

Write your answers neatly, in complete sentences. Recopy your work before handing it in. Correct and crisp proofs are greatly appreciated; oftentimes your work can be shortened and made clearer.

Hand in for the grader Tuesday 3 October:

17. Which conjugacy class in S_6 is the largest? Justify your answer.
18. Given an example to show that the weak direct product is not a coproduct in the category of all groups. It suffices to consider the case of two factors. That is, find a group G and groups H, K that have homomorphisms $f_H: H \rightarrow G$ and $f_K: K \rightarrow G$ for which there is no homomorphism $f: H \times K \rightarrow G$ such that $f|_H = f_H$ and $f|_K = f_K$.
19. Following this last question up, show that weak product is a coproduct in the category of abelian groups. That is, suppose $\{H_\alpha \mid \alpha \in I\}$ is a family of abelian groups indexed by a set I , and G is an abelian group such that there are homomorphisms $f_\alpha: H_\alpha \rightarrow G$ for $\alpha \in I$. Prove there is a unique map $f: {}^w \prod \{H_\alpha \mid \alpha \in I\} \rightarrow G$ such that for each $\alpha \in I$ we have $f_\alpha = f \circ \iota_\alpha$, where $\iota_\alpha: H_\alpha \hookrightarrow {}^w \prod \{H_\alpha \mid \alpha \in I\}$ is the canonical injection.
Deduce that this property determines the weak product ${}^w \prod \{H_\alpha \mid \alpha \in I\}$ of abelian groups up to unique automorphism.
20. Let G be a group with normal subgroups H and K such that both G/H and G/K are abelian. Prove that $G/(H \cap K)$ is abelian.
21. Let F be a free group. Prove that the subgroup generated by all n th powers, $\{x^n \mid x \in F\}$, is a normal subgroup of F .