Honors Multivariate Calculus

Math 221H Section 201

Due in recitation: Thursday 26 October 2023

Ninth Homework:

- 1. Evaluate the double integrals: (a) $\int_{1}^{2} \int_{0}^{1} (x+y)^{-2} dx \, dy$ (b) $\int_{0}^{1} \int_{0}^{1} \frac{xy}{\sqrt{x^{2}+y^{2}+1}} dy \, dx$.
- 2. Find the volume of the solid under the hyperbolic paraboloid z = x² − y² and above the rectangle [−1, 1] × [1, 3] in the plane z = 0.
 What about the rectangle [−1, 1] × [0, 1]?
- 3. In what way are the Theorems of Fubini and Clairaut similar?

Suppose that f(x, y) is continuous on $[a, b] \times [c, d]$. For (x, y) in this rectangle, define g(x, y) to be the double integral $\int_a^x \int_c^y f(s, t) dt \, ds$. What is g_x ? g_y ? Show that $g_{xy} = g_{yx} = f(x, y)$.

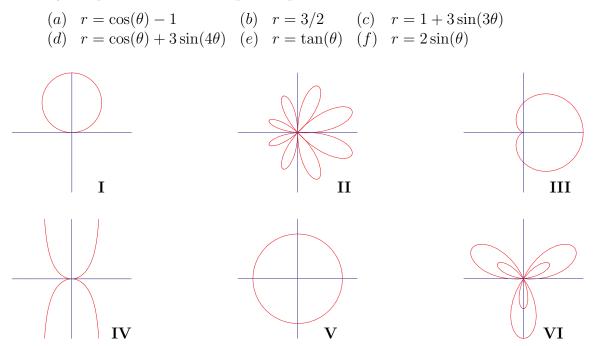
- 4. Evaluate the double integrals.
 - (a) $\iint_D (x^2 2xy) dA$, $D = \{(x, y) \mid 0 \le x \le 1 \ \sqrt{x} \le y \le 2x\}$.
 - (b) $\iint_D xy \, dA$, D is that part of the disk centered at the origin with radius 2, in the first quadrant.
- 5. Foe each of the following, sketch the region of integration and shange the order of integration.
 - (a) $\int_{1}^{2} \int_{0}^{\ln(x)} f(x, y) \, dy \, dx.$ (b) $\int_{0}^{1} \int_{\arctan(x)}^{\pi/4} f(x, y) \, dy \, dx.$
- 6. Evaluate the integrals by reversing the order of integration.

(a)
$$\int_0^3 \int_{y^2}^9 y \cos(x^2), dx \, dy.$$
 (b) $\int_0^1 \int_{\arcsin(y)}^{\pi/2} \cos x \sqrt{1 + \cos^2 x} \, dx \, dy.$

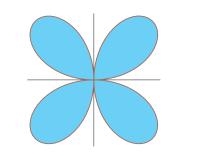
- 7. Find a Cartesian equation for the curve desribed by the given polar equations. (a) $r = \frac{5}{3-4\sin\theta}$. (b) $r^2 = \sin 2\theta$.
- 8. Find a polar equation for the curve represented by the given cartesian equations. (a) $x^2 = 4y$. (b) $x^2 - y^2 = 1$.
- 9. Use integration in polar coordinates to find the volume of the given solid.
 - (a) Under the cone $z = \sqrt{x^2 + y^2}$ and above the annulus $4 \le x^2 + y^2 \le 25$ in the x, y-plane.
 - (b) Bounded by the paraboloids $= 3x^2 + 3y^2$ and $z = 4 x^2 y^2$.
- 10. Set up, but do not solve, an integral to find the volume of the solid that lies between the two paraboloids $z = 2x^2 + y^2 1$ and $z = 8 x^2 2y^2$ and above the circle $x^2 + y^2 \le 3$.

Do this both in polar (r, θ) coordinates and in rectilinear (x, y) coordinates. This should be a double integral.

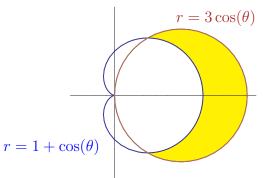
11. A cylindrical drill with radius r is used to drill a hole through the entre of a sphere with radius R, where r < R. Use integration in polar coordinates to find the volume of the ring-shaped solid that remains. Express this volume in terms of the height h of the ring. 12. Identify the polar curve with its polar equation.



13. Use integration in polar coordinates to find the area enclosed by all four loops in the four-leaved rose $r = 2\sin(2\theta)$.



14. Use integration in polar coordinates to find the area of the shaded lune-shaped region which lies between the curve $r = 3\cos(\theta)$ and $r = 1 + \cos(\theta)$.



15. Use integration in polar coordinates to find the area enclosed by the leminiscate $r^2 = 4\cos(2\theta)$.

