

Write your answers neatly, in complete sentences. Recopy your work before handing it in. Correct and crisp proofs are greatly appreciated; oftentimes your work can be shortened and made clearer.

Hand in to Frank Thursday 30 November: (Have this on a separate sheet of paper.)

52. Using, for example, that a polynomial over a field of degree d has at most d roots and the structure of cyclic groups (or any other legitimate methods), prove that any finite multiplicative subgroup of a field is cyclic.

Hand in for the grader Thursday 30 November:

53. Suppose that $S \subset R$ is a multiplicatively closed subset of an integral domain R that does not contain 0. Prove that if R is a principal ideal domain, then so is $R[S^{-1}]$, and the same implication for unique factorization domains.

54. Let R be an integral domain, and for each maximal ideal \mathfrak{m} of R , show that the localization $R_{\mathfrak{m}}$ is a subring of the quotient field of R .

55. Continuing the previous problem, show that the intersection of the rings $R_{\mathfrak{m}}$, as \mathfrak{m} ranges over all maximal ideals of R , is R itself

56. Show that the equation $x^2 + 1 = 0$ has infinitely many solutions in Hamilton's Quaternions, \mathbb{H} , which is $\mathbb{R} \oplus i\mathbb{R} \oplus j\mathbb{R} \oplus k\mathbb{R}$, where $ij = k$, $ji = -k$, etc. These are defined in the Example on page 117 of my copy of Hungerford in Section III.1.

57. Let F be a field, and consider the ring of formal power series $R := F[[x]]$ in one variable. Show that $f \in R$ is a unit if and only if it has a nonzero constant term. Use this to show that the only ideals in R are $\{\langle x^n \rangle \mid n \in \mathbb{N}\}$.

58. Continuing the previous problem, show that the subring $F[[x]][x^{-1}]$ of the quotient field of $F[[x]]$ is a field. This is the field of formal Laurent series in x .