

Write your answers neatly, in complete sentences. Recopy your work before handing it in. Correct and crisp proofs are greatly appreciated; oftentimes your work can be shortened and made clearer.

Hand in to Frank Tuesday 7 November: (Have this on a separate sheet of paper.)

36. Let R be a ring, I an ideal of R , and $n \geq 1$ an integer. Define $M_n(I)$ to be the set of $n \times n$ matrices with entries in I .

- (1) Prove that for any ideal I of R , $M_n(I)$ is an ideal of $M_n(R)$.
- (2) Prove that any ideal of $M_n(R)$ has the form $M_n(I)$ for I an ideal of R .

Hand in for the grader Tuesday 7 November:

32. Classify all groups of order 18 up to isomorphism.

37. Let S be a *subset* of a ring R . Show that the intersection of all ideals of R that contain S is the set

$$\left\{ \sum_{i=1}^n r_i s_i t_i \mid r_1, t_1, \dots, r_n, t_n \in R \quad s_1, \dots, s_n \in S \quad n \in \mathbb{N} \right\}.$$

38. Let $C \subset M_2(\mathbb{R})$ be the set of matrices of the form

$$C = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \mid a, b \in \mathbb{R} \right\}.$$

Prove that C is a subring of $M_2(\mathbb{R})$, and that C is a field. Can you identify C with any field you know of?

39. A ring R in which every element is idempotent ($\forall a \in R, a^2 = a$) is a Boolean ring. Prove that every Boolean ring is commutative and has characteristic 2.

40. Let a, b be elements of a ring R . Prove that $1 - ab$ is invertible in R if and only if $1 - ba$ is invertible in R .

41. Define the binomial coefficient $\binom{n}{k}$ to be $n!/(k!(n-k)!)$ for integers $0 \leq k \leq n$. Let R be a commutative ring. Prove the binomial theorem:

$$\forall a, b \in R \quad \forall n \in \mathbb{N} \quad (a + b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

42. Suppose that R is a commutative ring of characteristic p , a prime number. Prove that the map $a \mapsto a^p$ defined for $a \in R$ is a ring homomorphism. (This is called the *Frobenius homomorphism*.)