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3. Resultants and Bézout’s Theorem. 57—69 13

4. Solving equations with Gröbner bases. 70—79 10

5. Eigenvalue Techniques. 80—85 6

6. Notes. 86—86 1

2.1 Gröbner basics

Gröbner bases are a foundation for many algorithms to represent and manipulate varieties
on a computer. While these algorithms are important in applications, we shall see that
Gröbner bases are also a useful theoretical tool.

A motivating problem is that of recognizing when a polynomial f ∈ K[x1, . . . , xn] lies
in an ideal I. When the ideal I is radical and K is algebraically closed, this is equivalent
to asking whether or not f vanishes on V(I). For example, we may ask which of the
polynomials x3z − xz3, x2yz − y2z2 − x2y2, and/or x2y − x2z + y2z lies in the ideal

〈x2y−xz2+y2z, y2−xz+yz〉 ?

This ideal membership problem is easy for univariate polynomials. Suppose that I =
〈f(x), g(x), . . . , h(x)〉 is an ideal and F (x) is a polynomial in K[x], the ring of polynomials
in a single variable x. We determine if F (x) ∈ I via a two-step process.

1. Use the Euclidean Algorithm to compute ϕ(x) := gcd(f(x), g(x), . . . , h(x)).

2. Use the Division Algorithm to determine if ϕ(x) divides F (x).
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This is valid, as I = 〈ϕ(x)〉. The first step is a simplification, where we find a simpler
(lower-degree) polynomial which generates I, while the second step is a reduction, where
we compute F modulo I. Both steps proceed systematically, operating on the terms of the
polynomials involving the highest power of x. A good description for I is a prerequisite
for solving our ideal membership problem.

We shall see how Gröbner bases give algorithms which extend this procedure to mul-
tivariate polynomials. In particular, a Gröbner basis of an ideal I gives a sufficiently
good description of I to solve the ideal membership problem. Gröbner bases are also the
foundation of algorithms that solve many other problems.

Monomial ideals are central to what follows. A monomial is a product of powers of
the variables x1, . . . , xn with nonnegative integer exponents. The exponent of a monomial
xα := xα1

1 xα2

2 · · · xαn
n is a vector α ∈ Nn. If we identify monomials with their exponent

vectors, the multiplication of monomials corresponds to addition of vectors, and divisibility
to the partial order on Nn of componentwise comparison.

Definition 2.1.1. A monomial ideal I ⊂ K[x1, . . . , xn] is an ideal which satisfies the
following two equivalent conditions.

(i) I is generated by monomials.

(ii) If f ∈ I, then every monomial of f lies in I.

One advantage of monomial ideals is that they are essentially combinatorial objects.
By Condition (ii), a monomial ideal is determined by the set of monomials which it
contains. Under the correspondence between monomials and their exponents, divisibility
of monomials corresponds to componentwise comparison of vectors.

xα|xβ ⇐⇒ αi ≤ βi , i = 1, . . . , n ⇐⇒ α ≤ β ,

which defines a partial order on Nn. Thus

(1, 1, 1) ≤ (3, 1, 2) but (3, 1, 2) 6≤ (2, 3, 1) .

The set O(I) of exponent vectors of monomials in a monomial ideal I has the property
that if α ≤ β with α ∈ O(I), then β ∈ O(I). Thus O(I) is an (upper) order ideal of the
poset (partially ordered set) Nn.

A set of monomials G ⊂ I generates I if and only if every monomial in I is divisible by
at least one monomial of G. A monomial ideal I has a unique minimal set of generators—
these are the monomials xα in I which are not divisible by any other monomial in I.

Let us look at some examples. When n = 1, monomials have the form xd for some
natural number d ≥ 0. If d is the minimal exponent of a monomial in I, then I = 〈xd〉.
Thus all monomial ideals have the form 〈xd〉 for some d ≥ 0.

When n = 2, we may plot the exponents in the order ideal associated to a monomial
ideal. For example, the lattice points in the shaded region of Figure 2.1 represent the
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Figure 2.1: Exponents of monomials in the ideal 〈y4, x3y3, x5y, x6y2〉.

monomials in the ideal I := 〈y4, x3y3, x5y, x6y2〉, with the generators marked. From this
picture we see that I is minimally generated by y4, x3y3, and x5y.

Since xayb ∈ I implies that xa+αyb+β ∈ I for any (α, β) ∈ N2, a monomial ideal
I ⊂ K[x, y] is the union of the shifted positive quadrants (a, b) + N2 for every monomial
xayb ∈ I. It follows that the monomials in I are those above the staircase shape that is
the boundary of the shaded region. The monomials not in I lie under the staircase, and
they form a vector space basis for the quotient ring K[x, y]/I.

This notion of staircase for two variables makes sense when there are more variables.
The staircase of an ideal consists of the monomials which are on the boundary of the ideal,
in that they are visible from the origin of Nn. For example, here is the staircase for the
ideal 〈x5, x2y5, y6, x3y2z, x2y3z2, xy5z2, x2yz3, xy2z3, z4〉.

x

z

y

We offer a purely combinatorial proof that monomial ideals are finitely generated,
which is independent of the Hilbert Basis Theorem.

Lemma 2.1.2 (Dickson’s Lemma). Monomial ideals are finitely generated.

Proof. We prove this by induction on n. The case n = 1 was covered in the preceding
examples.

Let I ⊂ K[x1, . . . , xn, y] be a monomial ideal. For each d ∈ N, observe that the set of
monomials

{xα | xαyd ∈ I} ,
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generates a monomial ideal Id of K[x1, . . . , xn], and the union of all such monomials,

{xα | xαyd ∈ I for some d ≥ 0} ,

generates a monomial ideal I∞ of K[x1, . . . , xn]. By our inductive hypothesis, Id has a
finite generating set Gd, for each d = 0, 1, . . . ,∞.

Note that I0 ⊂ I1 ⊂ · · · ⊂ I∞. We must have I∞ = Id for some d < ∞. Indeed, each
generator xα ∈ G∞ of I∞ comes from a monomial xαyb in I, and we may let d be the
maximum of the numbers b which occur. Since I∞ = Id, we have Ib = Id for any b > d.
Note that if b > d, then we may assume that Gb = Gd as Ib = Id.

We claim that the finite set

G =
d
⋃

b=0

{xαyb | xα ∈ Gb}

generates I. Indeed, let xαyb be a monomial in I. We find a monomial in G which divides
xαyb. Since xα ∈ Ib, there is a generator xγ ∈ Gb which divides xα. If b ≤ d, then
xγyb ∈ G is a monomial dividing xαyb. If b > d, then xγyd ∈ G as Gb = Gd and xγyd

divides xαyb.

A simple consequence of Dickson’s Lemma is that any strictly increasing chain of
monomial ideals is finite. Suppose that

I1 ⊂ I2 ⊂ I3 ⊂ · · ·

is an increasing chain of monomial ideals. Let I∞ be their union, which is another mono-
mial ideal. Since I∞ is finitely generated, there must be some ideal Id which contains all
generators of I∞, and so Id = Id+1 = · · · = I∞. We used this fact crucially in our proof of
Dickson’s lemma.

The key idea behind Gröbner bases is to determine what is meant by ‘term of highest
power’ in a polynomial having two or more variables. There is no canonical way to do
this, so we must make a choice, which is encoded in the notion of a term or monomial
order. An order ≻ on monomials in K[x1, . . . , xn] is total if for monomials xα and xβ

exactly one of the following holds

xα ≻ xβ or xα = xβ or xα ≺ xβ .

Definition 2.1.3. A monomial order on K[x1, . . . , xn] is a total order ≻ on the monomials
in K[x1, . . . , xn] such that

(i) 1 is the minimal element under ≻.

(ii) ≻ respects multiplication by monomials: If xα ≻ xβ then xα · xγ ≻ xβ · xγ , for any
monomial xγ .
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Conditions (i) and (ii) in Definition 2.1.3 imply that if xα is divisible by xβ, then
xα ≻ xβ. A well-ordering is a total order with no infinite descending chain, equivalently,
one in which every subset has a minimal element.

Lemma 2.1.4. Monomial orders are exactly the well-orderings ≻ on monomials that
satisfy Condition (ii) of Definition 2.1.3.

Proof. Let ≻ be a well-ordering on monomials which satisfies Condition (ii) of Defini-
tion 2.1.3. Suppose that ≻ is not a monomial order, then there is some monomial xa with
1 ≻ xa. By Condition (ii), we have 1 ≻ xa ≻ x2a ≻ x3a ≻ · · · , which contradicts ≻ being
a well-order, and 1 is the ≻-minimal monomial.

Let ≻ be a monomial order and M be any set of monomials. Set I to be the ideal
generated by M . By Dickson’s Lemma, I is generated by a finite set G of monomials.
We may assume that G ⊂ M , for if xα ∈ G rM , then as M generates I, there is some
xβ ∈ M that divides xα, and so we may replace xα by xβ in G. After finitely many such
replacements, we will have that G ⊂ M . Since G is finite, let xγ be the minimal monomial
in G under ≻. We claim that xγ is the minimal monomial in M .

Let xα ∈ M . Since G generates I and M ⊂ I, there is some xβ ∈ G which divides xα

and thus xα ≻ xβ. But xγ is the minimal monomial in G, so xα ≻ xβ ≻ xγ.

The well-ordering property of monomials orders is key to what follows, as many proofs
use induction on ≻, which is only possible as ≻ is a well-ordering.

Example 2.1.5. The (total) degree, deg(xα), of a monomial xα = xα1

1 · · · xαn
n is α1 +

· · ·+ αn. We describe four important monomial orders.

1. The lexicographic order ≻lex on K[x1, . . . , xn] is defined by

xα ≻lex x
β ⇐⇒

{

The first non-zero entry of the
vector α− β in Zn is positive.

}

2. The degree lexicographic order ≻dlx on K[x1, . . . , xn] is defined by

xα ≻dlx x
β ⇐⇒

{

deg(xα) > deg(xβ) or ,
deg(xα) = deg(xβ) and xα ≻lex x

β .

3. The degree reverse lexicographic order ≻drl K[x1, . . . , xn] is defined by

xα ≻drl x
β ⇐⇒







deg(xα) > deg(xβ) or ,
deg(xα) = deg(xβ) and the last non-zero entry of the

vector α− β in Zn is negative .
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4. More generally, we have weighted orders. Let ω ∈ Rn be a vector with non-negative
components, called a weight. This defines a partial order ≻ω on monomials

xα ≻ω xβ ⇐⇒ ω · α > ω · β .

If all components of ω are positive, then ≻ω satisfies the two conditions of Defini-
tion 2.1.3. Its only failure to be a monomial order is that it may not be a total
order on monomials. (For example, consider ω = (1, 1, . . . , 1), then ω ·α is the total
degree of xα.) This may be remedied by picking a monomial order to break ties.
For example, if we use ≻lex, then we get a monomial order

xα ≻ω,lex xβ ⇐⇒
{

ω · α > ω · β or ,
ω · α = ω · β and xα ≻lex x

β

Another way to do this is to break the ties with a different monomial order, or a
different weight, and this may be done recursively.

You are asked to prove these are monomial orders in Exercise 7.

Remark 2.1.6. We compare these three orders on monomials of degrees 1 and 2 in K[x, y, z]
where the variables are ordered x ≻ y ≻ z.

x2 ≻lex xy ≻lex xz ≻lex x ≻lex y2 ≻lex yz ≻lex y ≻lex z2 ≻lex z

x2 ≻dlx xy ≻dlx xz ≻dlx y
2 ≻dlx yz ≻dlx z

2 ≻dlx x ≻dlx y ≻dlx z

x2 ≻drl xy ≻drl y
2 ≻drl xz ≻drl yz ≻drl z

2 ≻drl x ≻drl y ≻drl z

For the remainder of this section, ≻ will denote a fixed, but arbitrary monomial order
on K[x1, . . . , xn]. A term is a product axα of a scalar a ∈ K with a monomial xα. We may
extend any monomial order ≻ to an order on terms by setting axα ≻ bxβ if xα ≻ xβ and
ab 6= 0. Such a term order is no longer a partial order as different terms with the same
monomial are incomparable. For example 3x2y and 5x2y are incomparable. Term orders
are however well-founded in that they have no infinite strictly decreasing chains.

The initial term in≻(f) of a polynomial f ∈ K[x1, . . . , xn] is the term of f that is
maximal with respect to ≻ among all terms of f . For example, if ≻ is lexicographic order
with x ≻ y, then

in≻(3x
3y − 7xy10 + 13y30) = 3x3y .

When ≻ is understood, we may write in(f). As ≻ is a total order that respects the multi-
plication of monomials, taking initial terms is multiplicative, in≻(fg) = in≻(f)in≻(g), for
f, g ∈ K[x1, . . . , xn]. The initial ideal in≻(I) (or in(I)) of an ideal I ⊂ K[x1, . . . , xn] is the
ideal generated by the initial terms of polynomials in I,

in≻(I) = 〈in≻(f) | f ∈ I〉 .

We make the most important definition of this section.
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Definition 2.1.7. Let I ⊂ K[x1, . . . , xn] be an ideal and ≻ a monomial order. A set
G ⊂ I is a Gröbner basis for I with respect to the monomial order ≻ if the initial ideal
in≻(I) is generated by the initial terms of polynomials in G, that is, if

in≻(I) = 〈in≻(g) | g ∈ G〉 .

Notice that if G is a Gröbner basis and G ⊂ G′, then G′ is also a Gröbner basis. Note
also that I is a Gröbner basis for I, and every Gröbner basis contains a finite subset that
is also a Gröbner basis, by Dickson’s Lemma.

We justify our use of the term ‘basis’ in ‘Gröbner basis’.

Lemma 2.1.8. If G is a Gröbner basis for I with respect to a monomial order ≻, then
G generates I.

Proof. We begin with a computation and a definition. Let f ∈ I. Since {in(g) | g ∈ G}
generates in(I), there is a polynomial g ∈ G whose initial term in(g) divides the initial
term in(f) of f . Thus there is some term axα so that

in(f) = axαin(g) = in(axαg) ,

as ≻ respects multiplication. If we set f1 := f − cxαg, then in(f) ≻ in(f1).
We will prove the lemma by induction on in(f) for f ∈ I. Suppose first that f ∈ I is

a polynomial whose initial term in(f) is the ≻-minimal monomial in in(I). Then f1 = 0
and so f ∈ 〈G〉. In fact, up to a scalar multiple, f ∈ G. Suppose now that I 6= 〈G〉,
and let f ∈ I be a polynomial with in(f) is ≻-minimal among all f ∈ I r 〈G〉. But then
f1 = f − cxαg ∈ I and as in(f) ≻ in(f1), we must have that f1 ∈ 〈G〉, which implies that
f ∈ 〈G〉, a contradiction.

An immediate consequence of Dickson’s Lemma and Lemma 2.1.8 is the following
Gröbner basis version of the Hilbert Basis Theorem.

Theorem 2.1.9 (Hilbert Basis Theorem). Every ideal I ⊂ K[x1, . . . , xn] has a finite
Gröbner basis with respect to any given monomial order.

Example 2.1.10. Different monomial orderings give different Gröbner bases, and the sizes
of the Gröbner bases can vary. Consider the ideal generated by the three polynomials

xy3 + xz3 + x− 1, yz3 + yx3 + y − 1, zx3 + zy3 + z − 1

In the degree reverse lexicographic order, where x ≻ y ≻ z, this has a Gröbner basis
x3z + y3z + z − 1,
xy3 + xz3 + x− 1,
x3y + yz3 + y − 1,
y4z − yz4 − y + z,
2xyz4 + xyz + xy − xz − yz,
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2y3z3 − x3 + y3 + z3 + x2 − y2 − z2,
y6 − z6 − y5 + y3z2 − 2x2z3 − y2z3 + z5 + y3 − z3 − x2 − y2 + z2 + x,
x6 − z6 − x5 − y3z2 − x2z3 − 2y2z3 + z5 + x3 − z3 − x2 − y2 + y + z,
2z7+4x2z4+4y2z4−2z6+3z4−x3−y3+3x2z+3y2z−2z3+x2+y2−2xz−2yz−z2+z−1,
2yz6 + y4 + 2yz3 + x2y − y3 + yz2 − 2z3 + y − 1,
2xz6 + x4 + 2xz3 − x3 + xy2 + xz2 − 2z3 + x− 1,

consisting of 11 polynomials with largest coefficient 4 and degree 7. If we consider instead
the lexicographic monomial order, then this ideal has a Gröbner basis

64z34 − 64z33 + 384z31 − 192z30 − 192z29 + 1008z28 + 48z27 − 816z26 + 1408z25 + 976z24

−1296z23 + 916z22 + 1964z21 − 792z20 − 36z19 + 1944z18 + 372z17 − 405z16 + 1003z15

+879z14 − 183z13 + 192z12 + 498z11 + 7z10 − 94z9 + 78z8 + 27z7 − 47z6 − 31z5 + 4z3

−3z2 − 4z − 1,

64yz21 + 288yz18 + 96yz17 + 528yz15 + 384yz14 + 48yz13 + 504yz12 + 600yz11 + 168yz10

+200yz9 + 456yz8 + 216yz7 + 120yz5 + 120yz4 − 8yz2 + 16yz + 8y − 64z33 + 128z32

−128z31 − 320z30 + 576z29 − 384z28 − 976z27 + 1120z26 − 144z25 − 2096z24 + 1152z23

+784z22 − 2772z21 + 232z20 + 1520z19 − 2248z18 − 900z17 + 1128z16 − 1073z15 − 1274z14

+229z13 − 294z12 − 966z11 − 88z10 − 81z9 − 463z8 − 69z7 + 26z6 − 141z5 − 32z4 + 24z3

−12z2 − 11z + 1

589311934509212912y2 − 11786238690184258240yz20 − 9428990952147406592yz19

−2357247738036851648yz18 − 48323578629755458784yz17 − 48323578629755458784yz16

−20036605773313239008yz15 − 81914358896780594768yz14 − 97825781128529343392yz13

−53038074105829162080yz12 − 78673143256979923752yz11 − 99888372899311588584yz10

−63645688926994994496yz9 − 37126651874080413456yz8 − 43903739120936361944yz7

−34474748168788955352yz6 − 9134334984892800136yz5 − 5893119345092129120yz4

−4125183541564490384yz3 − 1178623869018425824yz2 − 2062591770782245192yz
−1178623869018425824y + 46665645155349846336z33 − 52561386330338650688z32

+25195872352020329920z31 + 281567691623729527232z30 − 193921774307243786944z29

−22383823960598695936z28 + 817065337246009690992z27 − 163081046857587235248z26

−427705590368834030336z25+1390578168371820853808z24+390004343684846745808z23

−980322197887855981664z22+1345425117221297973876z21+1287956065939036731676z20

−953383162282498228844z19+631202347310581229856z18+1704301967869227396024z17

−155208567786555149988z16 − 16764066862257396505z15 + 1257475403277150700961z14

+526685968901367169598z13 − 164751530000556264880z12 + 491249531639275654050z11

+457126308871186882306z10 − 87008396189513562747z9 + 15803768907185828750z8

+139320681563944101273z7 − 17355919586383317961z6 − 50777365233910819054z5

−4630862847055988750z4 + 8085080238139562826z3 + 1366850803924776890z2

−3824545208919673161z − 2755936363893486164,

589311934509212912x+ 589311934509212912y − 87966378396509318592z33

+133383402531671466496z32 − 59115312141727767552z31 − 506926807648593280128z30

+522141771810172334272z29 + 48286434009450032640z28 − 1434725988338736388752z27

+629971811766869591712z26+917986002774391665264z25− 2389871198974843205136z24
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−246982314831066941888z23+2038968926105271519536z22−2174896389643343086620z21

−1758138782546221156976z20+2025390185406562798552z19−774542641420363828364z18

−2365390641451278278484z17+627824835559363304992z16+398484633232859115907z15

−1548683110130934220322z14− 500192666710091510419z13+551921427998474758510z12

−490368794345102286410z11 − 480504004841899057384z10 + 220514007454401175615z9

+38515984901980047305z8 − 136644301635686684609z7 + 17410712694132520794z6

+58724552354094225803z5 + 15702341971895307356z4 − 7440058907697789332z3

−1398341089468668912z2 + 3913205630531612397z + 2689145244006168857,

consisting of 4 polynomials with largest degree 34 and significantly larger coefficients.

Exercises

1. Prove the equivalence of conditions (i) and (ii) in Definition 2.1.1.

2. Show that a monomial ideal is radical if and only if it is square-free. (Square-free
means that it has generators in which no variable occurs to a power greater than 1.)

3. Show that the elements of a monomial ideal I which are minimal with respect to
division form a minimal set of generators of I in that they generate I and are a
subset of any generating set of I.

4. Which of the polynomials x3z−xz3, x2yz− y2z2−x2y2, and/or x2y−x2z+ y2z lies
in the ideal

〈x2y−xz2+y2z, y2−xz+yz〉 ?

5. Using Definition 2.1.1, show that a monomial order is a linear extension of the
divisibility partial order on monomials.

6. Show that if an ideal I has a square-free initial ideal, then I is radical. Give an
example to show that the converse of this statement is false.

7. Show that each of the order relations ≻lex , ≻dlx, and ≻drl , are monomial orders.
Show that if the coordinates of ω ∈ Rn

> are linearly independent over Q, then ≻ω is
a monomial order. Show that each of ≻lex , ≻dlx, and ≻drl are weighted orders.

8. Suppose that ≻ is a term order. Prove that for any two nonzero polynomials f, g,
we have in≻(fg) = in≻(f)in≻(g).

9. Show that for a monomial order ≻, in(I)in(J) ⊆ in(IJ) for any two ideals I and J .
Find I and J such that the inclusion is proper.
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2.2 Algorithmic applications of Gröbner bases

Many practical algorithms to study and manipulate ideals and varieties are based on
Gröbner bases. The foundation of algorithms involving Gröbner bases is the multivari-
ate division algorithm. The subject began with Buchberger’s thesis which contained his
algorithm to compute Gröbner bases.

Both steps in the algorithm for ideal membership in one variable relied on the same
elementary procedure: using a polynomial of low degree to simplify a polynomial of higher
degree. This same procedure was also used in the proof of Lemma 2.1.8. This leads to the
multivariate division algorithm, which is a cornerstone of the theory of Gröbner bases.

Algorithm 2.2.1 (Multivariate division algorithm).
Input: Polynomials g1, . . . , gm, f in K[x1, . . . , xn] and a monomial order ≻.
Output: Polynomials q1, . . . , qm and r such that

f = q1g1 + q2g2 + · · ·+ qmgm + r , (2.1)

where no term of r is divisible by an initial term of any polynomial gi and we also have
in(f) º in(r), and in(f) º in(qigi), for each i = 1, . . . ,m.

Initialize: Set r := f and q1 := 0, . . . , qm := 0. Perform the following steps.

(1) If no term of r is divisible by an initial term of some gi, then exit.

(2) Otherwise, let axα be the largest (with respect to ≻) term of r divisible by some
in(gi). Choose j minimal such that in(gj) divides xα and suppose that axα =
bxβ · in(gj). Replace r by r − bxβgj and qj by qj + bxβ, and return to step (1).

Proof of correctness. Each iteration of (2) is a reduction of r by the polynomials g1, . . . , gm.
With each reduction, the largest term in r divisible by some in(gi) decreases with respect
to ≻. Since the term order ≻ is well-founded, this algorithm must terminate after a finite
number of steps. Every time the algorithm executes step (1), condition (2.1) holds. We
also always have in(f) º in(r) because it holds initially, and with every reduction any
new terms of r are less than the term that was canceled. Lastly, in(f) º in(qigi) always
holds, because it held initially, and the initial terms of the qigi are always terms of r.

Given a list G = (g1, . . . , gm) of polynomials and a polynomial f , let r be the remainder
obtained by the multivariate division algorithm applied to G and f . Since f − r lies in
the ideal generated by G, we write f mod G for this remainder r. While it is clear (and
expected) that f mod G depends on the monomial order ≻, in general it will also depend
upon the order of the polynomials (g1, . . . , gm). For example, in the degree lexicographic
order

x2y mod (x2, xy + y2) = 0 , but

x2y mod (xy + y2, x2) = y3 .
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This example shows that we cannot reliably use the multivariate division algorithm to
test when f is in the ideal generated by G. However, this does not occur when G is a
Gröbner basis.

Lemma 2.2.2 (Ideal membership test). Let G be a finite Gröbner basis for an ideal I
with respect to a monomial order ≻. Then a polynomial f ∈ I if and only if f mod G = 0.

Proof. Set r := f mod G. If r = 0, then f ∈ I. Suppose r 6= 0. Since no term of r is
divisible any initial term of a polynomial in G, its initial term in(r) is not in the initial
ideal of I, as G is a Gröbner basis for I. But then r 6∈ I, and so f 6∈ I.

When G is a Gröbner basis for an ideal I and f ∈ K[x1, . . . , xn], no term of the
remainder f mod G lies in the initial ideal of I. A monomial xα is standard if xα 6∈ in(I).
The images of standard monomials in the ring K[x1, . . . , xn]/in(I) form a vector space
basis. Much more interesting is the following theorem of Macaulay.

Theorem 2.2.3. Let I ⊂ K[x1, . . . , xn] be an ideal and ≻ a monomial order. Then the
images of standard monomials in K[x1, . . . , xn]/I form a vector space basis.

Proof. Let G be a finite Gröbner basis for I with respect to ≻. Given a polynomial f ,
both f and f mod G represent the same element in K[x1, . . . , xn]/I. Since f mod G is a
linear combination of standard monomials, the standard monomials span K[x1, . . . , xn]/I.

A linear combination f of standard monomials is zero in K[x1, . . . , xn]/I only if f ∈ I.
But then in(f) is both standard and lies in in(I), and so we conclude that f = 0. Thus
the standard monomials are linearly independent in K[x1, . . . , xn]/I.

Because of Macaulay’s Theorem, if we have a monomial order ≻ and an ideal I, then
for every polynomial f ∈ K[x1, . . . , xn], there is a unique polynomial f which involves
only standard monomials such that f and f have the same image in the quotient ring
K[x1, . . . , xm]/I. Moreover, this polynomial f equals f mod G, where G is any finite
Gröbner basis of I with respect to the monomial order ≻, and thus may be computed
from f and G using the division algorithm. This unique representative f of f is called
the normal form of f modulo I and the division algorithm called with a Gröbner basis
for I is often called normal form reduction.

Macaulay’s Theorem shows that a Gröbner basis allows us to compute in the quotient
ring K[x1, . . . , xn]/I using the operations of the polynomial ring and ordinary linear al-
gebra. Indeed, suppose that G is a finite Gröbner basis for an ideal I with respect to a
given monomial order ≻ and that f, g ∈ K[x1, . . . , xn]/I are in normal form, expressed as
a linear combination of standard monomials. Then f + g is a linear combination of stan-
dard monomials and we can compute the product fg in the quotient ring as fg mod G,
where this product is taken in the polynomial ring.

Theorem 2.1.9, which asserted the existence of a finite Gröbner basis, was purely
existential. To use Gröbner bases, we need methods to detect and generate them. Such
methods were given by Bruno Buchberger in his 1965 Ph.D. thesis.
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A given set of generators for an ideal will fail to be a Gröbner basis if the initial terms
of the generators fail to generate the initial ideal. That is, if there are polynomials in
the ideal whose initial terms are not divisible by the initial terms of our generators. A
necessary step towards generating a Gröbner basis is to generate polynomials in the ideal
with ‘new’ initial terms. This is the raison d’etre for the following definition.

Definition 2.2.4. The least common multiple, lcm{axα, bxβ} of two terms axα and bxβ

is the minimal monomial xγ divisible by both xα and xβ. Here, the exponent vector γ is
the componentwise maximum of α and β.

Let 0 6= f, g ∈ K[x1, . . . , xn] and suppose ≻ is a monomial order. The S-polynomial of
f and g, Spol(f, g), is the polynomial linear combination of f and g,

Spol(f, g) :=
lcm{in(f), in(g)}

in(f)
f − lcm{in(f), in(g)}

in(g)
g .

Note that both terms in this expression have initial term equal to lcm{in(f), in(g)}.

Buchberger gave the following simple criterion to detect when a set G of polynomials
is a Gröbner basis for the ideal it generates.

Theorem 2.2.5 (Buchberger’s Criterion). A set G of polynomials is a Gröbner basis for
the ideal it generates with respect to a monomial order ≻ if and only if for for all pairs
f, g ∈ G,

Spol(f, g) mod G = 0 .

Proof. Suppose first that G is a Gröbner basis for I with respect to ≻. Then, for f, g ∈
G, their S-polynomial Spol(f, g) lies in I and the ideal membership test implies that
Spol(f, g) mod G = 0.

Now suppose that G = {g1, . . . , gm} satisfies Buchberger’s criterion and let I be the
ideal generated by G. Let f ∈ I. We will show that in(f) is divisible by in(g), for some
g ∈ G. This implies that G is a Gröbner basis for I.

Given a list h = (h1, . . . , hm) of polynomials in K[x1, . . . , xn] let mm(h) be the largest
monomial appearing in one of h1g1, . . . , hmgm. This will necessarily be the monomial in
at least one of the initial terms in(h1g1), . . . , in(hmgm). Let j(h) be the minimum index i
for which mm(h) is the monomial of in(higi).

Consider lists h = (h1, . . . , hm) of polynomials with

f = h1g1 + · · ·+ hmgm (2.2)

for which mm(h) minimal among all lists satisfying (2.2). Of these, let h be a list with
j := j(h) maximal. We claim that mm(h) is the monomial of in(f), which implies that
in(gj) divides in(f).

Otherwise, mm(h) ≻ in(f), and so the initial term in(hjgj) must be canceled in the
sum (2.2). Thus there is some index k such that mm(h) is the monomial of in(hkgk). By
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our assumption on j, we have k > j. Let xβ := lcm{in(gj), in(gk)}, the monomial which is
canceled in Spol(gj, gk). Since in(gj) and in(gk) both divide mm(h), both divide in(hjgj),
and there is some term axα such that axαxβ = in(hjgj). Set cx

γ := in(hjgj)/in(gk). Then

axαSpol(gj, gk) = axα xβ

in(gj)
gj − axα xβ

in(gk)
gk = in(hj)gj − cxγgk .

As Buchberger’s criterion is satisfied, there are polynomials q1, . . . , qm with

Spol(gj, gk) = q1g1 + · · ·+ qmgm ,

and we may assume that in(qigi) ¹ in(Spol(gj, gk)) ≺ xβ, by the division algorithm and
the construction of Spol(gj, gk).

Define a new list h′ of polynomials,

h′ = (h1 + axαq1, . . . , hj − in(hj) + axαqj, . . . , hk + cxγ + axαqk, . . . , hm + axαqm) ,

and consider the sum
∑

h′
igi, which is

∑

i

higi + axα
∑

i

qigi − in(hj)gj + cxγgk

= f + axαSpol(gj, gk)− axαSpol(gj, gk) = f ,

so h′ is a list satisfying (2.2).
We have in(qigi) ¹ in(Spol(gj, gk)), so in(axαqigi) ≺ xαxβ = mm(h). But then

mm(h′) ¹ mm(h). By the minimality of mm(h), we have mm(h′) = mm(h). Since
in(hj − in(hj)) ≺ in(hj), we have j(h′) > j = j(h), which contradicts our choice of h.

Buchberger’s algorithm to compute a Gröbner basis begins with a list of polynomials
and augments that list by adding reductions of S-polynomials. It halts when the list of
polynomials satisfies Buchberger’s Criterion.

Algorithm 2.2.6 (Buchberger’s Algorithm). Let G = (g1, . . . , gm) be generators for an
ideal I and ≻ a monomial order. For each 1 ≤ i < j ≤ m, let hij := Spol(gi, gj) mod G. If
each reduction vanishes, then by Buchberger’s Criterion, G is a Gröbner basis for I with
respect to ≻. Otherwise append all the non-zero hij to the list G and repeat this process.

This algorithm terminates after finitely many steps, because the initial terms of polyno-
mials in G after each step generate a strictly larger monomial ideal and Dickson’s Lemma
implies that any increasing chain of monomial ideals is finite. Since the manipulations
in Buchberger’s algorithm involve only algebraic operations using the coefficients of the
input polynomials, we deduce the following corollary, which is important when studying
real varieties. Let k be any subfield of K.
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Corollary 2.2.7. Let f1, . . . , fm ∈ k[x1, . . . , xn] be polynomials and ≻ a monomial order.
Then there is a Gröbner basis G ⊂ k[x1, . . . , xn] for the ideal 〈f1, . . . , fm〉 in K[x1, . . . , xn]
with respect to the monomial order ≻.

Example 2.2.8. Consider applying the Buchberger algorithm to G = (x2, xy + y2) with
any monomial order where x ≻ y. First

Spol(x2, xy + y2) = y · x2 − x(xy + y2) = −xy2 .

Then

−xy2 mod (x2, xy + y2) = −xy2 + y(xy + y2) = y3 .

Since all S-polynomials of (x2, xy + y2, y3) reduce to zero, this is a Gröbner basis. ⋄

Among the polynomials hij computed at each stage of the Buchberger algorithm are
those where one of in(gi) or in(gj) divides the other. Suppose that in(gi) divides in(gj) with
i 6= j. Then Spol(gi, gj) = gj − axαgi, where axα is some term. This has strictly smaller
initial term than does gj and so we never use gj to compute hij := Spol(gi, gj) mod G. It
follows that gj − hij lies in the ideal generated by G r {gj} (and vice-versa), and so we
may replace gj by hij in G without changing the ideal generated by G, and only possibly
increasing the ideal generated by the initial terms of polynomials in G.

This gives the following elementary improvement to the Buchberger algorithm:

In each step, initially compute hij for those i 6= j
where in(gi) divides in(gj), and replace gj by hij.

(2.3)

In some important cases, this step computes the Gröbner basis. Another improve-
ment, which identifies some S-polynomials that reduce to zero and therefore need not be
computed, is given in Exercise 3.

A Gröbner basis G is reduced if the initial terms of polynomials in G are monomials
with coefficient 1 and if for each g ∈ G, no monomial of g is divisible by an initial term
of another Gröbner basis element. A reduced Gröbner basis for an ideal is uniquely
determined by the monomial order. Reduced Gröbner bases are the multivariate analog
of unique monic polynomial generators of ideals of K[x]. Elements f of a reduced Gröbner
basis have a special form,

xα −
∑

β∈B

cβx
β , (2.4)

where xα = in(f) is the initial term and B consists of exponent vectors of standard
monomials. This rewrites the nonstandard initial monomial as a linear combination of
standard monomials. In this way a Gröbner basis may be thought of as system of rewriting
rules for polynomials. The reduced Gröbner basis has one generator for every generator
of the initial ideal.
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Example 2.2.9. Let M be a m × n matrix, which we consider to be the matrix of
coefficients of m linear forms g1, . . . , gm in K[x1, . . . , xn], and suppose that x1 ≻ x2 ≻
· · · ≻ xn. We can apply (2.3) to two forms gi and gj when their initial terms have the
same variable. Then the S-polynomial and subsequent reductions are equivalent to the
steps in the algorithm of Gaussian elimination applied to the matrix M . If we iterate our
applications of (2.3) until the initial terms of the forms gi have distinct variables, then
the forms g1, . . . , gm are a Gröbner basis for the ideal they generate.

If the forms gi are a reduced Gröbner basis and are sorted in decreasing order according
to their initial terms, then the resulting matrixM of their coefficients is an echelon matrix:
The initial non-zero entry in each row is 1 and is the only non-zero entry in its column
and these columns increase with row number.

Gaussian elimination produces the same echelon matrix from M . Thus the Buchberger
algorithm is a generalization of Gaussian elimination to non-linear polynomials. ⋄

The form (2.4) of elements in a reduced Gröbner basis G for an ideal I with respect to
a given monomial order ≻ implies that G depends on the monomial ideal in≻(I), and thus
only indirectly on ≻. That is, if ≻′ is a second monomial order with in≻′(I) = in≻(I),
then G is also a Göber basis for I with respect to ≻′. It turns out that while there are
uncountably many monomial orders, any given ideal has only finitely many initial ideals.

Theorem 2.2.10. Let I ⊂ K[x1, . . . , xn] be an ideal. Then its set of initial ideals,

In(I) := {in≻(I) |≻ is a monomial order}

is finite.

Proof. For each initial ideal M in In(I), choose a monomial order ≻M such that M =
in≻M

(I). Let
T := {≻M | M ∈ In(I)}

be this set of monomial orders, one for each initial ideal of I.
Suppose that In(I) and hence T is infinite and let g1, . . . , gm ∈ K[x1, . . . , xn] be gen-

erators for I. Since each polynomial gi has only finitely many terms, there is an infinite
subset T1 of T with the property that any two monomial orders ≻,≻′ in T1 will select the
same initial terms from each of the gi,

in≻(gi) = in≻′(gi) for i = 1, . . . ,m .

SetM1 := 〈in≻(g1), . . . , in≻(gm)〉, where≻ is any monomial order in T1. Either (g1, . . . , gm)
is a Gröbner basis for I with respect to ≻ or else there is a some polynomial gm+1 in I
whose initial term does not lie in M1. Replacing gm+1 by gm+1 mod (g1, . . . , gm), we may
assume that gm+1 has no term in M1.

Then there is an infinite subset T2 of T1 such that any two monomial orders ≻,≻′

in T2 will select the same initial term of gm+1, in≻(gm+1) = in≻′(gm+1). Let M2 be the
monomial ideal generated by M1 and in≻(gm+1) for some monomial order ≻ in T2. As
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before, either (g1, . . . , gm, gm+1) is a Gröbner basis for I with resepct to ≻, or else there
is an element gm+2 of I having no term in M2.

Continuing in this fashion, we construct an increasing chain M1 ( M2 ( · · · of
monomial ideals in K[x1, . . . , xn]. By Dickson’s Lemma, this process must terminate, at
which point we will have an infinite subset Tr of T and polynomials g1, . . . , gm+r that
form a Gröbner basis for I with respect to a monomial order ≻ in Tr, and these have the
property that for any other monomial order ≻′ in Tr, we have

in≻(gi) = in≻′(gi) for i = 1, . . . ,m+r .

But this implies that in≻(I) = in≻′(I) is an initial ideal for two distinct monomial orders
in Tr ⊂ T , which contradicts the construction of the set T .

Definition 2.2.11. A consequence of Theorem 2.2.10 that an ideal I has only finitely
many initial ideals is that it has only finitely many reduced Gröbner bases. The union of
this finite set of reduced Gröbner bases is a finite generating set for I that is a Gröbner
basis for I with resepct to any monomial order. Such a generating set is called a universal

Gröbner basis for the ideal I. The existence of universal Gröbner bases has a number of
useful consequences.

Exercises

1. Describe how Buchberger’s algorithm behaves when it computes a Gröbner basis
from a list of monomials. What if we use the elementary improvement (2.3)?

2. Use Buchberger’s algorithm to compute by hand the reduced Gröbner basis of 〈y2−
xz+yz, x2y−xz2+y2z〉 in the degree reverse lexicographic order where x ≻ y ≻ z.

3. Let f, g ∈ K[x1, . . . , xm] be polynomials with relatively prime initial terms, and
suppose that their leading coefficients are 1.

(a) Show that

Spol(f, g) = −(g − in(g))f + (f − in(f))g .

Deduce that the leading monomial of Spol(f, g) is a multiple of either the
leading monomial of f or the leading monomial of g.

(b) Analyze the steps of the reduction computing Spol(f, g) mod (f, g) using the
division algorithm to show that this is zero.

This illustrates another improvement on Buchberger’s algorithm: avoid computing
and reducing (to zero) those S-polynomials of polynomials with relatively prime
initial terms.
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4. Let U be a universal Gröbner basis for an ideal I in K[x1, . . . , xn]. Show that
for every subset Y ⊂ {x1, . . . , xn} the elimination ideal I ∩ K[Y ] is generated by
U ∩K[Y ].

5. Let I be a ideal generated by homogeneous linear polynomials. We call a nonzero
linear form f in I a circuit of I if f has minimal support (with respect to inclusion)
among all polynomials in I. Prove that the set of all circuits of I is a universal
Gröbner basis of I.

6. Let I := 〈x2 + y2, x3 + y3〉 ⊂ Q[x, y] and suppose that the monomial order ≻ is the
lexicographic order with x ≻ y.

(a) Show that y4 ∈ I.

(b) Show that the reduced Gröbner basis for I is {y4, xy2 − y3, x2 + y2}.
(c) Show that {x2+ y2, x3+ y3} cannot be a Gröbner basis for I for any monomial

ordering.

7. (a) Prove that the ideal 〈x, y〉 ⊂ Q[x, y] is not a principal ideal.

(b) Is 〈x2 + y, x+ y〉 already a Gröbner basis with respect to some term ordering?

(c) Use Buchberger’s algorithm to compute by hand a Gröbner basis of the ideal
I = 〈y − z2, z − x3〉 ∈ Q[x, y, z] with lexicographic and the degree reverse
lexicographic monomial orders.

8. This exercise illustrates an algorithm to compute the saturation of ideals. Let I ⊂
K[x1, . . . , xn] be an ideal, and fix f ∈ K[x1, . . . , xn]. Then the saturation of I with
respect to f is the set

(I : f∞) = {g ∈ K[x1, . . . , xn] | fmg ∈ I for some m > 0} .

(a) Prove that (I : f∞) is an ideal.

(b) Prove that we have an ascending chain of ideals

(I : f) ⊂ (I : f 2) ⊂ (I : f 3) ⊂ · · ·

(c) Prove that there exists a nonnegative integer N such that (I : f∞) = (I : fN).

(d) Prove that (I : f∞) = (I : fm) if and only if (I : fm) = (I : fm+1).

When the ideal I is homogeneous and f = xn then one can use the following strategy
to compute the saturation. Fix the degree reverse lexicographic order ≻ where
x1 ≻ x2 ≻ · · · ≻ xn and let G be a reduced Gröbner basis of a homogeneous ideal
I ⊂ K[x1, . . . , xn].
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(e) Show that the set

G′ = {f ∈ G | xn does not divide f}
⋃

{f/xn | f ∈ G and xn divides f}

is a Gröbner basis of (I : xn).

(f) Show that a Gröbner basis of (I : x∞
n ) is obtained by dividing each element

f ∈ G by the highest power of xn that divides f .

9. Suppose that ≺ is the lexicographic order with x ≺ y ≺ z.

(a) Apply Buchberger’s algorithm to the ideal 〈x+ y, xy〉.
(b) Apply Buchberger’s algorithm to the ideal 〈x+ y + z, xy + xz + yz, xyz〉.
(c) Define the elementary symmetric polynomials ei(x1, . . . , xn) by

n
∑

i=0

tn−iei(x1, . . . , xn) =
n
∏

i=1

(t+ xi) ,

that is, e0 = 1 and if i > 0, then

ei(x1, . . . , xn) := ei(x1, . . . , xn−1) + xnei−1(x1, . . . , xn−1) .

Alternatively, ei(x1, . . . , xn) is also the sum of all square-free monomials of total
degree i in x1, . . . , xn.

The symmetric ideal is 〈ei(x1, . . . , xn) | 1 ≤ i ≤ n〉. Describe its Gröbner basis
and the set of standard monomials with respect to lexicographic order when
x1 ≺ x2 ≺ · · · ≺ xn.

What is its Gröbner basis with respect to degree reverse lexicographic order?
How about an order with x1 ≺ x2 ≺ · · · ≺ xn?

(d) Describe a universal Gröbner basis for the symmetric ideal.
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2.3 Resultants and Bézout’s Theorem

Algorithms based on Gröbner bases are universal in that their input may be any list of
polynomials. This comes at a price as Gröbner basis algorithms may have poor perfor-
mance and the output is quite sensitive to the input. An alternative foundation for some
algorithms is provided by resultants. These are are special polynomials having determi-
nantal formulas which were introduced in the 19th century. A drawback is that they are
not universal—different inputs require different algorithms, and for many inputs, there
are no formulas for resultants.

The key algorithmic step in the Euclidean algorithm for the greatest common divisor
(gcd) of two univariate polynomials f and g in K[x] with n = deg(g) ≥ deg(f) = m,

f = f0x
m + f1x

m−1 + · · ·+ fm−1x+ fm

g = g0x
n + g1x

n−1 + · · ·+ gn−1x + gn ,
(2.5)

is to replace g by

g − g0
f0
xn−m · f ,

which has degree at most n−1. (Note that f0 · g0 6= 0.) In some cases (for example, when
K is a function field), we will want to avoid division. Resultants give a way to detect
common factors without using division. We will use them for much more than this.

Let K be any field, not necessarily algebraically closed or even infinite. Let Kℓ[x]
be the set of polynomials in K[x] of degree at most ℓ. This is a vector space over K of
dimension ℓ+1 with a canonical ordered basis of monomials xℓ, . . . , x, 1. Given f and g
as in (2.5), consider the linear map

Lf,g : Kn−1[x]×Km−1[x] −→ Km+n−1[x]

(h(x), k(x)) 7−→ f · h+ g · k .
The domain and range of Lf,g each have dimension m+ n.

Lemma 2.3.1. The polynomials f and g have a nonconstant common divisor if and only
if kerLf,g 6= {(0, 0)}.
Proof. Suppose first that f and g have a nonconstant common divisor, p. Then there are
polynomials h and k with f = pk and g = ph. As p is nonconstant, deg(k) < deg(f) = m
and deg(h) < deg(g) = n so that (h,−k) ∈ Kn−1[x]×Km−1[x]. Since

fh− gk = pkh− phk = 0 ,

we see that (h,−k) is a nonzero element of the kernel of Lf,g.
Suppose that f and g are relatively prime and let (h, k) ∈ kerLf,g. Since 〈f, g〉 = K[x],

there exist polynomials p and q with 1 = gp+ fq. Using 0 = fh+ gk we obtain

k = k · 1 = k(gp+ fq) = gkp+ fkq = −fhp+ fkq = f(kq − hp) .

This implies that k = 0 for otherwise m−1 ≥ deg(k) > deg(f) = m, which is a contradic-
tion. We similarly have h = 0, and so kerLf,g = {(0, 0)}.
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The matrix of the linear map Lf,g in the ordered bases of monomials for Km−1[x] ×
Kn−1[x] and Km+n−1[x] is called the Sylvester matrix. When f and g have the form (2.5),
it is

Syl(f, g; x) = Syl(f, g) :=





































f0 g0 0

f1 f0 0 g1
. . .

...
...

. . .
... g0

fm
...

. . .
...

...

fm f0 gn−1

...
. . .

... gn
...

0
. . .

...
. . .

...
fm 0 gn





































. (2.6)

Note that the sequence f0, . . . , f0, gn, . . . , gn lies along the main diagonal and the left side
of the matrix has n columns while the right side has m columns.

Often, we will treat the coefficients f0, . . . , fm, g0, . . . , gm of f and g as variables. That
is, we will regard them as algebraically independent over Q of Z. Any formulas proven
under this assumption will remain valid when the coefficients of f and g lie in any field
or ring.

The (Sylvester) resultant Res(f, g) is the determinant of the Sylvester matrix. To
emphasize that the Sylvester matrix represents the map Lf,g in the basis of monomials in
x, we also write Res(f, g; x) for Res(f, g). We summarize some properties of resultants,
which follow from its formula as the determinant of the Sylvester matrix (2.6) and from
Lemma 2.3.1.

Theorem 2.3.2. The resultant of two nonconstant polynomials f, g ∈ K[x] is an integer
polynomial in the coefficients of f and g. The resultant vanishes if and only if f and g
have a nonconstant common factor.

We give another expression for the resultant in terms of the roots of f and g.

Lemma 2.3.3. Suppose that K contains all the roots of the polynomials f and g so that

f(x) = f0

m
∏

i=1

(x− αi) and g(x) = g0

n
∏

i=1

(x− βi) ,

where α1, . . . , αm ∈ K are the roots of f and β1, . . . , βn ∈ K are the roots of g. Then

Res(f, g; x) = (−1)mnfn
0 g

m
0

m
∏

i=1

n
∏

j=1

(αi − βj) . (2.7)
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This implies the Poisson formula,

Res(f, g; x) = (−1)mnfm
0

m
∏

i=1

g(αi) = gn0

n
∏

i=1

f(βi) .

Proof. Consider these formulas as expressions in Z[f0, g0, α1, . . . , αm, β1, . . . , βn]. Recall
that the coefficients of f and g are essentially the elementary symmetric polynomials in
their roots,

fi = (−1)if0ei(α1, . . . , αm) and gi = (−1)ig0ei(β1, . . . , βn) .

We claim that both sides of (2.7) are homogeneous polynomials of degree mn in the
variables α1, . . . , βn. This is straightforward for the right hand side. For the resultant, we
extend our notation, setting fi := 0 when i < 0 or i > m and gi := 0 when i < 0 or i > n.
Then the entry in row i and column j of the Sylvester matrix is

Syl(f, g; x)i,j =

{

fi−j if j ≤ n ,
gn+i−j if n < j ≤ m+ n .

The determinant is a signed sum over permutations w of {1, . . . ,m+n} of terms

n
∏

j=1

fw(j)−j ·
m+n
∏

j=n+1

gn+w(j)−j .

Since fi and gi are each homogeneous of degree i in the variables α1, . . . , βn, this term is
homogeneous of degree

m
∑

j=1

w(j)−j +
m+n
∑

j=n+1

n+w(j)−j = mn+
m+n
∑

j=1

w(j)−j = mn ,

which proves the claim.
Both sides of (2.7) vanish exactly when some αi = βj. Since they have the same

degree, they are proportional. This will now be done in Chapter 1 as a consequence of the
Nullstellensatz. We compute this constant of proportionality. The term in Res(f, g) which
is the product of diagonal entries of the Sylvester matrix is

fn
0 g

m
n = fn

0 g
m
0 en(β1, . . . , βn)

m = fn
0 g

m
0 β

m
1 · · · βm

n .

This is the only term of Res(f, g) involving the monomial βm
1 · · · βm

n . The corresponding
term on the right hand side of (2.7) is

(−1)mnfn
0 g

m
0 (−β1)

m · · · (−βn)
m = fn

0 g
m
0 β

m
1 · · · βm

n ,

which completes the proof.
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Remark 3.2.8 uses geometric arguments to show that the resultant is irreducible and
gives another characterization of resultants, which we give below.

Theorem 2.3.4. The resultant polynomial is irreducible. It is the unique (up to sign)
irreducible integer polynomial in the coefficients of f and g that vanishes on the set of
pairs of polynomials (f, g) which have a common root.

When both f and g have the same degree n, there is an alternative formula for their
resultant as the determinant of a n×n matrix. (Sylvester’s formula is as the determinant
of a 2n× 2n matrix.) The Bezoutian polynomial of f and g is the bivariate polynomial

∆f,g(y, z) :=
f(y)g(z)− f(z)g(y)

y − z
=

n−1
∑

i,j=0

bi,jy
izj .

The n× n matrix Bez(f, g) whose entries are the coefficients (bi,j) of the Bezoutian poly-
nomial is called the Bezoutian matrix of f and g. Each entry of the Bezoutian matrix
Bez(f, g) is a linear combination of the brackets [ij] := figj − fjgi. For example, when
n = 2 and n = 3, the Bezoutian matrices are

(

[02] [12]
[01] [02]

)





[03] [13] [23]
[02] [03] + [12] [13]
[01] [02] [03]



 .

Theorem 2.3.5. When f and g both have degree n, Res(f, g) = (−1)(
n

2) det(Bez(f, g)).

Proof. Suppose that K is algebraically closed. Let B be the determinant of the Bezoutian
matrix and Res the resultant of the polynomials f and g, both of which lie in the ring
K[f0, . . . , fn, g0, . . . , gn]. Then B is a homogeneous polynomial of degree 2n, as is the
resultant. Suppose that f and g are polynomials having a common root, a ∈ K with
f(a) = g(a) = 0. Then the Bezoutian polynomial ∆f,g(y, z) vanishes when z = a,

∆f,g(y, a) =
f(y)g(a)− f(a)g(y)

y − a
= 0 .

Thus

0 =
n−1
∑

i,j=0

bi,jy
iaj =

n−1
∑

i=0

(

n−1
∑

j=0

bi,ja
j
)

yi .

Since every coefficient of this polynomial in y must vanish, the vector (1, a, a2, . . . , ad−1)T

lies in the kernel of the Bezoutian matrix, and so the determinant B(f, g) of the Bezoutian
matrix vanishes.

Since the resultant generates the ideal of the pairs (f, g) of polynomial that are not
relatively prime, Res divides B. As they have the same degree B is a constant multiple

of Res. In Exercise 5 you are asked to show this constant is (−1)(
n

2).
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Example 2.3.6. We give an application of resultants. A polynomial f ∈ K[x] of degree
n has fewer than n distinct roots in the algebraic closure of K when it has a factor in
K[x] of multiplicity greater than 1, and in that case f and its derivative f ′ have a factor
in common. The discriminant of f is a polynomial in the coefficients of f which vanishes
precisely when f has a repeated factor. It is defined to be

disc(f) :=
(−1)(

n

2)

f0
Res(f, f ′) .

The discriminant is a polynomial of degree 2n− 2 in the coefficients f0, f1, . . . , fn.

Resultants do much more than detect the existence of common factors in two polyno-
mials. One of their most important uses is to eliminate variables from multivariate equa-
tions. The first step towards this is another interesting formula involving the Sylvester
resultant. Not only is it a polynomial in the coefficients, but it has a canonical expression
as a polynomial linear combination of f and g.

Lemma 2.3.7. Given univariate polynomials f, g ∈ K[x], there are polynomials h, k ∈
K[x] whose coefficients are universal integer polynomials in the coefficients of f and g
such that

f(x)h(x) + g(x)k(x) = Res(f, g) . (2.8)

Proof. Set K := Q(f0, . . . , fm, g0, . . . , gn), the field of rational functions (quotients of
integer polynomials) in the variables f0, . . . , fm, g0, . . . , gn and let f, g ∈ K[x] be univariate
polynomials as in (2.5). Then gcd(f, g) = 1 and so the map Lf,g is invertible.

Set (h, k) := L−1
f,g(Res(f, g)) so that

f(x)h(x) + g(x)k(x) = Res(f, g) ,

with h, k ∈ K[x] where h ∈ Kn−1[x] and k ∈ Km−1[x].
Recall the adjoint formula for the inverse of a n× n matrix A,

det(A) · A−1 = ad(A) . (2.9)

Here ad(A) is the adjoint of the matrix A. Its (i, j)-entry is (−1)i+j · detAi,j , where Ai,j

is the (n−1)× (n−1) matrix obtained from A by deleting its ith column and jth row.
Since det(Lf,g) = Res(f, g) ∈ K, we have

L−1
f,g(Res(f, g)) = det(Lf,g) · L−1

f,g(1) = ad(Syl(f, g))(1) .

In the monomial basis of Km+n−1[x] the polynomial 1 is the vector (0, . . . , 0, 1)T . Thus,
the coefficients of L−1

f,g(Res(f, g)) are the entries of the last column of ad(Syl(f, g)), which
are ± the minors of the Sylvester matrix Syl(f, g) with its last row removed. In particular,
these are integer polynomials in the variables f0, . . . , gn.
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This proof shows that h, k ∈ Z[f0, . . . , fm, g0, . . . , gm][x] and that (2.8) holds as an ex-
pression in this polynomial ring with m+n+3 variables. It leads to a method to eliminate
variables. Suppose that f, g ∈ K[x1, . . . , xn] are multivariate polynomials. We may con-
sider them as polynomials in the variable xn whose coefficients are polynomials in the other
variables, that is as polynomials in K(x1, . . . , xn−1)[xn]. Then the resultant Res(f, g; xn)
both lies in the ideal generated by f and g and in the subring K[x1, . . . , xn−1]. We examine
the geometry of this elimination of variables.

Suppose that 1 ≤ m < n and let π : Kn → Km be the coordinate projection

π : (a1, . . . , an) 7−→ (a1, . . . , am) .

Also, for I ⊂ K[x1, . . . , xn] set Im := I ∩K[x1, . . . , xm].

Lemma 2.3.8. Let I ⊂ K[x1, . . . , xn] be an ideal. Then π(V(I)) ⊂ V(Im). When K is
algebraically closed V(Im) is the smallest variety in Km containing π(V(I)).

Proof. Let us set X := V(I). For the first statement, suppose that a = (a1, . . . , an) ∈ X.
If f ∈ Im = I ∩K[x1, . . . , xm], then

0 = f(a) = f(a1, . . . , am) = f(π(a)) ,

which establishes the inclusion π(X) ⊂ V(Im). (For this we view f as a polynomial in
either x1, . . . , xn or in x1, . . . , xm.) This implies that V(I(π(X))) ⊂ V(Im).

Now suppose that K is algebraically closed. Let f ∈ I(π(X)). Then f ∈ K[x1, . . . , xm]
has the property that f(a1, . . . , am) = 0 for all (a1, . . . , am) ∈ π(X). Viewing f as an
element of K[x1, . . . , xn] shows that f vanishes on X = V(I).

By the Nullstellensatz, there is a positive integer N such that fN ∈ I (as elements of
the ring K[x1, . . . , xn]). But then fN ∈ I ∩ K[x1, . . . , xm], which implies that f ∈

√
Im.

Thus I(π(X)) ⊂
√
Im, so that

V(I(π(X))) ⊃ V(
√

Im) = V(Im) ,

which completes the proof.

The ideal Im = I ∩ K[x1, . . . , xm] is called an elimination ideal as the variables
xm+1, . . . , xn have been eliminated from the ideal I. By Lemma 2.3.8, elimination is
the algebraic counterpart to projection, but the correspondence is not exact. For exam-
ple, the inclusion π(V(I)) ⊂ V(I ∩ K[x1, . . . , xm]) may be strict. Let π : K2 → K be the
map which forgets the second coordinate. Then π(V(xy− 1)) = K−{0} ( K = V (0) and
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{0} = 〈xy − 1〉 ∩ F [x].

V(xy − 1)

−−−−→π
K− {0}

Could give the full extension Theorem?

The missing point, {0} corresponds to the coefficient x of the highest power of y.
We may solve the implicitization problem for plane curves using elimination. For

example, consider the parametric plane curve

x = t2 − 1, y = t3 − t . (2.10)

This is the image of the space curve C := V(t2 − 1 − x, t3 − t − y) under the projection
(x, y, t) 7→ (x, y). We display this with the t-axis vertical and the xy-plane at t = −2.

x
y

π

❄

C

π(C)

By Lemma 2.3.8, the plane curve is defined by 〈t2 − x− x, t3 − t− y〉 ∩K[x, y]. If we set

f(t) := t2 − 1− x and g(t) := t3 − t− y ,

then the Sylvester resultant Res(f, g; t) is

det













1 0 0 1 0
0 1 0 0 1

−x−1 0 1 −1 0
0 −x−1 0 −y −1
0 0 −x−1 0 −y













= y2 + x2 − x3 ,

which is the implicit equation of the parameterized cubic π(C) (2.10).
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We use resultants to study the variety V(f, g) ⊂ K2 for f, g ∈ K[x, y]. A by-product
will be a form of Bézout’s Theorem bounding the number of points in the variety V(f, g).

The ring K[x, y] of bivariate polynomials is a subring of the ring K(x)[y] of polynomials
in y whose coefficients are rational functions in x. Suppose that f, g ∈ K[x, y]. Considering
f and g as elements of K(x)[y], the resultant Res(f, g; y) is the determinant of their
Sylvester matrix expressed in the basis of monomials in y. By Theorem 2.3.2, Res(f, g; y)
is a univariate polynomial in x which vanishes if and only if f and g have a common factor
in K(x)[y]. In fact it vanishes if and only if f(x, y) and g(x, y) have a common factor in
K[x, y] with positive degree in y, by the following version of Gauss’s lemma for K[x, y].

Lemma 2.3.9. Polynomials f and g in K[x, y] have a common factor of positive degree
in y if and only if they have a common factor in K(x)[y].

Proof. The forward direction is clear. For the reverse, suppose that

f = h · f and g = h · g (2.11)

is a factorization in K(x)[y] where h has positive degree in y.
There is a polynomial d ∈ K[x] which is divisible by every denominator of a coefficient

of h, f , and g. Multiplying the expressions (2.11) by d2 gives

d2f = (dh) · (df) and d2g = (dh) · (dg) ,

where dh, df , and dg are polynomials in K[x, y]. Let p(x, y) ∈ K[x, y] be an irreducible
polynomial factor of dh having positive degree in y. Then p divides both d2f and d2g.
However, p cannot divide d as d ∈ K[x] and p has positive degree in y. Therefore p(x, y)
is the desired common polynomial factor of f and g.

Let π : K2 → K be the projection which forgets the last coordinate, π(x, y) = x. Set
I := 〈f, g〉 ∩ K[x]. By Lemma 2.3.7, the resultant Res(f, g; y) lies in I. Combining this
with Lemma 2.3.8 gives the chain of inclusions

π(V(f, g)) ⊂ V(I) ⊂ V(Res(f, g; y)) ,

with the first inclusion an equality if K is algebraically closed and π(V(f, g)) is a variety,
which occurs, for example, when V(f, g) is a finite set.†.

We now suppose that K is algebraically closed. Let f, g ∈ K[x, y] and write them as
polynomials in y with coefficients in K[x],

f = f0(x)y
m + f1(x)y

m−1 + · · ·+ fm−1(x)y + fm(x)

g = g0(x)y
n + g1(x)y

n−1 + · · ·+ gn−1(x)y + gn(x) ,

where neither f0(x) nor g0(x) is the zero polynomial.

†Where is this proven?
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Theorem 2.3.10 (Extension Theorem). If a ∈ V(I)rV(f0(x), g0(x)), then there is some
b ∈ K with (a, b) ∈ V(f, g).

This establishes the chain of inclusions of subvarieties of K

V(I)r V(f0, g0) ⊂ π(V(f, g)) ⊂ V(I) ⊂ V(Res(f, g; x)) .

Observe that if either of f0 and g0 are constants, or if gcd(f, g) = 1, then V(I) =
V(Res(f, g; y).

Parts of this treatment of elimination and extension would be better to do in generality,
rather in two variables.

Proof. Let a ∈ V(I) r V(f0, g0). Suppose first that f0(a) · g0(a) 6= 0. Then f(a, y) and
g(a, y) are polynomials in y of degrees m and n, respectively. It follows that the Sylvester
matrix Syl(f(a, y), g(a, y)) has the same format (2.6) as the Sylvester matrix Syl(f, g; y),
and it is in fact obtained from Syl(f, g; y) by the substitution x = a.

This implies that Res(f(a, y), g(a, y)) is the evaluation of the resultant Res(f, g; y) at
x = a. Since Res(f, g; y) ∈ I and a ∈ V(I), this evaluation is 0. By Theorem 2.3.2, f(a, y)
and g(a, y) have a nonconstant common factor. As K is algebraically closed, they have a
common root, say b. But then (a, b) ∈ V(f, g), and so a ∈ π(V(f, g)).

Now suppose that f0(a) 6= 0 but g0(a) = 0. Since 〈f, g〉 = 〈f, g + yℓf〉, if we replace g
by g + yℓf where ℓ+m > n, then we are in the previous case.

Example 2.3.11. Suppose that f, g ∈ C[x, y] are the polynomials,

f = (5− 10x+ 5x2)y2 + (−14 + 42x− 24x2)y + (5− 28x+ 19x2)

g = (5− 10x+ 5x2)y2 + (−16 + 46x− 26x2)y + (19− 36x+ 21x2)

Figure 2.2 shows the curves V(f) and V(G), which meet in three points,

V(g) ✲

V(g) ✲

V(g)

V(f)
❈
❈
❈❈❖

✛ ✛

x

y

Figure 2.2: Comparing resultants to elimination.

V(f, g) = { (−0.9081601, 3.146707) , (1.888332, 3.817437) , (2.769828, 1.146967) } .
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Thus π(V(f, g)) consists of three points which are roots of h = 4x3−15x2+4x+19, where
〈h〉 = 〈f, g〉 ∩K[x]. However, the resultant is

Res(f, g; y) = 160(4x3 − 15x2 + 4x+ 19)(x− 1)4 ,

whose roots are shown on the x-axis, including the point x = 1 with multiplicity four. ⋄

Corollary 2.3.12. If the coefficients of the highest powers of y in f and g do not involve
x, then V(I) = V(Res(f, g; x)). Not true if gcd(f, g) 6= 1.

Lemma 2.3.13. When K is algebraically closed, the system of bivariate polynomials

f(x, y) = g(x, y) = 0

has finitely many solutions in K2 if and only if f and g have no common factor.

Proof. We instead show that V(f, g) is infinite if and only if f and g do have a common
factor. If f and g have a common factor h(x, y) then their common zeroes V(f, g) include
V(h) which is infinite as h is nonconstant and K is algebraically closed. We need to prove
this in Chapter 1

Now suppose that V(f, g) is infinite. Then its projection to at least one of the two
coordinate axes is infinite. Suppose that the projection π onto the x-axis is infinite. Set
I := 〈f, g〉 ∩ K[x], the elimination ideal. By the Extension Theorem 2.3.10, we have
π(V(f, g)) ⊂ V(I) ⊂ V(Res(f, g; y)). Since π(V(f, g)) is infinite, V(Res(f, g; y)) = K,
which implies that Res(f, g; y) is the zero polynomial. By Theorem 2.3.2 and Lemma 2.3.9,
f and g have a common factor.

Let f, g ∈ K[x, y] and suppose that neither Res(f, g; x) nor Res(f, g; y) vanishes so
that f and g have no common factor. Then V(f, g) consists of finitely many points. The
Extension Theorem gives the following algorithm to compute V(f, g).

Algorithm 2.3.14 (Elimination Algorithm). Input: Polynomials f, g ∈ K[x, y] with
gcd(f, g) = 1.
Output: V(f, g).

First, compute the resultant Res(f, g; x), which is not the zero polynomial. Then, for
every root a of Res(f, g; y), find all common roots b of f(a, y) and g(a, y). The finitely
many pairs (a, b) computed are the points of V(f, g).

The Elimination Algorithm reduces the problem of solving a bivariate system

f(x, y) = g(x, y) = 0 , (2.12)

to that of finding the roots of univariate polynomials.
Often we only want to count the number of solutions to a system (2.12), or give a

realistic bound for this number which is attained when f and g are generic polynomials.
The most basic of such bounds was given by Etienne Bézout in 1779. Our first step
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toward establishing Bézout’s Theorem is an exercise in algebra and some book-keeping.
The monomials in a polynomial of degree n in the variables x, y are indexed by the set

n∆ := {(i, j) ∈ N2 | i+ j ≤ n} .

Let F := {fi,j | (i, j) ∈ m∆} and G := {gi,j | (i, j) ∈ n∆} be variables and consider
generic polynomials f and g of respective degrees m and n in K[F,G][x, y],

f(x, y) :=
∑

(i,j)∈m∆

fi,jx
iyj and g(x, y) :=

∑

(i,j)∈n∆

gi,jx
iyj .

Lemma 2.3.15. The generic resultant Res(f, g; y) is a polynomial in x of degree mn.

Proof. Write

f :=
m
∑

j=0

fj(x)y
m−j and g :=

n
∑

j=0

gj(x)y
n−j ,

where the coefficients are univariate polynomials in x,

fj(x) :=

j
∑

i=0

fi,jx
i and gj(x) :=

j
∑

i=0

gi,jx
i .

Then the Sylvester matrix Syl(f, g; y) has the form

Syl(f, g; y) :=































f0(x) 0 g0(x) 0
...

. . .
...

. . .
...

. . .
... g0(x)

fm(x) f0(x) gn−1(x)
...

. . .
... gn(x)

...
. . .

...
. . .

...
0 fm(x) 0 gn(x)































,

and so the resultant Res(f, g; y) = det(Syl(f, g; y)) is a univariate polynomial in x.
As in the proof of Lemma 2.3.3, if we set fj := 0 when j < 0 or j > m and gj := 0

when j < 0 or j > n, then the entry in row i and column j of the Sylvester matrix is

Syl(f, g; y)i,j =

{

fi−j(x) if j ≤ n
gn+i−j(x) if n < j ≤ m+ n

The determinant is a signed sum over permutations w of {1, . . . ,m+n} of terms

n
∏

j=1

fw(j)−j(x) ·
m+n
∏

j=n+1

gn+w(j)−j(x) .
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This is a polynomial of degree at most

m
∑

j=1

w(j)−j +
m+n
∑

j=n+1

n+w(j)−j = mn+
m+n
∑

j=1

w(j)−j = mn .

Thus Res(f, g; y) is a polynomial of degree at most mn.
We complete the proof by showing that the resultant does indeed have degree mn. The

product f0(x)
n · gn(x)m of the entries along the main diagonal of the Sylvester matrix has

constant term fn
0,0 · gm0,n, and the coefficient of xmn in this product is fn

0,0 · gmn,n, and these
are the only terms in the expansion of the determinant of the Sylvester matrix involving
either of these monomials in the coefficients fi,j, gk,l.

We now state and prove Bézout’s Theorem, which bounds the number of points in the
variety V(f, g) in K2.

Theorem 2.3.16 (Bézout’s Theorem). Two polynomials f, g ∈ K[x, y] either have a
common factor or else |V(f, g)| ≤ deg(f) · deg(g).

When |K| is at least max{deg(f), deg(g)}, this inequality is sharp in that the bound is
attained. When K is algebraically closed, the bound is attained when f and g are general
polynomials of the given degrees.

Proof. Suppose that m := deg(f) and n = deg(g). By Lemma 2.3.13, if f and g are
relatively prime, then V(f, g) is finite. Let us extend K to its algebraic closure K, which
in infinite. Changing coordinates, replacing f by f(A(x, y)) and g by g(A(x, y)), where
A is an invertible affine transformation,

A(x, y) = (ax+ by + c, αx+ βy + γ) , (2.13)

with a, b, c, α, β, γ ∈ K with aβ−αb 6= 0. As K is infinite, we can choose these parameters
so that the constant terms and terms with highest power of x in each of f and g are
nonzero. By Lemma 2.3.15, this implies that the resultant Res(f, g; y) has degree at most
mn and thus at most mn zeroes. If we set I := 〈f, g〉 ∩ K[x], then this also implies that
V(I) = V(Res(f, g; x)), by Corollary 2.3.12.

We can furthermore choose the parameters in A so that the projection π : (x, y) 7→ x
is 1-1 on V(f, g), as V(f, g) is a finite set. Thus

π(V(f, g)) = V(I) = V(Res(f, g; x)) ,

which implies the inequality of the theorem as |V(Res(f, g; y))| ≤ mn.
To see that the bound is sharp when |K| is large enough, let a1, . . . , am and b1, . . . , bn

be distinct elements of K. Note that the system

f :=
m
∏

i=1

(x− ai) = 0 and g :=
n
∏

i=1

(y − bi) = 0 (2.14)
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has mn solutions {(ai, bj) | 1 ≤ i ≤ m, 1 ≤ j ≤ n}, so the inequality is sharp.
Suppose now that K is algebraically closed. If the resultant Res(f, g; y) has fewer

than mn distinct roots, then either it has degree strictly less than mn or else it has a
multiple root. In the first case, its leading coefficient vanishes and in the second case, its
discriminant vanishes. But the leading coefficient and the discriminant of Res(f, g; y) are
polynomials in the

(

m+2
2

)

+
(

n+2
2

)

coefficients of f and g. Neither is the zero polynomial, as
they do not vanish when evaluated at the coefficients of the polynomials (2.14). Thus the
set of pairs of polynomials (f, g) with V(f, g) consisting of mn points in K2 is a nonempty

generic set in K(m+2

2 )+(n+2

2 ).

Exercises

1. Give some finger exercises related to solving using resultants.

2. Using the formula (2.7) deduce the Poisson formula for the resultant of univariate
polynomials f and g,

Res(f, g; x) = (−1)mnfn
0

m
∏

i=1

g(αi) ,

where α1, . . . , αm are the roots of f .

3. Suppose that the polynomial g = g1 ·g2 factors. Show that the resultant also factors,
Res(f, g; x) = Res(f, g1; x) · Res(f, g2; x).

4. Compute the Bezoutian matrix when n = 4. Give a general formula for the entries
of the Bezoutian matrix.

5. Compute the constant in the proof of Theorem 2.3.5 by computing the resultant
and Bezoutian polynomials when f(x) := xm and g(x) = xn + 1. Why does this
computation suffice?

6. Compute the discriminant of a general cubic x3 + ax2 + bx + c by taking the de-
terminant of a 5 × 5 matrix. Show that the discriminant of the depressed quartic
x4 + ax2 + bx+ c is

16a4c− 4a3b2 − 128a2c2 + 144ab2c− 27b4 + 256c3 .

7. Show that the discriminant of a polynomial f of degree n may also be expressed as
∏

i 6=j

(αi − αj)
2 ,

where α1, . . . , αn are the roots of f .
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2.4 Solving equations with Gröbner bases

Algorithm 2.3.14 reduced the problem of solving two equations in two variables to that
of solving univariate polynomials, using resultants to eliminate a variable. For an ideal
I ⊂ K[x1, . . . , xn] whose variety V(I) consists of finitely many points, this same idea leads
to an algorithm to compute V(I), provided we can compute the elimination ideals I ∩
K[xi, x1, . . . , xm]. Gröbner bases provide a universal algorithm for computing elimination
ideals. More generally, ideas from the theory of Gröbner bases can help to understand
solutions to systems of equations.

Suppose that we have N polynomial equations in n variables (x1, . . . , xn)

f1(x1, . . . , xn) = · · · = fN(x1, . . . , xn) = 0 , (2.15)

and we want to understand the solutions to this system. By understand, we mean an-
swering (any of) the following questions.

(i) Does (2.15) have finitely many solutions?

(ii) If not, can we understand the isolated solutions of (2.15)?

(iii) Can we count them, or give (good) upper bounds on their number?

(iv) Can we solve the system (2.15) and find all complex solutions?

(v) When the polynomials have real coefficients, can we count (or bound) the number
of real solutions to (2.15)? Or simply find them?

We describe symbolic algorithms based upon Gröbner bases that begin to address
these questions.

The solutions to (2.15) in Kn constitute the affine variety V(I), where I is the ideal
generated by the polynomials f1, . . . , fN . Algorithms based on Gröbner bases to address
Questions (i)-(v) involve studying the ideal I. An ideal I is zero-dimensional if, over the
algebraic closure of K, V(I) is finite. Thus I is zero-dimensional if and only if its radical√
I is zero-dimensional.

Theorem 2.4.1. Let I ⊂ K[x1, . . . , xn] be an ideal. Then I is zero-dimensional if and
only if K[x1, . . . , xn]/I is a finite-dimensional K-vector space, if and only if V(I) is a
finite set in K

n
.

When an ideal I is zero-dimensional, we will call the points of V(I) the roots of I.

Proof. We may assume the K is algebraically closed, as this does not change the dimension
of quotient rings.

Suppose first that I is radical, so that I = I(V(I)), by the Nullstennensatz. Then
K[x1, . . . , xn]/I is the coordinate ring K[X] of X := V(I), consisting consists of all func-
tions obtained by restricting polynomials to V(I), and is therefore a subring of the ring of
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functions on X. If X is finite, then K[X] is finite-dimensional as the space of functions on
X has dimension equal to the number of points in X. Suppose that X is infinite. Then
there is some coordinate, say x1, such that the projection of X to the x1-axis is infinite. In
particular, no polynomial in x1, except the zero polynomial, vanishes on X. † Restriction
of polynomials in x1 to X is therefore an injective map from K[x1] to K[X] which shows
that K[X] is infinite-dimensional.

Now suppose that I is any ideal. If K[x1, . . . , xn]/I is finite-dimensional, then so is
K[x1, . . . , xn]/

√
I as I ⊂

√
I. For the other direction, we suppose that K[x1, . . . , xn]/

√
I

is finite-dimensional. For each variable xi, there is some linear combination of 1, xi, x
2
i , . . .

which is zero in K[x1, . . . , xn]/
√
I and hence lies in

√
I. But this is a univariate polynomial

gi(xi) ∈
√
I, so there is some power gi(xi)

Mi of gi which lies in I. But then we have
〈g1(x1)

M1 , . . . , gn(xn)
Mn〉 ⊂ I, and so the map

K[x1, . . . , xn]/〈g1(x1)
M1 , . . . , gn(xn)

Mn〉 −→ K[x1, . . . , xn]/I

is a surjection. But K[x1, . . . , xn]/〈g1(x1)
M1 , . . . , gn(xn)

Mn〉 has dimension
∏

i Mi deg(gi),
which implies that K[x1, . . . , xn]/I is finite-dimensional.

A consequence of this proof is the following criterion for an ideal to be zero-dimensional.

Corollary 2.4.2. An ideal I ⊂ K[x1, . . . , xn] is zero-dimensional if and only if for every
variable xi, there is a univariate polynomial gi(xi) which lies in I.

Together with Macaulay’s Theorem 2.2.3, Theorem 2.4.1 leads to a Gröbner basis
criterion/algorithm to solve Question (i).

Corollary 2.4.3. An ideal I ⊂ K[x1, . . . , xn] is zero-dimensional if and only if for any
monomial order ≻, the initial ideal in≻I of I contains some power of every variable.

Thus we can determine if I is zero-dimensional and thereby answer Question (i) by
computing a Gröbner basis for I and checking that the leading terms of elements of the
Gröbner basis include pure powers of all variables.

When I is zero-dimensional, its degree is the dimension of K[x1, . . . , xn]/I as a K-
vector space, which is the number of standard monomials, by Macaulay’s Theorem 2.2.3.
A Gröbner basis for I gives generators of the initial ideal which we can use to count the
number of standard monomials to determine the degree of an ideal.

When I is a zero-dimensional radical ideal and K is algebraically closed, the degree
of I equals the number of points in V(I) ⊂ Kn (see Exercise 3) and thus we obtain an
answer to Question (iii).

Theorem 2.4.4. Let I be the ideal generated by the polynomials fi of (2.15). If I is zero-
dimensional, then the number of solutions to the system (2.15) is bounded by the degree
of I. When K is algebraically closed, the number of solutions is equal to this degree if and
only if I is radical.

†Make sure the injectivity of restricting polynomial functions to Kn is mentioned in Chapter 1.
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In many important cases, there are sharp upper bounds for the number of isolated
solutions to the system (2.15) which do not require a Gröbner basis. For example, Theo-
rem 2.3.16 (Bézout’s Theorem in the plane) gives such bounds when N = n = 2. Suppose
that N = n so that the number of equations equals the number of variables. This is called
a square system. Bézout’s Theorem in the plane has a natural extension in this case,
which we will prove in Section 3.6. A common solution x to a square system of equations
is nondegenerate if the differentials of the equations are linearly independent at x.

Theorem 2.4.5 (Bézout’s Theorem). Given polynomials f1, . . . , fn ∈ K[x1, . . . , xn] with
di = deg(fi), the number of nondegenerate solutions to the system

f1(x1, . . . , xn) = · · · = fn(x1, . . . , xn) = 0

in Kn is at most d1 · · · dn. When K is algebraically closed, this is a bound for the number
of isolated solutions, and it is attained for generic choices of the polynomials fi.

This product of degrees d1 · · · dn is called the Bézout bound for such a system. While
this bound is sharp for generic square systems, few practical problems involve generic
systems and other bounds are often needed (see Exercise 4). We discuss such bounds in
Chapter 9, where we establish the polyhedral bounds of Kushnirenko’s and Bernsteins’s
Theorems.

We discuss a symbolic method to solve systems of polynomial equations (2.15) based
upon elimination theory and the Shape Lemma, which describes the form of a Gröbner
basis of a zero-dimensional ideal I with respect to a lexicographic monomial order. Let
I ⊂ K[x1, . . . , xn] be an ideal. A univariate polynomial g(xi) is an eliminant for I if g
generates the elimination ideal I ∩K[xi].

Theorem 2.4.6. Suppose that g(xi) is an eliminant for an ideal I ⊂ K[x1, . . . , xn]. Then
g(ai) = 0 for every a = (a1, . . . , an) ∈ V(I) ∈ Kn. When K is algebraically closed, every
root of g occurs in this way.

Proof. We have g(ai) = 0 as this is the value of g at the point a. Suppose that K is
algebraically closed and that ξ is a root of g(xi) but there is no point a ∈ V(I) whose ith
coordinate is ξ. Let h(xi) be a polynomial whose roots are the other roots of g. Then
h vanishes on V(I) and so h ∈

√
I. But then some power, hN , of h lies in I. Thus

hN ∈ I ∩K[xi] = 〈g〉. But this is a contradiction as h(ξ) 6= 0 while g(ξ) = 0.

Theorem 2.4.7. If g(xi) is a monic eliminant for an ideal I ⊂ K[x1, . . . , xn], then g lies
in the reduced Gröbner basis for I with respect to any monomial order in which the pure
powers xm

i of xi preceed variables xj with j 6= i.

Proof. Suppose that ≻ is such a monomial order. Then its minimal monomials are
1, xi, x

2
i , . . . . Since g generates the elimination ideal I ∩ K[xi], it is the lowest degree

monic polynomial in xi lying in I. As g ∈ I, we have that x
deg(g)
i ∈ in≺(I). Let x

m
i be the
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generator of in≺(I) ∩ K[xi]. Then m ≤ deg(g). Let f be the polynomial in the reduced
Gröbner basis of I with respect to ≺ whose leading term is xm

i . Then its remaining terms
involve smaller standard monomials and are thus pure powers of xi. We conclude that
f ∈ I ∩ K[xi] = 〈g〉, and so g divides f , so m = deg(g). As f−g is a polynomial in xi

which lies in I but has degree less than deg(g), the minimality of f and g implies that
f−g = 0. This proves that g lies in the reduced Gröbner basis.

You will prove the following theorem relating Gröbner bases and elimination ideals in
the exercises.

Theorem 2.4.8. Let I ⊂ K[x1, . . . , xn] be an ideal and let ≺ be the lexicographic monomial
order with x1 ≺ x2 ≺ · · · ≺ xn and G a Gröbner basis for I with respect to ≺. Then, for
each m = 1, . . . , n, the polynomials in G that lie in K[x1, . . . , xm] form a Gröbner basis
for the elimination ideal Im = I ∩K[x1, . . . , xn].

Theorem 2.4.7 gives an algorithm to compute eliminants—simply compute a lexico-
graphic Gröbner basis. This is not recommended, as lexicographic Gröbner bases appear
to be the most expensive to compute. If we only need to compute a univariate eliminant
g(xi), we may use an elimination order, which is a monomial order ≺ where any pure
power xd

i of xi is smaller than any monomial involving any other variable xj for j 6= i. A
Gröbner basis with respect to some elimination order is still expensive to compute. We
instead offer the following algorithm.

Algorithm 2.4.9.

Input: Ideal I ⊂ K[x1, . . . , xn] and a variable xi.
Output: Either a univariate eliminant g(xi) ∈ I or else a certificate that one does not
exist.

(1) Compute a Gröbner basis G for I with respect to any monomial order.

(2) If no initial term of any element of G is a pure power of xi, then halt and declare
that I does not contain a univariate eliminant for xi.

(3) Otherwise, compute the sequence 1 mod G, xi mod G, x2
i mod G, . . . , until a linear

dependence is found,
m
∑

j=0

aj(x
j
i mod G) = 0 , (2.16)

where m is minimal. Then

g(xi) =
m
∑

j=0

ajx
j
i

is a univariate eliminant.
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Proof of correctness. If I does not have an eliminant in xi, then I ∩ K[xi] = {0}. Then
all monomials 1, xi, x

2
i , . . . are standard and no Gröbner basis contains a polynomial with

initial monomial a pure power of xi. This shows that the algorithm correctly identifies
when no eliminant exists.

Suppose now that I does have an eliminant g(xi). Since g mod G = 0, the Gröbner
basis G must contain a polynomial whose initial monomial divides that of g and is hence
a pure power of xi. If g =

∑

bjx
j
i and has degree N , then

0 = g mod G =
(

N
∑

j=0

bjx
j
i

)

mod G =
N
∑

j=0

bj(x
j
i mod G) ,

which is a linear dependence among the elements of the sequence 1 mod G, xi mod G,
x2
i mod G, . . . . Thus the algorithm halts when it is in Step (3). The minimality of the

degree of g implies that N = m and the uniqueness of such minimal linear combinations
implies that the coefficients bj and aj are proportional, which shows that the algorithm
computes a scalar multiple of g, which is also an eliminant.

Elimination using Gröbner bases leads to an algorithm for Question (v). The first step
is to understand the optimal form of a Gröbner basis of a zero-dimensional ideal.

Lemma 2.4.10 (Shape Lemma). Suppose g is an eliminant of a zero-dimensional ideal
I with deg(g) = deg(I). When K is algebraically closed, I is radical if and only if g has
no multiple factors.

Suppose that g = g(x1), then in the lexicographic monomial order with x1 ≺ x2 ≺
· · · ≺ xn, the ideal I has a Gröbner basis of the form:

g(x1) , x2 − g2(x1) , . . . , xn − gn(x1) , (2.17)

where deg(g) > deg(gi) for i = 2, . . . , n.
If I is generated by polynomials with coefficients in a subfield k, then the number of

points of V(I) in kn equals the number of roots of g in k.

This is a simplified version of the Shape Lemma, which describes the form of a re-
duced Gröbner basis for any zero-dimensional ideal in the lexicographic order. For a
zero-dimensional ideal which does not satisfy the hypotheses of Lemma 2.4.10, see Exam-
ple 2.1.10.

Proof. Replacing K by its algebraic closure does not affect these algebraic statements, as
the polynomials g and gi coefficients in the original field, by Corollary 2.2.7. Replace K

by its algebraic closure. We have

#roots of g ≤ #V(I) ≤ deg(I) = deg(g) ,

the first inequality is by Theorem 2.4.6 and the second by Theorem 2.4.4. If the roots of
g are distinct, then their number is deg(g) and so these inequalities are equalities. This
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implies that I is radical, by Theorem 2.4.4. Conversely, if g = g(xi) has multiple roots,
then there is a polynomial h with the same roots as g but with smaller degree. (We may
select h to be the square-free part of g.) Since 〈g〉 = I ∩ K[xi], we have that h 6∈ I, but
since hdeg(g) is divisible by g, hdeg(g) ∈ I, so I is not radical.

To prove the second statement, let d be the degree of the eliminant g(x1). Then each
of 1, x1, . . . , x

d−1
1 is a standard monomial, and since deg(g) = deg(I), there are no others.

Thus the initial ideal in the lexicographic monomial order is 〈xd
1, x2, . . . , xn〉. Each element

of the reduced Gröbner basis for I expresses a generator of the initial ideal as a K-linear
combination of standard monomials. It follows that the reduced Gröbner basis has the
form claimed.

For the last statement, observe that the common zeroes of the polynomials (2.17) are

{(a1, . . . , an) | g(a1) = 0 and ai = gi(a1) , i = 2, . . . , n} .

By Corollary 2.2.7, the polynomials g, g2, . . . , gn all have coefficients from k, and so a
component ai lies in k if the root a1 of g(x1) lies in k.

Not all ideals I can have an eliminant g with deg(g) = deg(I). For example, let
m0 := 〈x, y〉 be the maximal ideal corresponding to the origin {(0, 0} ∈ K2. Then its
square m2

0 = 〈x2, xy, y2〉 has degree three, but any eliminant has degree two. For example
x2 is its elimination to the x-axis.

The failure of the condition deg(g) = deg(I) in the Shape Lemma is easier to under-
stand when I is radical. Indeed, when I is radical, deg(g(xi)) = deg(I) if and only if the
projection map πi to the coordinate xi-axis is one-to-one. For example, if I is generated
by the three polynomials

f := 1574y2 − 625yx− 1234y + 334x4 − 4317x3 + 19471x2

− 34708x+ 19764 + 45x2y − 244y3 ,

g := 45x2y − 305yx− 2034y − 244y3 − 95x2 + 655x+ 264 + 1414y2 , and

h := −33x2y + 197yx+ 2274y + 38x4 − 497x3 + 2361x2 − 4754x

+ 1956 + 244y3 − 1414y2 ,

then V(I) is the seven nondegenerate points of Figure 2.3. There are only five points in
the projection to the x-axis and four in the projection to the y-axis. The corresponding
eliminants have degrees five and four,

2x5 − 29x4 + 157x3 − 391x2 + 441x− 180 2y4 − 13y3 + 28y2 − 23y + 6

Nevertheless, the key condition on the eliminant g, that deg(g) = deg(I), often holds
after a generic change of coordinates, as in the above example just as in the proof of Bézout’s
Theorem in the plane (Theorem 2.3.16). This gives the symbolic algorithm to count the
number of real solutions to a system of equations whose ideal satisfies the hypotheses of
the Shape Lemma.
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Figure 2.3: The seven points of V(f, g, h) and their projections.

Algorithm 2.4.11 (Counting real roots).
Input: An ideal I ⊂ R[x1, . . . , xn].
Output: The number of real points in V(I), if I satisfies the hypotheses of the Shape
Lemma, or else “I does not satisfy the hypotheses of the Shape Lemma”.

Compute dim(I) and deg(I). If I does not have dimension 0, then exit with “I is not
zero-dimensional”, else set i := 1.

1. Compute an eliminant g(xi) for I. If deg(g) = deg(I) and gcd(g, g′) = 1, then
output the number of real roots of g. Else if i < n, set i := i+ 1 and return to (1).

2. If no eliminant has been computed and i = n, then output “I does not satisfy the
hypotheses of the Shape Lemma”.

While this algorithm will not successfully compute the number of real ponts in V(I)
(it would fail for the ideal of Figure 2.3), it may be combined with more sophisticated
methods to accomplish that important task.

While the Shape Lemma describes an optimal form of a Gröbner basis for a zero-
dimensional ideal, it is typically not optimal to compute such a Gröbner basis directly. An
alternative to direct computation of a lexicographic Gröbner basis is the FGLM algorithm

of Faugère, Gianni, Lazard, and Mora for Gröbner basis conversion. That is, given a
Gröbner basis for a zero-dimensional ideal with respect to one monomial order ⊳ and a
different monomial order ≻, the FGLM algorithm computes a Gröbner basis for the ideal
with respect to ≻.

Algorithm 2.4.12 (FGLM).
Input: A Gröbner basis G for a zero-dimensional ideal I ⊂ K[x1, . . . , xn] with respect to
a monomial order ⊳, and a different monomial order ≻.
Output: A Gröbner basis H for I with respect to ≻.
Initialize: Set H := {}, xα := 1, and S := {}.



2.4. SOLVING EQUATIONS WITH GRÖBNER BASES 77

(1) Compute xα := xα mod G. (or should we use [xα]?).

(2) If xα does not lie in the linear span of S, then set S := S ∪ {xα}.
Otherwise, there is a (unique) linear combination of elements of S such that

xα =
∑

xβ∈S

cβxβ .

Set H := H ∪ {xα −
∑

β cβx
β}.

(3) If

{xγ | xγ ≻ xα} ⊂ in≻(H) := 〈in≻(h) | h ∈ H〉 ,

then halt and output H. Otherwise, set xα to be the ≻-minimal monomial in the
set {xγ 6∈ in≻(H) | xγ ≻ xα} and return to (1).

Proof of correctness. By construction, H always consists of elements of I, and elements of
S are linearly independent in the quotient ring K[x1, . . . , xn]/I. Thus in≻(H) is a subset
of the initial ideal in≻I, and we always have the inequalities

|S| ≤ dimK(K[x1, . . . , xn]/I) and in≻(H) ⊂ in≻I .

Every time we return to (1) either the set S or the set H (and also in≻(H)) increases.
Since the cardinality of S is bounded by deg(I) and the monomial ideals in≻(H) form a
strictly increasing chain, the algorithm must halt.

When the algorithm halts, every monomial is either in the set SM := {xβ | xβ ∈ S} or
else in the monomial ideal in≻(H). By our choice of xα in (3), these two sets are disjoint,
so that SM is the set of standard monomials for in≻(H). Since

in≻(H) ⊂ in≻〈H〉 ⊂ in≻I ,

and elements of S are linearly independent in K[x1, . . . , xn]/I, we have

|S| ≤ dimK(K[x1, . . . , xn]/I) = dimK(K[x1, . . . , xn]/in≻I) ≤ dimK(K[x]/in≻(H)) = |S| .

Thus in≻I = in≻(H), which proves that H is a Gröbner basis for I with respect to the
monomial order ≻. By the form of the elements of H, it is the reduced Gröbner basis.

Exercises

Need more exercises
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1. The trigonometric curves parametrized by (cos(θ) − cos(2θ)/2, sin(θ) + sin(2θ)/2),
(cos(θ)−2 cos(2θ)/3, sin(θ)+2 sin(2θ)/3), and the polar curve r = 1+3 cos(3θ) (for
θ ∈ [0, 2π]) are the cuspidal and trinodal plane quartics, and the flower with three
petals, respectively.

Find their implicit equations by writing each as the projection to the (x, y)-plane of
an algebraic variety in K4. Hint: These are images of the circle c2 + s2 = 1 under
maps to the (x, y) plane, where the variables (c, s) correspond to (cos(θ), sin(θ)).
The graph of the first is given by the three polynomials

c2 + s2 − 1 , x− (c− (c2 − s2)/2) , y − (s+ sc) ,

using the identities cos(2θ) = cos2(θ)− sin2(θ) and sin(2θ) = 2 sin(θ) cos(θ).

2. The Whitney umbrella is the image in K3 of the map (u, v) 7→ (uv, u, v2). Use
elimination to find an implicit equation for the Whitney umbrella.

Which points in K2 give the handle of the Whitney umbrella?

3. Suppose I ⊂ K[x1, . . . , xn] is radical, K is algebraically closed, and V(I) ⊂ Kn

consists of finitely many points. Show that the coordinate ring K[x1, . . . , xn]/I of
restrictions of polynomial functions to V(I) has dimension as a K-vector space equal
to the number of points in V(I).

4. Compute the number of solutions to the system of polynomials

1 + 2x+ 3y + 5xy = 7 + 11xy + 13xy2 + 17x2y = 0 .

Show that each is nondegenerate and compare this to the Bézout bound for this
system. How many solutions are real?
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5. In this and subsequent exercises, you are asked to use computer experimentation to
study the number of solutions to certain structured polynomial systems. This is a
good opportunity to become acquainted with symbolic software.

For several small values of n and d, generate n random polynomials in n variables of
degree d, and compute their numbers of isolated solutions. Does your answer agree
with Bézout’s Theorem?

6. A polynomial is multilinear if no variable occurs to a power greater than 1. For
example,

3xyz − 7xy + 13xz − 19yz + 29x− 37y + 43z − 53

is a multilinear polynomial in the variables x, y, z. For several small values of n
generate n random multilinear polynomials and compute their numbers of common
zeroes, Does your answer agree with Bézout’s Theorem?

7. Let A ⊂ Nn be a finite set of integer vectors, which we regard as exponents of
monomials in K[x1, . . . , xn]. A polynomial with support A is a linear combination
of monomials whose exponents are from A. For example

1 + 3x+ 9x2 + 27y + 81xy + 243xy2

is a polynomial whose support is the column vectors of A = ( 0 1 2 0 1 1
0 0 0 1 1 2 ).

For n = 2, 3 and many A with |A| > n and 0 ∈ A, generate random systems of
polynomials with support A and determine their numbers of isolated solutions. Try
to formulate a conjecture about this number of solutions as a function of A.

8. Fix m, p ≥ 2. For α : 1 ≤ α1 < · · · < αp ≤ m+p, let Eα be a p × (m+p) matrix
whose entries in the columns indexed by α form the identity matrix, and the entries
in position i, j are either variables if j < αi or 0 if αi < j. For example, when
m = p = 3, here are E245 and E356,

E245 =





a 1 0 0 0 0
b 0 c 1 0 0
d 0 e 0 1 0



 E356 =





a b 1 0 0 0
c d 0 e 1 0
f g 0 h 0 1



 .

Set |α| := α1 − 1 + α2 − 2 + · · · + αp − p be the number of variables in Eα. For
all small m, p, and α, generate |α| random m × (m+p) matrices M1, . . . ,M|α| and
determine the number of isolated solutions to the system of equations

det

(

Eα

M1

)

= det

(

Eα

M2

)

= · · · = det

(

Eα

M|α|

)

= 0 .

Try to formulate a conjecture for the number of solutions as a function of m, p, and
α.
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2.5 Eigenvalue techniques

We discuss a connection between the solutions to systems of polynomial systems and
eigenvalues of linear algebra. This leads to further methods to compute and analyze the
roots of a zero-dimensional ideal. The techniques are based on classical results, but their
computational aspects have only been developed systematically fairly recently.

Suppose that K is algebraically closed and J ⊂ K[x1, . . . , xn] is a zero-dimensional
ideal. Our goal is to interpret the coordinates of points in V(J) in terms of eigenvalues of
suitable matrices. This is efficient as numerical linear algebra provides efficient methods
to numerically determine the eigenvalues of a complex matrix, and the matrices we use
are readily computed using algorithms based on Gröbner bases.

It is instructive to start with univariate polynomials. Given a monic univariate poly-
nomial p = c0 + c1x+ · · ·+ cd−1x

d−1 + xd ∈ K[x], the matrix

Cp =















0 0 · · · 0 −c0
1 0 · · · 0 −c1
0 1 · · · 0 −c2
...

...
. . .

...
...

0 0 · · · 1 −cd−1















∈ Kd×d .

is the companion matrix of p.
For any given matrix A ∈ Kd×d, the eigenvalues of A are the roots of the characteristic

polynomial χA(x) = det(A− xId). Thus the following statement tells us that the roots
of p coincide with the eigenvalues of the companion matrix Cp.

Theorem 2.5.1. Let p = c0+ · · ·+cd−1x
d−1+xd ∈ K[x] be a monic univariate polynomial

of degree d ≥ 1. The characteristic polynomial of its companion matrix Cp is

det(xId − Cp) = (−1)dp(x) .

Its companion matrix expresses multiplication by x in the ring K[x]/〈p〉 in the basis
1, x, . . . , xd−1 of standard monomials.

Proof. For d = 1, the statement is clear, and for d > 1 expanding the determinant along
the first row of Cp − xId yields

det(xId − Cp) = x det(xId−1 − Cq) + (−1)d+1(−1)d−1c0 ,

where Cq is the companion matrix of the polynomial

q := c1 + c2x+ · · ·+ cd−1x
d−2 + xd−1 = (p− c0)/x .

Applying the induction hypothesis gives the result.
The claim that the matrix Cp exresses multiplication by x in K[x]/〈p〉 in the basis

1, x, . . . , xd−1 of standard monomials is Exercise 2 below.
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Let I ⊂ K[x1, . . . , xn] be a zero-dimensional ideal. By Theorems 2.4.1 and 2.4.4, the
K-vector space K[x1, . . . , xn]/I is finite-dimensional, and the cardinality of the variety
V(I) is bounded from above by the dimension of K[x1, . . . , xn]/I. Given a polynomial
f ∈ K[x1, . . . , xn], write f for its residue class in the quotient ring K[x1, . . . , xn]/I.

For any i = 1, . . . , n, multiplication of an element in K[x1, . . . , xn]/I with the residue
class xi of a variable xi defines an endomorphism mi,

mi : K[x1, . . . , xn]/I −→ K[x1, . . . , xn]/I ,

f 7−→ xi · f = xif .

Lemma 2.5.2. The map xi 7→ mi induces an injectionK[x1, . . . , xn]/I →֒ End(K[x1, . . . , xn]/I).

Proof. For the second, the map xi 7→ Mi induces a map ϕ from K[x1, . . . , xn] to the
endmorphism ring. For a polynomial p, f ∈ K[x1, . . . , xn], the value of p(m1, . . . ,mn)(f) is
p(x1, . . . , xn)f . This implies that I ⊂ ker(ϕ). Setting f = 1 shows the other inclusion.

This map K[x1, . . . , xn]/I →֒ End(K[x1, . . . , xn]/I) is called the regular representation
of K[x1, . . . , xn]/I. We will use it to study the variety V(I). Since the vector space
K[x1, . . . , xn]/I is finite-dimensional, we may represent each linear multiplication map
mi as a matrix with repsect to a fixed basis of K[x1, . . . , xn]/I. For this, the basis of
standard monomials is not only convenient, but given a Gröbner basis, this representation
is particularly easy to compute.

Let B be the set of standard monomials for I with respect a monomial order ≺. Let
G be a Gröbner basis for I with respect to ≺. For each i = 1, . . . , n, let Mi ∈ MatB×B(K)
be the matrix representing the endomorphism mi of multiplication by the variable xi with
repsect to the basis B, which we call the i-th companion matrix of the ideal I with respect
to B. The rows and the columns of the companion matrixMi are indexed by the monomials
in B. For a pair of monimials xα, xβ ∈ B, the entry of Mi in the row corresponding to xα

and column corresponding to xβ is the coefficient of xα in xi ·xβ mod G, the normal form
of xi · xβ. It follows that there is an easy Gröbner basis algorithm for compute Mi.

Lemma 2.5.3. The companion matrices commute,

Mi ·Mj = Mj ·Mi for 1 ≤ i < j ≤ n .

Proof. The matrices MiMj and MjMi represent the compositions mi ◦mj and mj ◦mi,
respectively. The first statement follows as multiplication in K[x1, . . . , xn]/I is commuta-
tive.

By Lemma 2.5.2, the companion matricesM1, . . . ,Mn generate a subalgebra of MatB×B(K)
isomorphic to K[x1, . . . , xn]/I. As the quotient ring K[x1, . . . , xn]/I is commutative, when
K is algebraically closed this subalgebra has a collection of common eigenvectors whose
eigenvalues are characters (homomorphisms to K) of K[x1, . . . , xn]/I. The following fun-
damental result will allow us to identify the eigenvectors with the points of a ∈ V(I) with
corresponding eigenvalue the evaluation of a element of K[x1, . . . , xn]/I at the point a.
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Theorem 2.5.4 (Stickelberger’s Theorem). Suppose that K is algebraically closed and
I ⊂ K[x1, . . . , xn] is a zero-dimensional ideal. For each i = 1, . . . , n and any λ ∈ K,
the value λ is an eigenvalue of the endomorphism mi if and only if there exists a point
a ∈ V(I) with ai = λ.

Corollary 2.5.5. Let R ⊂ End(K[x1, . . . , xn]/I) be the commutative subalgebra gener-
ated by the endomorphisms m1, . . . ,mn. The joint eigenvectors of R correspond to points
of V(I). For p ∈ K[x1, . . . , xn] and a ∈ V(I), the eigenvalue of p(m1, . . . ,mn) on the
eigenvector corresponding to a is p(a).

For the proof of this Stickelberger’s Theorem, we we recall some facts from linear
algebra related to the Cayley-Hamilton Theorem.

Definition 2.5.6. Let V be a vector space over K and φ an endomorphism on V . For any
polynomial p =

∑d

i=0 cit
i ∈ K[t], set p(φ) :=

∑d

i=0 ciφ
i ∈ End(V ), where φi is the i-fold

composition of the endomorphism φ with itself. The ideal Iφ := {p ∈ K[t] | p(φ) = 0}
is the kernel of the homomorphism K[t] → End(V ) defined by t 7→ φ. Its unique monic
generator hφ is the minimal polynomial of φ.

The eigenvalues and the minimal polynomial of an endomorphism are related.

Lemma 2.5.7. Let V be a finite-dimensional vector space over an algebraically closed
field K and φ be an endomorphism of V . Then an element λ ∈ K is an eigenvalue of φ if
and only if λ is a zero of the minimal polynomial hφ.

Proof. The eigenvalues of φ are the roots of its characteristic polynomial χφ. By the
Cayley-Hamilton Theorem, the characteristic polynomial vanishes on φ, χφ(φ) = 0. Thus
χφ ∈ Iφ and hφ divides χφ.

Let λ1, . . . , λn be the eigenvalues of φ, which are the roots of χφ. Suppose there is
some eigen value, say λ1, for which hφ(λ1) 6= 0. That is, the roots of hφ are a proper
subset of the eigenvalues, and we may write

hφ(t) = (t− λ2)
d2(t− λ3)

d3 · · · (t− λm)
dm .

Let v ∈ V be an eigenvector of φ with eigenvalue λ1. For any other eigenvalue λi 6= λ1,
we have (φ− λiid).v = (λ1 − λi).v 6= 0, and so

hφ(φ).v = (φ− λ2)
d2 · · · (φ− λm)

dm .v = (λ1 − λ2)
d2 · · · (λ1 − λm)

dmv 6= 0 ,

which contradics hφ being the minimal polynomial of φ.

We can now prove Stickelberger’s Theorem 2.5.4.

Proof of Theorem 2.5.4. Let λ be an eigenvalue of the multiplication endomorphismmi on
K[x1, . . . , xn]/I with corresponding eigenvalue v. That is, xiv = λv and thus (xi − λ) · v =
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0 in the vector space K[x1, . . . , xn]/I so that (xi − λ)v ∈ I. Let us assume by way of
contradiction that there is no point a ∈ V(I) with ith coordinate λ.

This implies that xi − λ vanishes at no point of V(I). We will use this to show that
xi − λ is invertible in K[x1, . . . , xn]/I. Multiplying the equation (xi − λ) · v = 0 by this
inverse imples that v = 0, which is a contradiction as eigenvectors are nonzero.

In Exercise 5 of Section 1.3 you are asked to show that the map K[x1, . . . , xn] →
KV(I) is surjective, where KV(I) is the ring of functions on the finite set V(I), which is
K[x1, . . . , xn]/

√
I. It follows that there exists a polynomial f ∈ K[x1, . . . , xn] with image

f =
∑

a∈V(I)

1

ai − λ
δa

in KV(I) = K[x1, . . . , xn]/
√
I, where δa is the Kronecker delta function, whose value at a

point b is zero unless b = a, and then its value is 1. Then f(a) = 1/(ai − λ) for a ∈ V(I),
from which we obtain

(1 − (xi − λ(f)) in I(V(I)) =
√
I .

By Hilbert’s Nullstellensatz, there is a positive integer N such that (1−(xi−λ(f))N ∈
I. Expanding this, we obtain

1 − N(xi − λ)f +
(

N

2

)

(xi − λ)2f 2 − · · · ∈ I ,

and so there exists a polynomial g such that 1 − (xi − λ)g ∈ I. Then g is the desired
inverse to xi − λ in K[x1, . . . , xn]/I.

Conversely, let a ∈ V(I) with ai = λ. Let hi be the minimal polynomial of mi. By
Lemma 2.5.7 we need only show that hi(λ) = 0. By the definition of minimal polynomial,
the function hi(mi) is the zero endomorphism on K[x1, . . . , xn]/I. In particular, hi(xi) =
hi(mi)(1) = 0 in K[x1, . . . , xn]/I, which implies that the polynomial hi(xi) ∈ K[x1, . . . , xn]
lies in I. Evaluating this polynomial at a point a ∈ V(I) gives 0 = h(a) = h(ai) =
h(λ).

Example 2.5.8. Let I = 〈x2y + 1, y2 − 1〉. A Gröbner basis of I with respect to the
lexicographic ordering is given by {x4−1, y+x2}, hence a basis of K[x, y]/I is {1, x, x2, x3}.
With respect to this basis, the representing matrices of the endomorphisms mx and my

are

Mx =









0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0









and My =









0 0 −1 0
0 0 0 −1

−1 0 0 0
0 −1 0 0









.

The eigenvalues of Mx are −1, 1,−i, i and the eigenvalues of My are −1 (twice) and 1
(twice). Indeed, we have V(I) = {(i, 1), (−i, 1), (1,−1), (−1,−1)}.
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Have we already addressed this? From a computational point of view, Theorem 2.5.4
requires that we know a basis of the coordinate ring K[x1, . . . , xn]/I and the companion
matrices in this basis. Given these data, the computational complexity depends on the
dimension, d, of K[x1, . . . , xn]/I.

These methods simplify when there exists a joint basis of eigenvectors. That is, if
there exists a matrix S ∈ Kd×d and diagonal matrices Di ∈ Kd×d for i = 1, . . . , n with

MiS = SDi , for i = 1, . . . , n1 ≤ i ≤ n .

When this occurs, we say that the companion matricesMi are simultaneously diagonaliz-
able.

Theorem 2.5.9. The companion matrices M1, . . . ,Mn are simultaneously diagonalizable
if I is radical. What about the converse?

Proof. Let a = (a1, . . . , an) be a point in V(I). As in the proof of Theorem 2.5.4, there
exists a polynomial g with g(a) = 1 and g(b) = 0 for all b ∈ V(I) r {a}. Hence, the
polynomial (xi − ai)g vanishes on V(I). Hilbert’s Nullstensatz then implies (xi − ai)[g] ∈√
I = I, and thus [g] is a joint eigenvector of M1, . . . ,Mn.

Stickelberger’s Theorem 2.5.4 not only connects classical linear algebra to the problem
of finding the common zeroes of a zero-dimensional ideal, but it leads to another method
to compute eliminants.

Corollary 2.5.10. Suppose that I ⊂ K[x1, . . . , xn] is a zero-dimensional ideal. The
eliminant g(xi) is the minimal polynomial of the operator mi of multiplication by xi on
K[x1, . . . , xn]/I. It is a factor of the characteristic polynomial χmi

of mi that contains all
the roots of χmi

. can say more, perhaps.

This leads to an algorithm to compute the eliminant g(xi) of the radical

Algorithm 2.5.11.

Input: A zero-dimensional ideal I ⊂ K[x1, . . . , xn] and an index i.

Output: The eliminant g(xi) of the radical of I.

Compute a Gröbner basis G for I with respect to any monomial order ≺. If dim I 6= 0,
then exit, else let B be the corresponding finite set of standard monomials.

ConstructMi, the matrix in MatB×B(K) representing multiplication by xi onK[x1, . . . , xn]/I
in the basis of standard monomials. Let χmi

be the characteristic polynomial of Mi.

Proof of correctness.

Are there any other results to put in? What about I not radical if some Mi is not
semisimple?
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Exercises

1. Let G := {yx − 1, z − x} and I := 〈G〉 be an ideal in C[x, y]. Show that G is
a Gröbner basis of I for the lexicographic order x ≺ y ≺ z, determine the set of
standard monomials of C[x, y]/I and compute the multiplication matrices Mx and
My. do a a meatier example.

2. Let p = c0 + · · ·+ cd−1x
d−1 + xd be a monic, univariate polynomial and set I := 〈p〉.

Show that the matrix Mx representing the endomorphism mx : R/I → R/I, [f ] 7→
[xf ] with respect to a natural basis coincides with the companion matrix Cp.

3. Let f ∈ K[x1, . . . , xn]. Show that mf : K[x1, . . . , xn]/I → K[x1, . . . , xn]/I, where
[g] 7→ [f ] · [g] is an endomorphism. State a little more here.

4. In a computer algebra system, use the method of Stickelberger’s Theorem to deter-
mine the common complex zeroes of x2 + 3xy + y2 − 1 and x2 + 2xy + y + 3.

5. If two endormorphisms f and g on a finite-dimensional vector space V are diago-
nalizable and f ◦ g = g ◦ f , then they are jointly diagonalizable. Conclude that for
Stickelberger’s Theorem for the ring K[x, y] with only two variables, there always
exist a basis of joint eigenvectors.

6. Perform the following compuational experiment. Compute eliminants using all three
methods given in the text.
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2.6 Notes

Resultants were developed in the nineteenth century by Sylvester, were part of the compu-
tational toolkit of algebra from that century, and have remained a fundamental symbolic
tool in algebra and its applicaations. Even more classical is Bézout’s Theorem, stated by
Etienne Bézout in his 1779 treatise Théorie Générale des Équations Algébriques [10, 11].

The subject ot Gröbner bases began with Buchberger’s 1965 Ph.D. thesis which con-
tained his algorithm to compute Gröbner bases [15, 17]. The term “Gröbner basis” honors
Buchberger’s doctoral advisor Wolfgang Gröbner. Key ideas about Gröbner bases had
appeared earlier in work of Gordan and of Macaulay, and in Hironaka’s resolution of sin-
gularities [39]. Hironaka called Gröbner bases “standard bases”, a term which persists.
For example, in the computer algebra package Singular [31] the command std(I); com-
putes the Gröbner basis of an ideal I. Despite these precedents, the theory of Gröbner
bases rightly begins with these Buchberger’s contributions.

Theorem 2.2.3 was proven by Macaulay [55], who the Gröbner basis package Macaulay
2 [?] was named after.

There are additional improvements in Buchberger’s algorithm (see Ch. 2.9 in [20] for
a discussion), and even a series of completely different algorithms due to Jean-Charles
Faugère [27] based on linear algebra with vastly improved performance.

An alternative to direct computation of a lexicographic Gröbner basis is the FGLM
algorithm of Faugère, Gianni, Lazard, and Mora [28], which is an algorithm for Gröbner
basis conversion.

For further information on technqiues for solving systems of polynomial equations
see the books of Cox, Little, and O’Shea [21, 20], Sturmfels [90] as well as Emiris and
Dickenstein [23].

For numerical methods concerning the simultaneous diagonalization of matrices we
refer the reader to Bunse-Gerstner, Byers, and Mehrmann [18]. In Section 5.2, a further
refinement of the eigenvalue techniques will be used to study real roots.


