

Write your answers neatly, in complete sentences. Recopy your work before handing it in. Correct and crisp proofs are greatly appreciated; oftentimes your work can be shortened and made clearer.

Hand in for the grader Tuesday 17 October:

17. Free abelian groups and the rational numbers.

- (a) Show that the additive group of the rational numbers is not a free abelian group.
- (b) Show that the multiplicative group of the positive rational numbers is a free abelian group of countable rank.

18. Suppose that G is a group of order p^2 , p a prime number. Show that G is either isomorphic to $\mathbb{Z}_p \oplus \mathbb{Z}_p$ or to \mathbb{Z}_{p^2} .

19. Let p be a prime number and consider the group

$$U := \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \mid a, b, c \in \mathbb{Z}_p \right\},$$

Show that U is a subgroup of $GL(3, \mathbb{Z}_p)$, and that its order is p^3 .

If $p \geq 3$, show that every non-identity element of U has order p . What if $p = 2$?

What is the centre $Z(U)$ of U ? Show that $U/Z(U) \simeq \mathbb{Z}_p \oplus \mathbb{Z}_p$.

When $p = 2$, which group of order 8 (you are familiar with all 5) is U isomorphic to?

20. Show that if $n \neq 6$, then the symmetric group S_n has only inner automorphisms.

Hint: Any automorphism of a group permutes the conjugacy classes. Determine the numbers in the different conjugacy classes of involutions (permutations $\sigma \neq e$ with $\sigma^2 = e$).

What happens when $n = 6$?

21. Let H be a subgroup of a group G and define the *core of H* to be

$$\text{core}(H) := \bigcap \{H^g \mid g \in G\},$$

the intersection of all conjugates of H by elements of G .

Let $S := \{xH \mid x \in G\}$ be the set of left cosets of H in G . For each $g \in G$, define $g^* : S \rightarrow S$ by $g^*(xH) = gxH$. Show that the kernel of the group homomorphism $G \rightarrow \text{Sym}(S)$ given by $g \mapsto g^*$ is the core of H .