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3. Putinar’s Theorem

We derive some fundamental theorems which (under certain conditions) provide beautiful
and useful representations of polynomials p strictly positive on a semialgebraic set. In
particular, we are concerned with Putinar’s Theorem, which will be the basis for the
semidefinite hierarchies for polynomial optimization discussed later, as well as with the
related statement of Jacobi and Prestel.

In the following let g1, . . . , gm ∈ R[x] = R[x1, . . . , xn] and S = S(g1, . . . , gm). Recall from
Example 1.7 that QM(g1, . . . , gm) is the quadratic module defined by g1, . . . , gm. Before we
state Putinar’s Theorem, we provide several equivalent formulations of the precondition
which we need.

A quadratic module M ⊂ R[x] is Archimedean if for every h ∈ R[x] there is some N ∈ N
such that N ± h ∈M .

Theorem 1.15. For a quadratic module M ⊂ R[x], the following conditions are equiva-
lent:

(1) M is Archimedean.
(2) There exists N ∈ N such that N −

∑n
i=1 x

2
i ∈M .

Proof. The implication 1 =⇒ 2 is obvious.

For the implication 2 =⇒ 1, let N ∈ N such that N −
∑n

i=1 x
2
i ∈ M . It suffices to prove

that the set
Z := {p ∈ R[x] : ∃N ′ > 0 with N ′ ± p ∈M}

coincides with R[x].

Clearly, the set R is contained in Z and Z is closed under addition. Z is also closed under
multiplication, which follows from setting g := p ± q, h := p ∓ q and considering the
identity

N2
1

2
∓ pq =

1

4

(
N2

1 + h2 +
1

2N1

(
(N1 + g)(N2

1 − g2) + (N1 − g)(N2
1 − g2)

) )
=

1

4

(
N2

1 + h2 +
1

2N1

(
(N1 + g)2(N1 − g) + (N1 − g)2(N1 + g)

))
.

Moreover, Z contains each variable xi because of the identity

N + 1

2
± xi =

1

2

(
(xi ± 1)2 + (N −

n∑
j=1

x2
j) +

∑
j 6=i

x2
j

)
.

As a consequence of these properties, we have Z = R[x]. �

We give further equivalent characterizations of the property that M is Archimedean.
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Remark 1.16. For a quadratic module QM(g1, . . . , gm) mit g1, . . . , gm ∈ R[x], the follow-
ing conditions are equivalent as well:

(1) The quadratic module QM(g1, . . . , gm) is Archimedean.
(2) There exists an N ∈ N such that N −

∑n
i=1 x

2
i ∈ QM(g1, . . . , gm).

(3) There exists an h ∈ QM(g1, . . . , gm) such that S(h) is compact.
(4) There exist finitely many polynomials h1, . . . , hr ∈ QM(g1, . . . , gm) such that

S(h1, . . . , hr) is compact and
∏

i∈I hi ∈ QM(g1, . . . , gm) for all I ⊂ {1, . . . , r}.

The implications 1 =⇒ 2 =⇒ 3 =⇒ 4 are obvious. We will give a proof of 4 =⇒ 1 in
Lemma 1.28 in the next section.

The conditions in Theorem 1.15 and Remark 1.16 are actually not conditions on the
compact set S, but on its representation in terms of the polynomials g1, . . . , gm. See
Exercise 12 for an example which shows that the conditions are stronger than just requiring
that S is compact. In many practical applications, the precondition in Theorem 1.15 can
be imposed by adding a witness of compactness, N −

∑n
i=1 x

2
i ≥ 0 for some N > 0.

Theorem 1.17 (Putinar). Let S = S(g1, . . . , gm) and suppose that QM(g1, . . . , gm) is
Archimedean. If a polynomial f ∈ R[x] is positive on S then f ∈ QM(g1, . . . , gm). That
is, there exist sums of squares σ0, . . . , σm ∈ Σ[x] with

(3.1) f = σ0 +
m∑
i=1

σigi .

It is evident that each polynomial of the form (3.1) is nonnegative on the set S.

Example 1.18. The strict positivity in Putinar’s Theorem is essential, even for univariate
polynomials. This can be seen in the example p = 1−x2, g = g1 = (1−x2)3, see Figure 3.

p(x)

x

Figure 3. Graph of p(x) = 1− x2.

The feasible set S is the interval S = [−1, 1], and hence the minima of the function p(x)
are at x = −1 and x = 1, both with function value 0. The precondition of Putinar’s
theorem is satisfied since

2

3
+

4

3

(
x3 − 3

2
x
)2

+
4

3

(
1− x2

)3
= 2− x2 .
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If a representation of the form (3.1) existed, i.e.,

(3.2) 1− x2 = σ0(x) + σ1(x)(1− x2)3 with σ0, σ1 ∈ Σ[x] ,

then the right hand side of (3.2) must vanish at x = 1 as well. The second term has at 1
a zero of at least third order, so that σ0 vanishes at 1 as well; by the SOS-condition this
zero of σ0 is of order at least 2. Altogether, on the right hand side we have at 1 a zero of
at least second order, in contradiction to the order 1 of the left side. Thus there exists no
representation of the form (3.2).

When p is nonnegative on a compact set S(g1, . . . , gm) and the module QM(g1, . . . , gm) is
Archimedean, then p + ε ∈ QM(g1, . . . , gm). However, for ε → 0, the smallest degrees of
those representations may be unbounded.

In the remaining part of the chapter, we present a proof of Putinar’s Theorem. Let
g1, . . . , gm ∈ R[x] and K := {x ∈ Rn : gj(x) ≥ 0, 1 ≤ j ≤ m}. We say that
g1, . . . , gm have the Putinar property, if each strictly positive polynomial on K is con-
tained in QM(g1, . . . , gm).

Lemma 1.19. Let g1, . . . , gm ∈ R[x] such that K is compact and g1, . . . , gm has the Putinar
property. For every gm+1 ∈ R[x], the sequence g1, . . . , gm+1 has the Putinar property as
well.

For the proof, we us the following special case of the Stone-Weierstraß Theorem from
classical analysis.

Theorem 1.20. For each continuous function f on a compact set C ⊂ Rn, there exists a
sequence (fk) of polynomials which converges uniformly to f on C.

Proof of Lemma 1.19. Let g1, . . . , gm have the Putinar property. Further let f be
a polynomial which is strictly positive on

K ′ := {x ∈ Rn : gj(x) ≥ 0, 1 ≤ j ≤ m+ 1}.

It suffices to show that there exists some σm+1 ∈ Σ[x] with f − σm+1gm+1 > 0 on K.
We can assume that f is not strictly positive on K, since otherwise we can simply set
σm+1 ≡ 0. Set

D := K \K ′ = {x ∈ Rn : gj(x) ≥ 0, 1 ≤ j ≤ m, gm+1 < 0}

and

(3.3) M := max

{
f(x)

gm+1(x)
: x ∈ D

}
+ 1.

This maximum exists, since the closure of D is compact and f
gm+1

converges to −∞ when

x ∈ D tends to (clD) \D. Since gm+1(x) < 0 on D and there exists y ∈ D with f(y) ≤ 0,
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we see that M is positive. Define the function σ̄m+1 : Rn → R as

σ̄m+1(x) :=

{
min

{
M, f(x)

2gm+1(x)

}
if gm+1(x) > 0,

M if gm+1(x) ≤ 0.

σ̄m+1 is positive on K and continuous, and the continuous function f − σ̄m+1gm+1 is
positive on K as well. By the Stone-Weierstraß Theorem 1.20, the polynomial

√
σ̄m+1 can

be approximated by some polynomial r ∈ R[x] such that

f − r2gm+1 > 0 on K,

because gm+1 is bounded on K. Setting σm+1 := r2 gives the desired statement. �

Example 1.21. Let m = 1. We show that for every N > 0, the polynomial

g1 = N −
n∑
i=1

x2
i

has the Putinar property. By a scaling argument, we can assume N = 1. The identity

(3.4)
1

2

(
(x1 − 1)2 +

n∑
i=2

x2
i + (1−

n∑
i=1

x2
i )

)
= 1− x1

shows that the affine polynomial 1 − x1 is contained in QM(g1). The variety V := {x ∈
Rn : 1− x1 = 0} of this polynomial is a tangent hyperplane to the unit sphere Sn−1, and
by spherical symmetry, the polynomials underlying all tangent hyperplanes of Sn−1 are
contained in QM(g1).

Let h1, . . . , hn+1 be polynomials describing tangent hyperplanes to Sn−1, such that

∆ := {x ∈ Rn : hi(x) ≥ 0, 1 ≤ i ≤ n+ 1}

forms a simplex containing Sn−1. If p is strict positive polynomial on ∆, then there exists
a Handelman representation

p =
∑
β

cβh
β1

1 · · ·h
βn+1

n+1

with non-negative coefficients cβ. Each polynomial hi in this representation defines a
hyperplane to Sn−1 and thus be can expressed through (3.4) in terms of the polynomial
1−

∑n
i=1 x

2
i and sums of squares. Even powers of 1−

∑n
i=1 x

2
i can be viewed as sums of

squares, so that p can be written as

p = σ0

(
1−

n∑
i=1

x2
i

)
+ σ1

with sums of squares σ0 and σ1. By Theorem 1.15, the sequence of affine polynomials
h1, . . . , hn+1 has the Putinar property. To see this, consider without loss of generality the
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polynomials 1 − x1, . . . , 1 − xn,
∑n

i=1 xi. Further, Lemma 1.19 implies that the sequence
h1, . . . , hn+1, 1−

∑n
i=1 x

2
i has the Putinar property. Since

QM

(
h1, . . . , hn, 1−

n∑
i=1

x2
i

)
= QM

(
1−

n∑
i=1

x2
i

)
,

the single polynomial 1−
∑n

i=1 x
2
i has the Putinar property.

Proof of Putinar’s Theorem 1.17. Since QM(g1, . . . , gm) is Archimedean, there
exists N > 0 such that N −

∑n
i=1 x

2
i ∈ QM(g1, . . . , gm). Since QM(g1, . . . , gm) = QM(g1,

. . . , gm, N −
∑n

i=1 x
2
i ), it suffices to show that g1, . . . , gm, N −

∑n
i=1 x

2
i has the Putinar

property.

By Example 1.21, the single polynomialN−
∑n

i=1 x
2
i has the Putinar property. Inductively,

Lemma 1.19 then implies that g1, . . . , gm, N −
∑n

i=1 x
2
i has the Putinar property. �

In Example 1.21, we have already encountered sequences of affine polynomials. The subse-
quent statement says that quadratic modules generated by a sequence of affine polynomials
with compact feasible sets are always Archimedean.

Lemma 1.22. Let g1, . . . , gm ∈ R[x] affine and K := {x ∈ Rn : gj(x) ≥ 0, 1 ≤ j ≤ m}
compact, then QM(g1, . . . , gm) is Archimedean.

Proof. It suffices to show that there exists N > 0 such that N −
∑n

i=1 x
2
i ∈ QM(g1,

. . . , gm). In the special case K = ∅, Farkas’ Lemma from linear programming yields that
the constant −1 is a nonnegative linear combination of the affine polynomials g1, . . . , gm.
Hence, QM(g1, . . . , gm) = R[x], which implies the proof of the special case.

Now let K 6= ∅. Then the example follows from from Example 1.21, where first a sim-
plex was considered, and then the addition of further inequalities preserves the Putinar
property. �

As a corollary, we obtain the following Positivstellensatz of Jacobi and Prestel, which does
not need any additional technical precondition concerning the Archimedean property of
the quadratic module.

In the following, let g1, . . . , gm ∈ R[x] = R[x1, . . . , xn] and S = S(g1, . . . , gm). Recall from
Example 1.7 that QM(g1, . . . , gm) is the quadratic module defined by g1, . . . , gm.

Theorem 1.23 (Jacobi-Prestel). Suppose that S is nonempty and bounded, and that
QM(g1, . . . , gm) contains linear polynomials `1, . . . , `k with k ≥ 1 such that the polyhe-
dron S(`1, . . . , `k) is bounded. If p is strictly positive on S, then p ∈ QM(g1, . . . , gm).
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1

1

x1

x2

Figure 4. The feasible region S(g1, . . . , g4) for g1 = x1−1/2, g2 = x2−1/2,
g3 = 1− x1x2, g4 = 5/2− x1 − x2.

Proof. By Lemma 1.22, the quadratic module QM(`1, . . . , `k) is Archimedean. Hence,
it has the Putinar property. By Lemma 1.19, QM(`1, . . . , `k, g1, . . . , gm) has the Putinar
property as well, and so does QM(g1, . . . , gm) = QM(`1, . . . , `k, g1, . . . , gm). �

Example 1.24. Let g1 = x1 − 1/2, g2 = x2 − 1/2, g3 = 1 − x1x2, g4 = 5/2 − x1 − x2,
see Figure 4 for an illustration of S = S(g1, . . . , g4). The polynomial p = 8 − x2

1 − x2
2

is strictly positive on the set S = S(g1, g2, g3, g4), and since S(g1, g2, g4) is a bounded
polygon, Theorem 1.23 guarantees that p ∈ QM(g1, . . . , g4). To write down one such a
representation, first observe that the identities

2− xi =

(
5

2
− x1 − x2

)
+
(
x3−i −

1

2

)
,

2 + xi =
(
xi −

1

2

)
+

5

2

(i ∈ {1, 2}) allow that we may additionally use the box contraints 2−xi ≥ 0 and 2+xi ≥ 0
for our representation. Then, clearly, one possible Jacobi-Prestel representation for p is
provided by

p =
1

4

2∑
i=1

(
(2 + xi)

2(2− xi) + (2− xi)2(2 + xi)
)
.

Note that the feasible S does not change if we omit the linear constraint g4 ≥ 0. In-
terestingly, then the precondition of Theorem 1.23 is no longer satisfied, and, as we will
see in Exercise 12, although p is strictly positive on S(g1, g2, g3), it is not contained
QM(g1, g2, g3).

Schmüdgen’s Theorem. The following fundamental Theorem of Schmüdgen is closely
related to Putinar’s Theorem. Under the condition of compactness of the feasible set, it
characterizes (in contrast to Theorem 1.12) a representation of the polynomial p itself in
terms of the preorder of the polynomials defining the feasible set.


