Honors Multivariate Calculus

Math 221H Section 201

Thirteenth Homework:

Due in recitation: Thursday 30 November 2023

- 1. Use Green's Theorem to evaluate $\int_C 2xy \, dx + x^2 \, dy$, where C is the cardioid curve defined by $r = 1 \sin(\theta)$.
- 2. Evaluate the integral $\iint_D (3xy 4x^2y) dA$ where D is the unit disc directly and using Green's theorem.
- 3. Compute the curl $\nabla \times$ and divergence $\nabla \cdot$ of the following vector fields.

(a)
$$\mathbf{F}(x, y, z) = \sin x \mathbf{i} + \cos x \mathbf{j} + z^2 \mathbf{k}.$$

(b)
$$\mathbf{F}(x, y, z) = e^{xyz}\mathbf{i} + \sin(x - y)\mathbf{j} - \frac{xy}{2}\mathbf{k}$$

4. Which of the following vector fields on \mathbb{R}^3 are conservative.

(a)
$$\mathbf{F}(x, y, z) = z\mathbf{i} + 2yz\mathbf{j} + (x^2 + y^2)\mathbf{k}$$
. (b) $\mathbf{F}(x, y, z) = x\mathbf{i} + e^y \sin z\mathbf{j} + e^y \cos z\mathbf{k}$.

- 5. Suppose that \mathbf{F} and \mathbf{G} are vector fields whose components have continuous second partial derivatives. Prove the identities.
 - (a) $\nabla \cdot (\mathbf{F} + \mathbf{G}) = \nabla \cdot \mathbf{F} + \nabla \cdot \mathbf{G}.$
 - (b) $\nabla(\mathbf{F} \cdot \mathbf{G}) = (\mathbf{F} \cdot \nabla)\mathbf{G} + (\mathbf{G} \cdot \nabla)\mathbf{F} + \mathbf{F} \times (\nabla \times \mathbf{G}) + \mathbf{G} \times (\nabla \times \mathbf{F}).$

The operator $\nabla \cdot \nabla = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ is called the *Laplacian* and often written Δ .

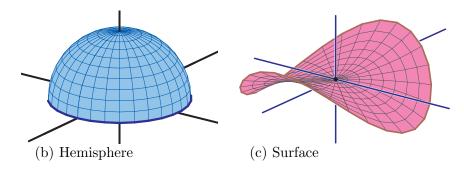
6. Use the normal form of Green's Theorem to deduce Green's First identity:

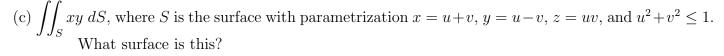
$$\iint_D f \,\nabla^2 g \, dA = \oint_C f(\nabla g) \cdot \mathbf{n} \, ds - \iint_D \nabla f \cdot \nabla g \, dA.$$

Here, $D \subset \mathbb{R}^2$ is a domain with piecewise smooth positively oriented boundary $C = \partial D$ (C, D satisfy the hypotheses of Green's Theorem).

7. Evaluate the surface integrals

(a) $\iint_{S} xz \, dS$, where S is the triangle with vertices (1, 0, 0), (0, 2, 0), (0, 0, 3). (b) $\iint_{S} (x^2z + y^2z) \, dS$, where S is the hemisphere $x^2 + y^2 + z^2 = 3$ and $z \ge 0$.





8. Evaluate the surface integral $\iint_S \mathbf{F} \cdot \mathbf{n} \, dS$, for the given vector field \mathbf{F} and surface S.

(a) $\mathbf{F}(x, y, z) = xy\mathbf{i} - 2x^2y^2\mathbf{j} + yz\mathbf{k}$, where S is that part of the paraboloid $z = 16 - x^2 - 2y^2$ lying above the rectangle $0 \le x \le 3$ and $0 \le y \le 2$, oriented upward.

(b) $\mathbf{F}(x, y, z) = -y\mathbf{i} + 2x\mathbf{j} + 3z\mathbf{k}$, where S is the upper hemisphere of the sphere of radius 4, oriented upward.

(c) $\mathbf{F}(x, y, z) = -y\mathbf{i} + x\mathbf{j} - e^{xz}\mathbf{k}$, where S is that part of the cylinder $x^2 + y^2 = 4$ where $1 \le z \le 4$, and **n** is pointing outwards.

