

Write your answers neatly, in complete sentences. Recopy your work before handing it in. Correct and crisp proofs are greatly appreciated; oftentimes your work can be shortened and made clearer.

Hand in to Frank Tuesday 24 October: (Have this on a separate sheet of paper.)

22. I want the best, slickest, and most complete proof of the problem from the exam:

Let G be any group. Set M to be the intersection of all subgroups of finite index in G . Prove that M is normal in G .

23. Suppose that G is a finite p -group. Show that G contains a normal subgroup of order q for every positive integer q dividing the order of G . Describe such subgroups for the Heisenberg group (from Problem 19 on the sixth Homework).

Hand in for the grader Tuesday 24 October:

24. Show that the dihedral group D_n acting on the vertices of the n -gon is primitive if and only if n is a prime number.

25. Let G be a finite group acting faithfully on a set S . Prove that if G is 2-transitive, then G is a primitive permutation group.

26. Let $G \subset S_{12}$ be the subgroup of the group of permutations of $[12]$ generated by the following two permutations

$$\sigma := (1, 2)(3, 4)(5, 7)(6, 8)(9, 11)(10, 12) \quad \text{and} \quad \tau := (1, 2, 3)(4, 5, 6)(8, 9, 10).$$

Show that G is 2-transitive. (In fact, G is 5-transitive, it is the Mathieu group M_{12} .)

27. Let G be a group with an element x having exactly three distinct conjugates. Prove that G is not simple.

Prove that if G has an element with exactly four distinct conjugates, then G is not simple.

28. Show that any group of order 200 must contain a normal Sylow p -subgroup, and hence is not simple.