(first) number in BIc and d the largest (last) number in BI . Since α 6= γ, we must
have c ≤ βt < αt ≤ d. Either γt = c or else γt ≤ αt−1(< βt), as bubble-sorting the
sequence (A,BIc) shows. Similarly, either δt = d or else βt+1 ≤ δt. In each of the four
possibilities, we have γt < δt and so t < s.
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We use Lemma 9.14 and Theorem 9.10 to show that the straightening syzygies
constitute a Gröbner basis for the Plücker ideal. We must first endow F[zα] with a
monomial order. Linearly order the Plücker coordinates using lexicographic order <l

on their indices. For example, with p = 2 and m = 3, the Plücker coordinates are, in
increasing order,

z12, z13, z14, z15, z23, z24, z25, z34, z35, z45 .

We assume that any monomial in the Plücker coordinates is written with the variables
in order from least to greatest in this lexicographic order. Since <l is compatible with
the Bruhat order (it is a linear extension of the Bruhat order) this conforms to our
convention for writing standard monomials.

Let ≻drl be the resulting degree reverse lexicographic monomial order on F[zα],
that is

zα(1) · · · zα(m) ≻drl zβ(1) · · · zβ(s) ,

if either m > s or else m = s and we have some j ≤ m with

α(m) = β(m), . . . , α(j+1) = β(j+1), but α(j) <l β(j) .

The underlined terms in the generators of I2,3 in (9.7) are the initial terms in this
monomial order.

Theorem 9.15 The straightening syzygies S(α, β) with α <l β and α, β incompara-
ble in the Bruhat order (α 6≤ β) form a minimal Gröbner basis for the Plücker ideal
Im,p with respect to the monomial order ≻drl .

Let α <l β with α 6≤ β in the Bruhat order. By Lemma 9.14, any term ±zγzδ in
the straightening syzygy S(α, β) satisfies γ ≤ α and β ≤ δ so in particular γ <l α <l

β <l δ. This implies that the initial term of S(α, β) is zαzβ.
Let IC be the set of pairs (α, β) with α <l β and α, β incomparable (α 6≤ β) in

Ym,p. Let NS be the monomial ideal of the non-standard monomials. Then we have

NS = 〈zαzβ | (α, β) ∈ IC〉 = 〈in≻drl
S(α, β) | (α, β) ∈ IC〉 .

Since the straightening syzygies lie in the ideal Im,p of the Grassmannian, NS is a
subset of the initial ideal in≻drl

Im,p of the Plücker ideal. Thus we obtain maps of
F-vector spaces

F[zα]/NS −→ F[zα]/in≻drl
Im,p −→ F[zα]/Im,p .

(The second is the isomorphism of Theorem 7.12.) The first map is a surjection,
and the second is an isomorphism. Since the standard monomials give a F-basis for
the quotient ring F[zα]/NS, Theorem 9.10 implies that the composition is injective,
and hence both maps are isomorphisms. Thus the straightening syzygies constitute
a Gröbner basis for the Plücker ideal. This completes the proof of Theorem 9.15.

We now describe the form of the reduced Gröbner basis of the Plücker ideal Im,p.
Because the straightening syzygies S(α, β) for α <l β with α, β incomparable have
distinct initial terms zαzβ, they are linearly independent. Thus we obtain an element
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R(α, β) of the reduced Gröbner basis with initial term the non-standard monomial
zαzβ by reducing the straightening syzygy S(α, β) modulo the other straightening
syzygies.

The reduction is accomplished more generally for any straightening syzygy S(α, β)
using the straightening algorithm that rewrites any zαzβ with α 6≤ β in terms of
standard monomials. Given α 6≤ β, let t be the violation of the pair and construct
S(α, β). Then all terms ±zδzγ of S(α, β) have violation s > t (except the term
zαzβ). Initialize f := S(α, β). Given any non-standard term czγzδ of f with violation
s > t, replace f by f − cS(δ, γ)), canceling this term. Continuing in this fashion, we
straighten zαzβ and obtain a quadratic polynomial R(α, β) ∈ Im,p of the form

zαzβ − linear combination of standard monomials .

For example, suppose α = 245 and β = 136. This pair has violation at position
1. Then

S(245, 136) = z245z136 − z145z236 − z125z346 + z124z356 .

We now straighten the non-standard term z145z236 (with violation 2) using the straight-
ening syzygy S(145, 236) of (9.8) to obtain

z245z136 − z135z246 + z134z256 + z123z456 . (9.9)

Since all terms (besides the initial term) are standard, this is the element R(245, 136)
of the reduced Gröbner basis.

By Lemma 9.14, any standard term czγzδ of R(α, β) with γ ≤ δ satisfies γ ≤
α and β ≤ δ. Suppose that we straighten the pair α, β in the reverse order to
obtain R(β, α). Then R(α, β) = R(β, α), as the standard monomials are linearly
independent. For example, R(136, 245) is equal to S(136, 245), and this equals the
polynomial R(245, 136) computed above. Thus if α, β are incomparable, the non-
initial terms czγzδ of R(α, β) satisfy γ ≤ α, β and α, β ≤ δ.

To complete our description of the elements R(α, β) of the reduced Gröbner basis,
we describe the lattice structure of Young’s lattice, which is a distributive lattice.
Given α, β ∈ Ym,p let α ∧ β be the meet, or greatest lower bound of α and β, and
α∨β be the join, or least upper bound of α and β in the Bruhat order. These lattice
operations are defined as follows.

(α ∧ β)i := min{αi, βi} ,

(α ∨ β)i := max{αi, βi} .

For example, if m = p = 4 and α = 1458 and β = 2367, then

α ∧ β = 1357 and α ∨ β = 2468 .

For α, β, γ ∈ Ym,p, they are distributive

α ∨ (β ∧ γ) = (α ∨ β) ∧ (α ∨ γ) ,

α ∧ (β ∨ γ) = (α ∧ β) ∨ (α ∧ γ) .

81



Theorem 9.16 With respect to the monomial order ≻drl , the Plücker ideal has a
reduced Gröbner basis with generators R(α, β) indexed by incomparable pairs α, β in
Young’s lattice Ym,p whose initial two terms are

zα · zβ − zα∧β · zα∨β .

Moreover, if λzγzδ is any non-initial term in R(α, β), then we have γ ≤ α ∧ β and
α ∨ β ≤ δ.

Proof: The only part left to prove is the statement that R(α, β) contains the term
−zα∧β · zα∨β. Observe that if zγzδ ≻drl zρzκ, then inφm,p(zγzδ) ≻drl inφm,p(zρzκ).

Thus the largest possible initial term in(zδzγ) for δ ≤ α, β and α, β ≤ γ occurs
with inφm,p(zα∧β · zα∨β). By Lemma 9.11 this is

x1,α1x1,β1x2,α2x2,β2 · · · xp,αp
xp,βp

,

which equals inφm,p(zαzβ). Thus the term −zα∧β · zα∨β must occur in R(α, β), as it
is the only possible term that can cancel this monomial in φm,p(zαzβ).

The form of this Gröbner basis implies a stronger result concerning different mono-
mial orders.

Theorem 9.17 Let < be any linear extension of the Bruhat order and let ≻drl be the
resulting degree reverse lexicographic monomial order on F[zα]. Then the polynomials
R(α, β) for α, β incomparable in the Bruhat order constitute the reduced Gröbner basis
for the Plücker ideal with initial term zαzβ.

Proof: Suppose α and β are incomparable and let R(α, β) be the polynomial of The-
orem 9.16. Then every term c · zγzδ of R(α, β) satisfies δ ≤ α and β ≤ δ, as these are
comparable in the Bruhat order. Thus zαzβ ºdrl zγzδ, and so zαzβ is the initial term
of R(α, β). The same arguments as in the proof of Theorem 9.15 suffice to establish
this theorem.

By Theorem 9.16, the initial ideal in(Im,p) of the Plücker ideal is generated by all

monomials zαzβ with α, β ∈
(

[n]
p

)

incomparable in Young’s Lattice. This combinatorial
description enables us to write the initial ideal as an intersection of prime ideals, each
the ideal of a coordinate linear subspace of dimension mp. For this, let Qm,p be the
set of (saturated) chains in Young’s lattice. Examining Figure 9.1, we see that

Q3,2 = { {12, 13, 14, 15, 25, 35, 45} , {12, 13, 14, 24, 25, 35, 45} ,

{12, 13, 14, 24, 34, 35, 45} , {12, 13, 23, 24, 34, 35, 45} ,

{12, 13, 23, 24, 25, 35, 45} }

Lemma 9.18 Let Im,p be the Plücker ideal. Then

in≻drl
(Im,p) =

⋂

q∈Qm,p

〈zγ | γ 6∈ q〉 .
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Proof: If zαzβ is a generator of in(Im,p), then α and β are incomparable in Young’s
lattice. Thus if q ∈ Qm,p is a saturated chain, at most one of α or β lies in q, and so
zαzβ lies in the ideal 〈zγ | γ 6∈ q〉.

Suppose now that z is a monomial not in in≻drl
(Im,p). Then z is standard, and so

we have z = zα(1) · zα(2) · · · zα(m) with α(1) ≤ α(2) ≤ · · · ≤ α(m). Then there is some
chain q ∈ Qm,p containing the indices α(1), . . . , α(m) and so the monomial z does not
lie in the ideal 〈zγ | γ 6∈ q〉. This proves the equality of the two monomial ideals of
the lemma, by Proposition 7.5.

Each ideal 〈zγ | γ 6∈ q〉 defines the coordinate subspace of Plücker space spanned
by the coordinates zα with α ∈ q, which is isomorphic to Pmp. Thus V(in≻drl

(Im,p)) is
the union of these coordinate subspaces, and so it has degree equal to their number.
We deduce

Corollary 9.19 The degree of the Grassmannian in its Plücker embedding is the
number of maximal chains in Young’s Lattice.

Proof: The degree of the Grassmannian is the degree of its ideal Im,p. By Macaulay’s
Theorem??????, deg(Im,p) = deg(in(Im,p)), and this is equal to the number of chains
in Young’s lattice, by Lemma 9.18.

The number dm,p of chains in Young’s Lattice has a closed formula

dm,p =
1! 2! 3! · · · (p−2)! (p−1)! · (mp)!

m! (m+1)! (m+ 2)! · · · (m+p−1)!
. (9.10)

When p = 2, we have dm,2 = 1
m+1

(

2m

m

)

, which is a Catalan number. (See Table 7.1.)

Hilbert Series

Notes.
The results of this section are due to W.V.D. Hodge [20], although he did not use

the language of Gröbner bases. Hodge invented the term standard monomial in this
context. B. Sturmfels and N. White were inspired by Hodge’s use of the term and
introduced it into the theory of Gröbner bases [43].

Exercise 9.1 Prove that the operations ∧ and ∨ on endow Ym,p with the structure
of a distributive lattice, that is, they give the greatest lower bound and least upper
bound, and they are distributive.

Exercise 9.2 A linear extension of a poset P is a linear order on the elements of the
poset that is compatible with the given order. Show that the lexicographic order <l

on Ym,p is a linear extension of Ym,p.

Exercise 9.3 Do the following in any computer algebra system.

(a) Write a program which generates a given Van der Waerden syzygy [AḂC].
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(b) Write a program that, given m and p, generates the collection of straightening
syzygies S(α, β) for (α, β) ∈ IC.

(c) Write a program that, given m and p, generates the full reduced Gröbner basis
for the Plücker ideal.

Exercise 9.4 The straightening algorithm may be used more generally to rewrite
any polynomial f ∈ F[zα] as a linear combination of standard monomials modulo
Im,p. Each step proceeds as follows.

Given f , let czA be the largest (in ≻drl) non-standard monomial in f and write
czA = czB ·zαzβ where (α, β) ∈ IC are the minimal incomparable variables appearing
in zA. Replace f by f − czBS(α, β), and repeat until all terms of f are standard.

(a) Prove that this algorithm terminates, and hence rewrites f as a linear combi-
nation of standard monomials.

(b) Implement this algorithm in any computer algebra system.

This more general algorithm is the classical straightening algorithm of invariant
theory due to A. Young [49].

Exercise 9.5 The examples in the text (9.6) and (9.9) of elements of the reduced
Gröbner bases for Plücker ideals have coefficients ±1. Prove or find a counterexample
to the following statement:

The coefficients that occur in every R(α, β) all have absolute value 1.

Exercise 9.6 When m = p = 3, compare the equations given in Remark 9.6 for
Grass(p, n) with any of the Gröbner bases given in this section.

9.3 Schubert Decomposition

Let Uα be the principal affine piece of Plücker space where the αth Plücker coordinate
zα is non-zero. In the proof of Theorem 9.2, we identified Gα := Grass(p, n)∩Uα with
Matp×m, showing that a p-plane in Gα is represented uniquely as the row space of a
matrix whose columns α1, . . . , αp form the identity matrix Ip. Such a matrix has the
form











∗ · · · ∗ 1 ∗ · · · ∗ 0 ∗ · · · ∗ 0 ∗ · · · ∗
∗ · · · ∗ 0 ∗ · · · ∗ 1 ∗ · · · ∗ 0 ∗ · · · ∗
...

...
...

...
...

...
...

. . .
...

...
...

...
∗ · · · ∗ 0 ∗ · · · ∗ 0 ∗ · · · ∗ 1 ∗ · · · ∗











, (9.11)

where the entries marked with ∗ are arbitrary numbers from F and the 1 in row i
occurs in column αi. The mp arbitrary entries in this matrix gives coordinates for
Gα. As α varies in

(

[n]
p

)

, we obtain coordinate charts for the Grassmannian, giving it
the structure of a F-manifold.

A different set of coordinates for the Grassmannian which gives each point a unique
coordinate is provided by the Schubert cellular decomposition, itself a consequence of
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Gaussian elimination. Let M be a p-plane which is the row space of a p × n matrix
X. Let E be the echelon matrix obtained from X by Gaussian elimination as in
Example 7.181. Then E has the form:











∗ · · · ∗ 1 0 · · · 0 0 0 · · · 0 0 0 · · · 0
∗ · · · ∗ 0 ∗ · · · ∗ 1 0 · · · 0 0 0 · · · 0
...

...
...

...
...

...
...

. . .
...

...
...

...
∗ · · · ∗ 0 ∗ · · · ∗ 0 ∗ · · · ∗ 1 0 · · · 0











, (9.12)

where the entries marked with ∗ are arbitrary numbers from F. This matrix E is the
unique p× n echelon matrix with row space M . In this way, we obtain a bijection of
the Grassmannian with p × n echelon matrices of rank p, and this bijection may be
computed using Gaussian elimination.

Figure 9.2 shows the possible echelon matrices when m = p = 2. (We arrange
them according to the Bruhat order on their indices.)

[

∗ ∗ 1 0
∗ ∗ 0 1

]

[

∗ 1 0 0
∗ 0 ∗ 1

]

[

∗ 1 0 0
∗ 0 1 0

] [

1 0 0 0
0 ∗ ∗ 1

]

[

1 0 0 0
0 ∗ 1 0

]

[

1 0 0 0
0 1 0 0

]

HH

HH©©

HH ©©

©©

Figure 9.2: Echelon matrices when m = p = 2.

Definition 9.20 For each α ∈
(

[n]
p

)

, the Schubert cell Ω◦
α is the collection of all

p-planes whose associated echelon matrix has leading 1s in columns α1, . . . , αp.

Comparing (9.11) with (9.12), we see that the Schubert cell Ω◦
α is just the coor-

dinate subspace of Gα obtained by setting entries xi,j = 0 when αi < j. This shows
that the Schubert cell is a locally closed subvariety of the Grassmannian.

Since each p-plane in the Grassmannian lies in some Schubert cell, we obtain the
Schubert decomposition of the Grassmannian

Grass(p, n) =
∐

α∈([n]
p )

Ω◦
α .

1Change the convention in the Example to conform to those here
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Echelon matrices (9.12) with leading 1s in columns α1, . . . , αp have αi − i arbitrary
entries (∗s) in row i. If we let |α| :=

∑

αi − i, this shows that Ω◦
α ≃ A|α|.

We define the Schubert variety Ωα to be the Zariski closure of the Schubert cell
Ω◦

α. Then we have

Ωα =
∐

β≤α

Ω◦
β . (9.13)

To see this, let X be the union of Schubert cells on the right. For each β ∈
(

[n]
p

)

, let

Mβ ⊂ Mat◦p×nF be the set of full rank p × n matrices X = (xi,j) which satisfy

xi,j = 0 if αi < j for i = 1, 2, . . . , p .

Note that Mα contains all echelon matrices E parameterizing Schubert cells Ω◦
β for

β ≤ α, and these are the only echelon matrices in Mα.
Thus the image of the map φ : Mα → Grass(p, n) given by

X 7−→ row space X

contains X . To see that the image equals X , note that if a matrix X ∈ Mα, then
its associated echelon matrix E is also in Mα. Since X is the image of an irreducible
variety under a regular map, it is irreducible. Of all the Schubert cells contained in X ,
Ω◦

α is the one with largest dimension, so Ω◦
α is dense in X . This implies that X ⊂ Ωα.

For the other inclusion, observe that if β 6≤ α, then zβ vanishes on Ω◦
α. Since zβ is

nowhere zero on Ω◦
β, this implies that Ωα ∩Ω◦

β = ∅ for β 6≤ α. This establishes (9.13).
These considerations show that the Bruhat order has a geometric interpretation

and shows that Ωα is parameterized by Mα.

Corollary 9.21 Ωα ⊆ Ωβ if and only if α ≤ β in Ym,p.

The Schubert variety Ωα has another description in terms of Plücker coordinates.
On the Schubert cell Ω◦

α, observe that zα is never zero, while the coordinate zβ is
identically zero when β 6≤ α. Together with (9.13), this shows that

Ωα = {z ∈ Grass(p, n) | zβ = 0 for β 6≤ α} .

Indeed, the condition on the coordinates exclude all Schubert cells Ω◦
β for β 6≤ α from

this set while including all Schubert cells Ω◦
β for β ≤ α, whose union is the Schubert

variety Ωα.
This set-theoretic description shows that the ideal of the Schubert variety Ωα

equals the radical of the ideal

Im,p + 〈zβ | β 6≤ α〉 .

In the monomial order ≻drl of Section 9.2, this has initial ideal

〈zγzδ | γ, δ ≤ α and γ, δ incomparable〉 + 〈zβ | β 6≤ α〉 .

which is square-free. Thus the original ideal is radical, by the result of Exam-
ple????????, and thus we have

I(Ωα) = Im,p + 〈zβ | β 6≤ α〉 .
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Let 0̂ be the sequence 1, 2, . . . , p, the minimal element in Young’s lattice. We
write [0̂, α] to denote the set {β | β ≤ α}, the interval in Young’s lattice below α.
Let Q(α) be the set of chains in the interval [0̂, α]. We have the following analog of
Lemma 9.18 and Corollary 9.19, whose proof we leave to the exercises.

Corollary 9.22 For any α ∈
(

[n]
p

)

, we have

(i) in≻drl
I(Ωα) =

⋂

q∈Q(α)

〈zγ | γ 6∈ q or γ 6≤ α〉.

(ii) The degree of the Schubert variety Ωα in the Plücker embedding equals the num-
ber of chains in the interval [0̂, α].

We now give a coordinate-free description of the Schubert decomposition. Let
e1, e2, . . . , en be an ordered basis of Fn = V , where ej is the row vector whose only
non vanishing entry is in column j. For each i = 1, . . . , n, define the i-dimensional
subspace Fi of Fn by

Fi := 〈e1, e2, . . . , ei〉 .

We call this collection of subspaces F. the standard flag. If we interpret α0 = 0 and
αp+1 = n + 1, then

Ω◦
α = {H ∈ Grass(p, V ) | dim H ∩ Fj = i if αi ≤ j < αi+1 for j = 1, . . . , n} ,

as an examination of the echelon matrix (9.12) shows. The Schubert variety has a
simpler description

Ωα = {H ∈ Grass(p, V ) | dim H ∩ Fαi
≥ i for i = 1, . . . , p} .

To see this, note that the conditions exclude all Schubert cells Ω◦
β for β 6≤ α from

this set while including all Schubert cells Ω◦
β for β ≤ α, whose union is the Schubert

variety Ωα.
We extend this notation. A (complete) flag F. in a vector space V (of dimension

n) is a sequence of linear subspaces

F. : 0 = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn = V ,

where dim Fi = i. An index α ∈
(

[n]
p

)

and a flag F. together determine a Schubert
variety

ΩαF. := {H ∈ Grass(p, V ) | dim H ∩ Fαi
≥ i for i = 1, . . . , p} .

All Schubert varieties with the same index are isomorphic. Given two flags F., E.,
there is an element g of GL(V ) with gF. = E., and so g(ΩαF.) = ΩαE..

We consider this for Grass(2, 4). A 2-dimensional subspace of F4 is equivalently
a line in P3, which identifies Grass(2, 4) with the set of lines in P3. A complete flag
in P3 is given by specifying a point p incident to a line ℓ lying on a plane H. In
Figure 9.3, we display the possible relative positions of lines µ ∈ Grass(2, 4) with
respect to a given flag p ∈ ℓ ⊂ H, that is, the Schubert cells. This describes the
Schubert decomposition of Grass(2, 4). Each picture is labeled with the associated
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ℓ = µ H Ω12

µ = ℓ

Figure 9.3: Schubert varieties of Grass(2, 4).

Schubert variety, as well as the essential conditions on lines µ defining that Schubert
variety. It is very instructive to compare this with Figure 9.2.

We close this section with a description of the tangent spaces to Schubert varieties,
at points in the dense Schubert cell. For this, we initially make a choice of coordinates,
embodied by an ordered basis e1, e2, . . . , en for V , and a corresponding flag, F.. Let
H ∈ Ω◦

α. Changing our basis, we may assume that H = 〈eα1 , . . . , eαp
〉. Set K :=

〈ej | j 6∈ α〉, the unique m-plane complementary to every p-plane in Ω◦
α. Then the

coordinate chart Gα of (9.11) is isomorphic to Hom(H,K) via ϕ ∈ Hom(H,K) 7→ Γϕ,
the graph of ϕ. By our choices of H and K, we have Fj = (H ∩Fj)⊕ (K ∩Fj). Thus
if x ∈ H and ϕ ∈ Hom(H,K), the point x ⊕ ϕ(x) lies in Fj only if both x ∈ Fj and
ϕ(x) ∈ Fj. This identifies

Ω◦
α = {Γϕ | ϕ ∈ Hom(H,K) and ϕ(H ∩ Fαi

) ⊂ K ∩ Fαi
, i = 1, . . . , p} .

Under the identification THGrass(p, V ) = Hom(H,K) ≃ Gα, this is THΩα.
We remove the dependences on choices and give a coordinate-free description

of the tangent space. Under the canonical isomorphism K ≃ V/H, which gives
THGrass(p, V ) = Hom(H,V/H), we have K ∩ Fαi

≃ (Fαi
+ H)/H, and so

THΩαF. = {ϕ ∈ Hom(H,V/H) | ϕ(H ∩ Fαi
) ⊂ (Fαi

+ H)/H, i = 1, . . . , p} .

Since dim H ∩ Fαi
= i and ei spans H ∩ Fαi

over H ∩ Fαi−1
, a tangent vector ϕ is

given by the p vectors ϕ(e1), . . . , ϕ(ep) where ϕ(ei) ∈ (Fαi
+ H)/H.
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Exercise 9.7 Show directly, by computing the transition functions, that the coor-
dinates for Gα described at the beginning of Section 9.3 give the Grassmannian the
structure of a F-manifold.

Exercise 9.8 Let B+ be the Borel subgroup of GLn consisting of the invertible
upper triangular matrices. Show that the orbits of B+ acting on the Grassmannian
Grass(p, n) are exactly the Schubert cells Ω◦

α.

Exercise 9.9 Prove Corollary 9.22.

9.4 The Simple Schubert Calculus

We generalize the geometric problem of Chapter 4, studying quantitative aspects of
intersections of Schubert varieties. This yields a large class of non trivial and impor-
tant geometric problems which we will solve. In this section we formulate the general
problem in the Schubert calculus of enumerative geometry and consider its basic as-
pects. Then we solve this problem for the important case of simple (codimension-1)
Schubert varieties, which is used in Part III. We also discuss refinements, including
the question of real solutions. In the next section (which is independent of the rest
of the book), we solve the general problem using tools from Algebraic Topology and
Intersection Theory, namely cohomology and Chow rings.

There is an alternative notation for Schubert varietites which is convenient when
discussing intersections of Schubert varieties. A partition λ is a weakly decreasing
sequence of integers λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0. Given a flag F. and a partition λ with
m ≥ λ1, set

XλF. := {H ∈ Grass(p, V ) | dim H ∩ Fm+i−λi
≥ i for i = 1, . . . , p} .

Since dim H ∩ Fm+i ≥ i for any p-plane H, λi measures how exceptionally H has a
dimension-i intersection with a subspace of the flag. If we set

α(λ) := m + 1 − λ1 < m + 2 − λ2 < · · · < m + p − λp ,

then XλF. = Ωα(λ)F.. Since dimXλF. = |α(λ)| = mp − ∑

i λi, the Schubert variety
XλF. has codimension |λ| := λ1 + · · · + λp in Grass(p, V ).

Given a collection of partitions λ1, λ2, . . . , λs with
∑ |λj| ≤ mp, the intersection

Xλ1F 1. ∩ Xλ2F 2. ∩ · · · ∩ XλsF s. ,

either is empty or it has dimension at least mp − ∑ |λj|, for any choice of flags
F 1. , F 2. , . . . , F s. . This minimum dimension occurs when the flags are in general posi-
tion.

Theorem 9.23 Let λ1, λ2, . . . , λs be partitions with
∑ |λi| ≤ mp. Then there is a

non empty open subset U ⊂ [GL(V )]s such that if F. is any flag, then

Xλ1g1F. ∩ Xλ2g2F. ∩ · · · ∩ XλsgsF. , (9.14)

either is empty or it has dimension mp − ∑ |λj|, for all (g1, . . . , gs) ∈ U .
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An intersection of subvarieties is called proper either if it is empty, or else if it
has the expected dimension, that is if the codimension of the intersection is the sum
of the codimensions of the varieties being intersected. Theorem 9.23 states that a
general intersection of Schubert varieties is proper. We deduce this Theorem from
the following more general lemma concerning transitive group actions on varieties.

Lemma 9.24 Suppose G is an irreducible algebraic group acting transitively on a
variety X . If Y ,Z ⊂ X , then there is a non-empty open subset U ⊂ G such that
the intersection gY ∩ Z either is empty for each g ∈ U , or else every component has
codimension codimXY in Z, for each g ∈ U .

Proof of Theorem 9.23: We use the following trick of realizing an intersection of sev-
eral subvarieties as a single intersection with a diagonal. Given Y1,Y2, . . . ,Ys ⊂ X ,
let ∆ = {(x, . . . , x) | x ∈ X} ⊂ X s be the (small) diagonal, which is identified with
X , and set Y := Y1 × Y2 × · · · × Ys ⊂ X s. Then

Y ∩ ∆ = {x ∈ X | x ∈ Yi i = 1, . . . , s} = Y1 ∩ · · · ∩ Ys .

(This equality is valid not just set-theoretically, but also at the level of ideals.) To
apply Lemma 9.24, set G := (GL(V ))s, X := (Grass(p, V ))s, and Z := Grass(p, V ),
considered as the diagonal ∆ in X . Let F. be any flag and set Y := Xλ1F. × · · · ×
Xλ1F. ⊂ X . We see that if g = (g1, g2, . . . , gs) ∈ G, then

(gY) ∩ Z = Xλ1g1F. ∩ · · · ∩ Xλ1gsF. ,

The intersection of (9.14). Since codimXY =
∑ |λj|, and G acts transitively on

X , Lemma 9.24 guarantees the existence of a non-empty open set U ⊂ [GL(V )]s

consisting of s-tuples (g1, . . . , gs) such that either the intersection (9.14) is empty, or
else it has codimension

∑ |λj| in Z = Grass(p, V ).

Proof of Lemma 9.24: Let W := {(g, x) | x ∈ gY} be the incidence variety and
consider the diagrams

W
¢

¢
¢®

A
A
AU

p q

G X

and

W|Z := q−1(Z)
¢

¢
¢®

A
A
AU

G Z

The fibre p−1(g) is {g} × gY , which is isomorphic to Y . Thus W has dimension
dim G+dimY . The fibre Wx := q−1(x) is equal to {g | x ∈ gY} and so we have Wh·x =
hWx. Since G acts transitively on X , W → X is a fibre bundle with isomorphic fibres,
each of dimension dimW−dimX = dim G+dimY −dimX . This implies W|Z → Z
is a fibre bundle with dimW|Z = dim G + dimY + dimZ − dimX .

Observe that the fibre of the map W|Z → G over a point g ∈ G is

{z ∈ Z | z ∈ gY} = Z ∩ gY .

If the map W|Z → G is not dominant, then let U be an open set in the complement
of the image. For g ∈ U , the fibre of W|Z → G is empty, so Z ∩ gY = ∅. Otherwise
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W|Z → G is dominant. By Theorem????2, there is an open subset U of G such that
the fibres are equidimensional of dimension

dimW|Z − dim G = dimZ + dimY − dimX ,

and so for g ∈ U , Z ∩ gY has codimension in Z equal to codimXY .

The flag manifold Fℓn (or Fℓ(V )) is the set of flags in Fn (respectively V ). Its
structure will be studied in Section 9.6. In particular, GL(V ) acts transitively on
Fℓ(V ) and so we may equivalently talk of a general flag F. ∈ Fℓ(V ) or a general
translate gF. of a given flag.

Definition 9.25 Schubert data consists of a list of partitions λ1, λ2, . . . , λs satisfying
∑

i |λi| = mp. Given Schubert data and general flags in F n, Theorem 9.23 guarantees
that the intersection

Xλ1F 1. ∩ Xλ2F 2. ∩ · · · ∩ XλsF s. (9.15)

is zero-dimensional (or empty). The general problem in the Schubert calculus of
enumerative geometry is to determine the number of points, d(λ1, λ2, . . . , λs), in the
intersection. (This notation suppresses the possible dependence of this number on
the field F.)

This number is well-defined when F is algebraically closed; it is the degree of the
map π : W → (Fℓn)s, where W is the incidence variety of the intersection (9.15)

W := {(H,F 1. , . . . , F s. ) | H ∈ XλiF i. i = 1, . . . , s} .

Suppose we consider the intersection (9.15) scheme-theoretically. That is, we take into
account the equations defining the Schubert varieties, which define a zero-dimensional
ideal, I. Then the degree of I gives an algebraic count of the number of solutions,
and we have

deg I ≥ deg
√
I = d(λ1, λ2, . . . , λs) ,

as in Section 7.3. The first inequality is an equality when the intersection is transverse,
so that the ideal I is radical. In Section 9.5 we describe the classical algorithms of
the Schubert calculus which compute deg I. Interestingly, these are independent of
the field, F.

For algebraically closed fields of characteristic zero, Kleiman’s Transversality The-
orem [24] guarantees that the intersection (9.15) is transverse, when the flags are in
general position, and so deg I = d(λ1, λ2, . . . , λs). For fields with positive character-
istic, is it not known whether general Schubert subvarieties meet transversally, and
the following Transversality Conjecture remains open.

Conjecture 9.26 Let F be any infinite field. Given any collection of Schubert data
λ1, . . . , λs, there is a non-empty open subset U of (Fℓn)s consisting of flags (F 1. , . . . , F s. )
such that the intersection (9.15) is transverse.

2This will be given earlier in a result on dominant maps
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Even if Conjecture 9.26 were true, we are not guaranteed deg I solutions unless F

is algebraically closed. In particular, when F = R (so (9.15) is transverse for general
flags), we may ask: which numbers 0 ≤ d ≤ deg I of real solutions can occur (for
some choice of general flags)?

In the remainder of this section we show that Conjecture 9.26 holds when the
partitions λi are all equal to (1, 0, . . . , 0). The corresponding Schubert varieties are
hypersurfaces, called simple Schubert varieties. The same proof also shows that it is
possible for all of the solutions to be real. Lastly, we give a closed formula for this
number3.

We abbreviate X(1,0,...,0)F. to X1F.. We have α(1, 0, . . . , 0) = m < m + 2 < · · · <
m + p. Thus, when F. is the standard flag,

X1F. = V(z1̂) ,

where 1̂ = m + 1 < · · · < m + p is the maximal element in the Bruhat order. Thus
the Schubert variety X1F. is a hyperplane section of the Grassmannian in its Plücker
embedding. Because this Schubert variety has codimension 1, it is called a simple
Schubert variety. Of the p conditions defining X1F., all except one are forced by
linear algebraic reasons, leaving only the single condition

X1F. = {H ∈ Grass(p, V ) | dim H ∩ Fm ≥ 1} .

Note that dim H ∩ Fm ≥ 1 ⇔ H ∩ Fm 6= {0}.
The simple Schubert calculus concerns the enumerative problems in the Schu-

bert calculus where all (except possibly one) Schubert variety is simple. That is,
intersections of the form

XλF
0. ∩ X1F

1. ∩ · · · ∩ X1F
mp−|λ|. ,

where the flags are in general position. Since each simple Schubert variety X1F.
is a hyperplane section of the Grassmannian, the expected number of points in this
intersection is degXλF.. This is obtained if the intersection is transverse, by Theorem
Bézout.

A key step towards understanding the simple Schubert calculus is the following
result of Schubert, concerning the intersection of Schubert varieties. Subvarieties Y ,Z
of a smooth variety X meet generically transversally if every irreducible component
V of Y ∩ Z has a dense open subset U of its smooth points such that for u ∈ U .

TuY + TuZ = TuX ,

that is, Y and Z meet transversally along U .

Theorem 9.27 Let F be any field. Then in Grass(p, n)

Ωα ∩ V(zα) =
⋃

β⋖α

Ωβ , (9.16)

and this intersection is generically transverse.

3Do it!
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Proof: The Plücker coordinate zα does not vanish on the Schubert cell Ω◦
α, but it

vanishes on each Schubert cell Ω◦
β for β < α. This implies the first equality below.

Ωα ∩ V(zα) =
⋃

γ<α

Ωγ =
⋃

β⋖α

Ωβ .

The second equality follows as elements of the set {β | β ⋖ α} are maximal in the
open interval [0̂, α).

To see that this intersection is generically transverse, consider the system Zα,β of
local coordinates for Ωα defined for each β ⋖ α: Let Zα,β ⊂ Mα be the set of p × n
matrices X = (xi,j) with

xi,βi
= 1

xj,βi
= 0 for j 6= i

xi,j = for j > αi

Thus a matrix X in Zα,β has almost the same form as a matrix (9.12) parameterizing
the Schubert cell Ω◦

β, except that the entry xk,αk
need not vanish, where k is the

unique index with βk < αk. For example if m = 5, p = 4, α = (3, 6, 7, 9) and
β = (3, 5, 7, 9), then Zα,β is









∗ ∗ 1 0 0 0 0 0 0
∗ ∗ 0 ∗ 1 x2,6 0 0 0
∗ ∗ 0 ∗ 0 ∗ 1 0 0
∗ ∗ 0 ∗ 0 ∗ 0 ∗ 1









A matrix X ∈ Zα,β represents a unique p-plane in Ωα, and on Zα,β, the Plücker
coordinate zα is xk,αk

. Since xk,αk
= 0 defines the Schubert cell Ω◦

β, we see that the
intersection (9.16) is transverse along Ω◦

β, which proves the theorem.

By the Bézout theorem, Theorem 9.27 implies that

deg Ωα =
∑

β⋖α

deg Ωβ .

Together with the fact that Ω0̂ is a point, and hence has degree 1, this gives another
proof of Corollary 9.22(ii).

For the remainder of this section, let E. ⊂ Fn be a flag whose m-dimensional
subspace Em has no vanishing Plücker coordinates. That is, if Em is the row space of
a m × n matrix K, then no maximal minor of K vanishes. When F is infinite, such
a choice is possible, as no Plücker coordinate vanishes on the whole Grassmannian.
Such a choice may not be possible for finite fields.

Define an action of F× on Fn by t.ei = tiei, where t ∈ F× and e1, . . . , en are the
distinguished basis for Fn. This induces an action of F× on the Grassmannian, and
we have t.X1E. = X1(t.E.). Write X1(t) for the Schubert variety X1(t.E.).

We find the equation for X1(t) by considering the condition for H ∈ Grass(p,m + p)
to meet t.Em. If H is the row space of a p × n matrix X and Em the row space of a
m × n matrix K, then

H ∩ t.Em 6= {0} ⇐⇒ det

[

X
t.K

]

= 0 .
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Laplace expansion along the rows of X gives

det

[

X
t.K

]

=
∑

α

zα(H)(t.K)α ,

where zα(H) is the αth maximal minor of X, a Plücker coordinate of H, and (t.K)α

is the complementary maximal minor of t.K. Since the ith column of t.K is the scalar
multiple ti times the ith column of K, we have

(t.K)α = t1+2+···+n−α1−···−αpkα = t(
m+1

2 )tmp−|α|kα ,

where kα := (K)α. Dividing by the common non-zero scalar t(
m+1

2 ), we obtain the
equation for X1(t):

X1(t) = V







∑

α∈([n]
p )

tmp−|α|kα · zα






.

We show that general Schubert varieties of the form X1(t) meet properly. As
usual, a negative dimension is interpreted to mean that the variety is the empty set.

Lemma 9.28 Suppose F is algebraically closed. Let α ∈
(

[n]
p

)

and suppose t1, . . . , tk ∈
F× are distinct. Then

Ωα ∩ X1(t1) ∩ · · · ∩ X1(tk) (9.17)

has dimension |α| − k.

When F is not algebraically closed, then we deduce that (9.17) is empty if k > |α|.

Proof: Recall that dim Ωα = |α|. Let H ∈ Ωα. Since the Plücker coordinates zβ(H)
of H are nonzero only for β ≤ α, we see that H lies in X1(t) only if

0 =
∑

β≤α

tmp−|β|zβ(H)kβ = tmp−|α|
∑

β≤α

t|α|−|β|zβ(H)kβ .

Since the rightmost sum is a polynomial of degree at most |α| in t, we see that H ∈ Ωα

lies in at most |α| of the Schubert varieties X1(t). Thus (9.17) is empty if k > |α|.
Suppose now that k ≤ |α|. Since each X1(t) is a hyperplane section, (9.17) has

dimension at least |α| − k. If the dimension of (9.17) exceeds |α| − k, then for any
tk+1, . . . , t|α|+1 ∈ F×,

Ωα ∩ X1(t) ∩ · · · ∩ X1(t|α|+1)

is non-empty (as each X1(t) is a hyperplane section), which is a contradiction.

Let Z ⊂ Ωα × A be the subvariety defined by the polynomial

∑

|β|≤|α|

t|α|−|β|zβkβ , (9.18)
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where t is the coordinate of A1 and zβ the Plücker coordinates on Ωα. For t 6= 0, the
fibre Zt is just the cycle Ωα ∩ X1(t), and Theorem 9.27 shows that the fibre Z0 is

Z0 = Ωα ∩ V(zα) =
⋃

β⋖α

Ωβ .

Let d(α) := deg Ωα = #Q[0̂, α], the number of chains in the interval [0̂, α]. We prove
the main result of this section.

Theorem 9.29 Suppose F is algebraically closed. Then there exist t1, . . . , tmp ∈ F×
such that if α ∈

(

[n]
p

)

, then

Ωα ∩ X1(t1) ∩ · · · ∩ X1(t|α|) (9.19)

is transverse and consists of d(α) points.
If F = R, then then we may choose t1, . . . , tmp ∈ R× such that (9.19) is transverse

in the complex Grassmannian and each of its d(α) points is real.

The first statement establishes the Transversality Conjecture for the simple Schu-
bert calculus.

Proof: We induct on the dimension |α| of Ωα to find the ti, simultaneously establishing
both the case of F algebraically closed and of F real. When α = 0̂, |α| = 0 and
Ωα = 〈e1, . . . , ep〉, and the conclusion of the theorem holds vacuously. When α =
(1, 2, . . . , p − 1, p + 1), then Ωα is the coordinate P1 spanned by z0̂ and zα in the
Plücker embedding. The equation (9.18) for X1(t) ∩ Ωα is non-trivial and has degree
1, when t 6= 0. Thus for t 6= 0, X1(t) ∩ Ωα consists of a single point, which is real is
F is real. Since d(α) = 1, this establishes the theorem in this case.

Suppose now that we have t1, . . . , tk ∈ F× such that if |β| ≤ k then

Ωβ ∩ X1(t1) ∩ · · · ∩ X1(t|β|)

is transverse and consists of d(β) points, with all of them real when F = R. Let
α ∈

(

[n]
p

)

with |α| = k + 1 and consider Z ∩ X1(t1) ∩ · · · ∩ X1(tk) viewed as a family

over A1.
The fibre of this family at t = 0 is

⋃

β⋖α

Ωβ ∩ X1(t1) ∩ · · · ∩ X1(tk) .

By the induction hypothesis, each term

Ωβ ∩ X1(t1) ∩ · · · ∩ X1(tk)

is transverse and consists of d(β) points (all real if F = R). Then the fibre will consist
of d(α) =

∑

β⋖α d(β) points and be a transverse intersection if no two terms of this
union have any points in common.

Consider the intersection of the terms indexed by β and γ

Ωβ ∩ Ωγ ∩ X1(t1) ∩ · · · ∩ Xk(tk) .
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Since Ωβ ∩ Ωγ is a union of Schubert varieties of dimension strictly less than k,
Lemma 9.28 implies that this intersection is empty.

Since the fibre at t = 0 of Z ∩ X1(t1) ∩ · · · ∩ X1(tk) is transverse and consists of
d(α) points, there is an open subset Oα ⊂ A1 such that for each 0 6= t ∈ Oα, the fibre
at t of Z ∩ X1(t1) ∩ · · · ∩ X1(tk) is transverse and consists of d(α) points. But this
fibre is

Ωα ∩ X1(t) ∩ X1(t1) ∩ · · · ∩ X1(tk) .

We let 0 6= tk+1 be any point common to the sets Oα for |α| = k + 1.
When F = R, the set O =

⋂{Oα | |α| = k + 1} contains 0 and hence it contains
some interval of the form (−a, a). Since for all −a < t < a and α with |α| = k + 1,
the intersection Ωα ∩X1(t1)∩ · · · ∩ X1(tk) is transverse, and when t = 0 it consists of
d(α) real points, it consists of d(α) real points for all t ∈ (−a, a). We let 0 6= tk+1 be
any point in the interval (−a, a).

Remark 9.30 We describe a special case of the Schubert varieties X1(t) that (con-
jecturally at least) have very remarkable properties when F = R. Suppose F = R and
consider the map

v : R −→ R
n

t 7−→ (1, t, t2, . . . , tn−1) .

For each i = 1, . . . , n define

Ei(t) := 〈v(t),
d

dt
v(t),

d2

dt2
v(t), . . . ,

di−1

dti−1
v(t)〉 .

This defines a flag E.(t) for every t ∈ F with E.(0) = F., the standard flag. If we
consider the flag E.(t) in the projective space Pn−1, then v(t) = E1(t) is the rational
normal curve and Ei+1(t) is the i-plane osculating the rational normal curve at the
point v(t). The flag E.(t) is the flag of subspaces osculating the rational normal
curve.

For instance, when m = 4 and p = 3, we have

E4(t) = row space









1 t t2 t3 t4 t5 t6

0 1 2t 3t2 4t3 5t4 6t5

0 0 2 6t 12t2 20t3 30t4

0 0 0 6 24t 60t2 120t3









.

When t 6= 0, Ei(t) is also 〈tv(t), t2v′(t), t3v′′(t), . . . , tiv(i−1)(t)〉. The i×n matrix with
these row vectors has entry in position k, l:

tl
(l − 1)!

(l − k)!
.

Thus Ei(t) = t.Ei(1). If we let γ = γ1 < · · · < γm, then the γth Plücker coordinate
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of Em(1) is

det

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 · · · 1
γ1 − 1 γm − 1

...
(γj − 1)!

(γj − i)!

...

(γ1 − 1)!

(γ1 − m)!
· · · (γm − 1)!

(γm − m)!

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
∏

i<j

(γj − γi) ,

which is non-zero. (See Exercise 9.11 for the computation.) Thus the second state-
ment of Theorem 9.29 applies and we deduce that

There exist t1, t2, . . . , tmp ∈ R such that if α ∈
(

[n]
p

)

, then

Ωα ∩ X1E.(t1) ∩ · · · ∩ X1E.(t|α|)
is transverse in the complex Grassmannian and consists of d(α) real points.

There is a far-reaching conjecture of Boris Shapiro and Michael Shapiro related
to this result.

Corollary 9.31 (Shapiro-Shapiro) Let λ1, . . . , λs be Schubert data. If t1, . . . , ts ∈
R are distinct, then

Xλ1E.(t1) ∩ · · · ∩ XλsE.(ts)
is transverse and consists of d(λ1, . . . , λs) real points.

At this time, the general case of this conjecture remains open. The strongest
partial result is due to Eremenko and Gabrielov, who proved it when min{m, p} = 2.

Exercise 9.10 Suppose e1, . . . , en is an ordered basis for Fn and let F. be the stan-
dard flag with respect to this basis. For α ∈

(

[n]
p

)

, let Kα := 〈ej | j 6∈ α〉 and suppose

that E. is a flag whose m-plane is Kα so that X1E. = {H | H ∩ Kα 6= {0}}.
(i) Argue directly using Schubert conditions that

Ωα ∩ X1E. =
⋃

β⋖α

Ωβ .

(ii) Using the description of the tangent space to a Schubert variety given at the
end of Section 9.3, show that this intersection is transverse.

Hint: For (i) consider the sets {H ∈ Ωα | H ∩ Kα ∩ Fαj
6= {0}} for j = 1, . . . , p.

Exercise 9.11 Let f1(x), . . . , fn(x) be polynomials of degree at most n−1. Consider
the matrix X whose i, j-entry is fi(aj), where a1, . . . , an are indeterminants. Show
that

det X = det A ×
∏

i<j

(aj − ai) ,

where A is the coefficient matrix of the polynomials fi, the matrix that transforms the
monomial basis 1, x, x2, . . . , xn−1 into the polynomials f1(x), . . . , fn(x). (Hint: Factor
X as A × B, where B is the Van der Monde matrix (ai−1

j ).)
In particular, when each fi is monic of degree i−1, then A is lower triangular and

so has determinant 1.
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9.5 Enumerative Geometry and the Schubert Cal-

culus II

Intersection rings give methods for determining the number of solutions to the Schubert-
type enumerative problems of Section 9.4. It is very instructive to review a general
framework for enumerative geometry, first proposed in the 19th century. For our pur-
poses, enumerative geometry is concerned with all questions of the following form:
How many goemetric figures of some type have a specified position with respect to
certain general fixed figures?

Let X be the space of the geometric figures we wish to count. Then the set of
figures having specified position a with respect to a fixed figure x is a subvariety Ya(x)
of X . Here, a encodes the type of condition imposed by the figure x. Our problem
becomes: given conditions a,b, . . . , c and general fixed figures x, y, . . . , z, determine
the number of points in X in the intersection

Ya(x) ∩ Yb(y) ∩ · · · ∩ Yc(z) .

For instance, in the Schubert calculus of enumerative geometry, the Grassmannian is
the ambient space X , flags F. are the fixed figures, partitions λ encode the conditions,
and the Schubert variety XλF. is the set of figures having specified position λ with
respect to the flag F..

In the 19th century, a formal calculus was developed to solve such problems.
Geometric conditions a,b, c were treated as formal symbols with a+b interpreted as
the condition that either a or b holds, and a · b as the condition that both a and b
hold, when a and b are independent. Conditions a and b are numerically equivalent
if, whenever c is a geometric condition such that only finitely many figures satisfy
both a and c and also finitely many satisfy both b and c, then these two numbers
are equal. This formal calculus was used to great effect in solving many enumerative
geometric problems.

Example 9.32 We use this formal calculus to determine how many lines meet four
fixed lines in P3. Our ambient space will be the Grassmannian of 2-planes in F4,
which is also called the Grassmannian of lines in P3. Let p, ℓ,H be respectively a
point, line, and plane in P3. Consider the following conditions on lines µ in P3:

[ℓ] := The line µ meets ℓ

[p] := The line µ contains p

[H] := The line µ lies in H

[p ∈ H] := The line µ contains p and lies in H

(For this last condition, we must have p ∈ H.) Suppose now that p′ and H ′ are a
point and a plane in general position with respect to p, ℓ,H. Then, we have

[p] · [H ′] = 0 (a general point does not lie on a plane)

[p] · [p′] = [pt] (two points determine a line)

[H] · [H ′] = [pt] (two planes meet in a line)

[ℓ] · [p′ ∈ H ′] = [pt]
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For the last product, let p := ℓ∩H, then the line µ spanned by p and p′ is the unique
line meeting both p′ and ℓ, and lying in H ′:

p′

ℓ

H
p

µ

Similar considerations show that [ℓ] · [H] = [ℓ] · [p] = [p ∈ H]. To compute [ℓ] · [ℓ′], we
suppose that ℓ and ℓ′ meet in a point p and thus span a plane H:

pℓ
H

ℓ′

Thus if a line µ meets both ℓ and ℓ′, then either µ contains p or else µ lies in H. This
shows that

[ℓ] · [ℓ′] = [p] + [H] .

To determine the number of lines µ in P3 that meet each of four general lines
ℓ1, ℓ2, ℓ3, and ℓ4, we compute the product [ℓ1] · [ℓ2] · [ℓ3] · [ℓ4]:

[ℓ1] · [ℓ2] · [ℓ3] · [ℓ4] = ([p] + [H]) · ([p′] + [H ′])

= [p][p′] + [p][H] + [H][p′] + [H][H ′]

= [pt] + 0 + 0 + [pt] = 2[pt] .

(The first and third equalities follow from the calculations above.) Since 2 is the
coefficient of [pt] in this product, we conclude that 2 lines meet four given lines in P3,
which agrees with the calculations in Chapter 4.

The great flaw in this formal calculus was that there was inadequate justification
that it reliably computed the number of solutions to these enumerative problems.
During the 20th century, adequate justification for this formal calculus was provided
by Algebraic Topology and Intersection Theory. Presently the main tool for solving
problems in enumerative geometry is the Chow ring A∗X of a smooth projective
variety X . For complex varieties, the cohomology ring H∗X may be used in place of
the Chow ring. Appendix???? summarizes the main properties of cohomology and
Chow rings that we use.

Briefly, the Chow ring A∗X is graded with degree k component AkX generated by
classes [Y ] associated to subvarieties Y of X having codimension k. More specifically,
let ZkX be the group of codimension k algebraic cycles on X , the free abelian group
generated by symbols [Y ] for each irreducible subvariety Y of X of codimension k.
Then AkX is the quotient of the group ZkX of cycles by a subgroup generated by an
equivalence relation that refines numerical equivalence. Different equivalence relations
give different theories, but when X is the Grassmannian, they all coincide.

The formal properties of the Chow ring that we use are the following.
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1. Each irreducible subvariety Y with codimension k in X determines a fundamen-
tal cycle [Y ] ∈ AkX . This extends to possibly reducible subvarieties Y ,Z of X
so that if Y ∩ Z shares no ireducible components with either of Y or Z, then

[Y ∪ Z] = [Y ] + [Z] .

2. If Y ,Z are irreducible subvarieties of X whose intersection is proper, then there
is a positive interger ai associated to each irreducible component Vi of Y ∩ Z,
such that

[Y ] · [Z] =
∑

i

ai[Vi] .

This integer ai is called the intersection multiplicity of Y and Z along Vi. The
intersection multiplicity equals 1 if Y and Z meet generically transversally along
Vi.

3. The association pt 7→ 1 ∈ Z, where pt is any point of X induces the degree map
deg : AdimXX → Z (sometimes written

∫

X
). Together with the product, this

induces the intersection pairing

AkX × AdimX−kX −→ Z

(α, β) 7−→ deg(α · β) .

4. If Z ⊂ X × A1 is an irreducible subvariety whose fibres Zt over points t ∈ A1

are equidimensional, then, for any t, t′ ∈ A1,

[Zt] = [Zt′ ] .

5. If X =
∐

a∈I Xa is the union of locally closed subvarieties Xa with each Xa

isomorphic to an affine space, then A∗X has an integral basis given by the
fundamental cycles [Xa] of the closures of the strata.

If we associate the fundamental cycle [Ya(x)] ∈ A∗X to the formal condition a,
then the properties of the Chow rings A∗X provide a justification for the formal
calculus used in the 19th century.

We use these formal properties to compute the Chow rings of Grassmannians.
Some combinatorics of partitions are helpful to state these results. When writing a
partition, trailing zeroes are often omitted so that (k, 0, . . . , 0) is written as (k) or
simply k. The length of a partition λ is its number of non zero parts. Repeated parts
may be indicated by an exponent, thus (mp) = (m, . . . ,m), the partition of mp with
p parts, each of size m. The Young diagram of a partition λ is a left justified array
of boxes with λi boxes in row i. We write λ for the Young diagram of a partition λ,
ignoring the distinction between Young diagrams and partitions. Thus

(4, 2, 1) ←→ .
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Partitions are partially ordered by componentwise comparison, equivalently by inclu-
sion of Young diagrams with (0) = 0̂ the minimal partition and (mp) = 1̂ the maximal
partition. The Bruhat order on Schubert varieties is given by reverse inclusion of par-
titions

XµF. ⊂ XλF. ⇐⇒ µ ⊃ λ .

Lastly, given a partition λ ⊂ (mp), define λ∨ by λ∨
i := λp+1−i for i = 1, 2, . . . , p. Flags

F., F ′. are opposite if they are in linear general position. That is, if

Fi ∩ F ′
j = {0}

unless i + j > n, and in that case the intersection has dimension i + j − n.
Define the Schubert class σλ ∈ A|λ|Grass(p, V ) to be the fundamental cycle of

a Schubert variety XλF.. This class is independent of the choice of flag F. as the
Schubert varieties are fibres of the universal family of Schubert varieties over GL(V ),
and GL(V ) is a rational variety. The initial result about Chow rings of Grassmannians
is the Basis Theorem, which is a consequence of the Schubert decomposition and
Property 4 of Chow rings.

Theorem 9.33 (Basis Theorem) The Schubert classes form an integral basis of
the Chow ring of a Grassmannian,

A∗Grass(p, V ) =
⊕

λ⊂(mp)

σλ · Z .

The next result concerns the intersection pairing.

Theorem 9.34 (Duality Theorem) The intersection pairing

A∗Grass(p, V ) × A∗Grass(p′, V ′) → Z

is a perfect pairing with the classes σλ and σλ∨ dual classes. Specifically, if |λ|+ |µ| =
mp, then

σλ · σµ = δλ,µ∨ .

The Duality Theorem follows from Lemma 9.37 below. It allows us to compute
fudamental cycles of many subvarieties of Grass(p, V ).

Corollary 9.35 If Y ⊂ Grassm,p, then [Y ] =
∑

λ cλ
[Y ] σλ, where cλ

[Y ] = #(Y ∩Xλ∨F.),
when this intersection is transverse.

Example 9.36 The basis Theorem also allows us to solve some enumerative geomet-
ric problems. We determine the number of lines that lie on the intersection of two
quardrics Q,Q′ in P4.

Let YQ ⊂ Grass(1, P4) be the set of lines lying on a quadric Q. We determine
its fundamental cycle [YQ] and then compute deg([YQ]2) to answer the question. A
given line ℓ lies on the quadric Q := V(q) if the quadratic form q|ℓ is identically zero.
Since ℓ ≃ P1, this is a quadratic polynomial on P1, determined by 3 coefficients. Thus
the vanishing of this quadratic form gives three equations (one for coefficient) in the
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coordinates of ℓ, and so we expect that YQ has codimension 3 in Grass(1, P4). Since
dim Grass(1, P4) = 6, we find [YQ] by finding the intersection of YQ with each of the
two codimension 3 Schubert varieties:

X3 := {lines ℓ | ℓ contains a point p}
X2,1 := {lines ℓ | ℓ meets a line µ and lies in a hyperplane Λ}

Since a general point p will not meet Q, we see that YQ ∩X3 = ∅. Next, fix a general
line µ ⊂ Λ ≃ P3, a general hyperplane in P4. Then lines ℓ ⊂ Q that also meet µ and
lie in Λ are those lines in Λ ≃ P3 that lie on the quadric Q∩Λ and also meet the line
µ. The quadric Q meets the line µ in 2 points, and there are 2 lines on Q∩Λ, one in
each family, that meet each of these points, for 4 lines in all. This is displayed in the
picture below.

µ
Q∩ Λ

Thus we have #YQ ∩ X2,1 = 4. Since (2, 1)∨ = (2, 1), we see that [YQ] = 4σ2,1. and
so we calculate

deg([YQ]2) = deg((4σ2,1)
2) = 16 ,

as σ2,1 is self dual.
This there are 16 lines common to 2 quadrics in P4.

The Duality Theorem is a consequence of the following lemma.

Lemma 9.37 Let λ, µ ⊂ (mp) be partitions and F., F ′. be opposite flags. Then

XλF. ∩ XµF
′. 6= ∅

if and only if λ ≤ µ∨. When λ ≤ µ∨, the intersection is generically transverse and
irreducible of dimension |µ∨| − |λ|. In particular,

XλF. ∩ Xλ∨F ′.
is a transverse intersection consisting of a single point.

Proof: Suppose that H ∈ XλF. ∩ XµF
′., so that the intersection is non empty. Then,

for each i, j = 1, 2, . . . , p, the conditions defining the Schubert varieties give us

dim H ∩ Fm+i−λi
≥ i and dim H ∩ F ′

m+j−µj
≥ j . (9.20)
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When j = p + 1 − i, these two subspaces of H must have a non-trivial intersection.
This forces the corresponding subspaces in the flags to meet non-trivially, so that

1 ≤ dim Fm+i−λi
∩ F ′

m+(p+1−i)−µp+1−i
= m + 1 − λi − µp+1−i ,

as the linear subspaces in the two flags meet properly. Thus we have λi ≤ m−µp+1−i =
µ∨

i for i = 1, 2, . . . , p, which implies that λ ≤ µ∨.

1. Opposite flags imply irreducible and generically transverse intersection.

2. Do Pieri formula via triple intersections

3. Deduce Pieri formula

4. Show that special Schubert classes generate Chow ring

5. Deduce Giambelli formula

6. Describe algorithms

7. Describe Littlewood-Richardson rule

Exercise 9.12 Show that the product in Example 9.32 is associative; in particular
we get the same answer computing (([ℓ] · [ℓ]) · [ℓ]) · [ℓ], as for ([ℓ] · [ℓ]) · ([ℓ] · [ℓ]).

9.6 Variants

1. Flag variety, Fℓn.

2. Its Schubert decomposition

3. Describe its Chow ring

4. Schuberet polynomials, Monk formula, Pieri-type formula

5. Lagrangian Grassmannian

6. Schubert decomposition

7. Chow ring

8. Pieri formula
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Part III

Applications
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Chapter 10

The Class of Linear Systems

From Joachim

I plan to rewrite this chapter completely

10.1 Coprime factorization and realization theory

Consider the transfer function of a system Σn

H(s) = C(sI − A)−1B + D

which is the Laplace transform of the state space representation. H(s) is a proper
matrix, H(∞) = D and G(s) = C(sI − A)−1B is a strictly proper matrix.

Definition 10.1 1. A left matrix factorization of a rational matrix R(s) is a fac-
torization of the form R(s) = D−1(s)·N(s) where D(s) and N(s) are polynomial
matrices.

2. A left matrix factorization is called coprime, if there are polynomial matrices
U(s),V(s) such that

N(s)U(s) + D(s)V (s) = I

3. A right matrix (coprime) factorization of R(s) is defined as a left matrix (co-
prime) factorization of (R(s))t

In the following theorem, some important facts about coprime factorizations are
summarized. All proofs can be found in [10].

Theorem 10.2 1. If H(s) is a proper rational matrix, a left (right) coprime fac-
torization exists.
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2. A left (right) coprime factorization is unique up to multiplication by a unimod-
ular matrix. In other words, if H(s) = D−1(s) ·N(s) is coprime, then any other
coprime factorization is of the form H(s) = (U(s)D(s))−1U(s)N(s) where U(s)
is a unimodular matrix.

3. If H(s) = D−1(s) ·N(s) is a coprime factorization and (A,B,C,D) is a minimal
realization of H(s), then

det D(s) = const. · det(sI − A)

This theorem enables one to identify a system Σn with a pair of coprime polyno-
mial matrices

(N(s) , D(s))

In this representation, two pairs of polynomial matrices (N(s) , D(s)) and
(Ñ(s) , D̃(s)) represent the same system, if there is a unimodular matrix U(s) such
that Ñ(s) = U(s)N(s) and D̃(s) = U(s)D(s)

Definition 10.3 Given a system Σ represented by a coprime factorization D−1(s)N(s)
of its transfer function. The map

φΣ : CP
1 −→ Grass(p,m + p) (10.1)

s 7−→ [N(s) D(s)]

is called the Hermann Martin curve of the system Σ.

Remark 10.4 1. From coprimeness it follows that [N(s) D(s)] is always of full
rank.

2. φΣ depends only on Σ by part 2 of Theorem 10.2.

The Hermann Martin curve is a rational curve. Every system can therefore be
identified with an algebro-geometric object. Moreover it turns out that every algebraic
(or holomorphic) map from CP1 → Grass(p,m + p) represents a m–input, p–output
linear system. The following theorem shows that this identification is even much
deeper.

Theorem 10.5 (Martin and Hermann[31]) 1. The degree of φΣ as an alge-
braic curve is equal to the McMillan degree.

2. The poles of Σ are those points in CP1 which are mapped into the Schubert
variety S(m,m + 2, . . . ,m + p).

3. Assume Σ is strictly proper with Kronecker indices k1 ≤ . . . ≤ kr then the pull
back of the universal p–bundle is isomorphic to a sum of line bundles:

φ∗(ξ∗p,n) = O(k1) ⊕ . . . ⊕O(kr)

where k1, . . . , kr are the Grothendieck invariants of this bundle.
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