

Write your answers neatly, in complete sentences. Recopy your work before handing it in. Correct and crisp proofs are greatly appreciated; oftentimes your work can be shortened and made clearer.

Hand in for the grader Tuesday 19 September:

9. Let x_1, \dots, x_n be variables. Prove the following *Vandermonde identity*

$$\det(x_i^{j-1})_{i,j=1}^n = \prod_{1 \leq a < b \leq n} (x_b - x_a). \text{ For example,}$$

$$\det \begin{pmatrix} 1 & 1 & 1 & 1 \\ x_1 & x_2 & x_3 & x_4 \\ x_1^2 & x_2^2 & x_3^2 & x_4^2 \\ x_1^3 & x_2^3 & x_3^3 & x_4^3 \end{pmatrix} = (x_2 - x_1)(x_3 - x_1)(x_4 - x_1)(x_3 - x_2)(x_4 - x_2)(x_4 - x_3).$$

10. Let G be a group of order $2n$. Show that G has at least one element of order 2.

Suppose that n is odd. Show that if G is abelian then it has a unique element of order 2.

Show that if G is the dihedral group of rigid symmetries of the regular n -gon, then it has n elements of order 2. (What if n is even?)

11. Let $m \geq 2$ be an integer. Set $\mathbb{Z}_m^* := \{k \in \mathbb{Z}_m \mid \gcd(k, m) = 1\}$. These are the cosets of integers that are relatively prime to m .

(a) Show that \mathbb{Z}_m^* is the set of generators of the cyclic group \mathbb{Z}_m .

(b) Show that \mathbb{Z}_m^* is a group under multiplication modulo m . Define $\phi(m) := |\mathbb{Z}_m^*|$, the order of this group. This is Euler's *totient function*, also called Euler's ϕ -function.

(c) Deduce Euler's Theorem. If $\gcd(a, m) = 1$, then $a^{\phi(m)} \equiv 1 \pmod{m}$.

(That is, m divides $a^{\phi(m)} - 1$, equivalently, $a^{\phi(m)} = 1$ as elements of \mathbb{Z}_m .)

(d) Let p be a prime number and show that $\phi(p) = p - 1$.

Determine $\phi(p^n)$, where p is a prime and $n > 0$ is an integer.

Show that ϕ is multiplicative; if $a, b \in \mathbb{N}$ are relatively prime, ($\gcd(a, b) = 1$), then $\phi(ab) = \phi(a) \cdot \phi(b)$.

Deduce a formula for $\phi(m)$ in terms of the factorization of m into a product of powers of distinct primes. Express this in terms of m and its distinct prime divisors.

(e) Deduce Fermat's Little Theorem from the last part. If p is any prime number and $a \in \mathbb{Z}$, then $a^p \equiv a \pmod{p}$.