
Chapter 2:
Real solutions to univariate
polynomials

Before we study the real solutions to systems of multivariate polynomials, we will review
some of what is known for univariate polynomials. The strength and precision of results
concerning real solutions to univariate polynomials forms the gold standard in this subject
of real roots to systems of polynomials. We will discuss two results about univariate poly-
nomials: Descartes’ rule of signs and Sturm’s Theorem. Descartes’ rule of signs, or rather
its generalization in the Budan-Fourier Theorem, gives a bound for the number of roots in
an interval, counted with multiplicity. Sturm’s theorem is topological—it simply counts the
number of roots of a univariate polynomial in an interval without multiplicity. From Sturm’s
Theorem we obtain a simple symbolic algorithm to count the number of real solutions to a
system of multivariate polynomials in many cases. We underscore the topological nature of
Sturm’s Theorem by presenting a new and very elementary proof due to Burda and Kho-
vanskii [64]. These and other fundamental results about real roots of univariate polynomials
were established in the 19th century. In contrast, the main results about real solutions to
multivariate polynomials have only been established in recent decades.

2.1 Descartes’ rule of signs

Descartes’ rule of signs [25] is fundamental for real algebraic geometry. Suppose that f is a
univariate polynomial and write its terms in increasing order of their exponents,

f = c0t
a0 + c1t

a1 + · · ·+ cmt
am , (2.1)

where ci 6= 0 and a0 < a1 < · · · < am.

Theorem 2.1 (Descartes’ rule of signs) The number, r, of positive roots of f , counted
with multiplicity, is at most the variation in sign of the coefficients of f ,

r ≤ #{i | 1 ≤ i ≤ m and ci−1ci < 0} ,

and the difference between the variation and r is even.

We will prove a generalization, the Budan-Fourier Theorem, which provides a similar
estimate for any interval in R. We first formalize this notion of variation in sign that
appears in Descartes’ rule.

The variation var(c) in a finite sequence c of real numbers is the number of times that
consecutive elements of the sequence have opposite signs, after we remove any 0s in the
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sequence. For example, the first sequence below has variation four, while the second has
variation three.

8,−4,−2,−1, 2, 3,−5, 7, 11, 12 − 1, 0, 1, 0, 1,−1, 1, 1, 0, 1 .

Suppose that we have a sequence F = (f0, f1, . . . , fk) of polynomials and a real number
a ∈ R. Then var(F, a) is the variation in the sequence f0(a), f1(a), . . . , fk(a). This notion
also makes sense when a = ±∞: We set var(F,∞) to be the variation in the sequence of
leading coefficients of the fi(t), which are the signs of fi(a) for a ≫ 0, and set var(F,−∞)
to be the variation in the leading coefficients of fi(−t).

Given a univariate polynomial f(t) of degree k, let δf be the sequence of its derivatives,

δf := (f(t), f ′(t), f ′′(t), . . . , f (k)(t)) .

For a, b ∈ R∪ {±∞}, let r(f, a, b) be the number of roots of f in the interval (a, b], counted
with multiplicity. We prove a version of Descartes’ rule due to Budan [17] and Fourier [38].

Theorem 2.2 (Budan-Fourier) Let f ∈ R[t] be a univariate polynomial and a < b two

numbers in R ∪ {±∞}. Then

var(δf, a) − var(δf, b) ≥ r(f, a, b) ,

and the difference is even.

We may deduce Descartes’ rule of signs from the Budan-Fourier Theorem once we observe
that for the polynomial f(t) (2.1), var(δf, 0) = var(c0, c1, . . . , cm), while var(δf,∞) = 0, as
the leading coefficients of δf all have the same sign.

Example 2.3 The the sextic f = 5t6−4t5−27t4+55t2−6 whose graph is displayed below
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has four real zeroes at approximately −0.3393, 0.3404, 1.598, and 2.256. If we evaluate the
derivatives of f at 0 we obtain

δf(0) = −6, 0, 110, 0, −648, −480, 3600 ,
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which has 3 variations in sign. If we evaluate the derivatives of f at 2, we obtain

δf(2) = −26, −4, 574, 2544, 5592, 6720, 3600 ,

which has one sign variation. Thus, by the Budan-Fourier Theorem, f has either 2 or 0
roots in the interval (0, 2), counted with multiplicity. This agrees with our observation that
f has 2 roots in the interval [0, 2].

Proof of Budan-Fourier Theorem. Observe that var(δf, t) can only change when t passes a
root c of some polynomial in the sequence δf of derivatives of f . Suppose that c is a root
of some derivative of f and let ǫ > 0 be a positive number such that no derivative f (i) has
a root in the interval [c− ǫ, c + ǫ], except possibly at c. Let m be the order of vanishing of
f at c. We will prove that

(1) var(δf, c) = var(δf, c+ ǫ), and

(2) var(δf, c− ǫ) ≥ var(δf, c) +m, and the difference is even.
(2.2)

We deduce the Budan-Fourier theorem from these conditions. As t ranges from a to b,
r(f, a, t) and var(δf, t) can only change when t passes a root c of f or one of its derivatives.
At such a point, r(f, a, t) jumps by the multiplicity m of the point c as a root of f , while
var(δf, t) drops by m, plus a nonnegative even integer. Thus the sum r(f, a, t) + var(δf, t)
can only change at roots c of f or its derivatives, where it drops by an even integer. The
Budan-Fourier Theorem follows, as this sum equals var(δf, a) when t = a.

Let us now prove our claim about the behavior of var(δf, t) in a neighborhood of a root
c of some derivative f (i). We argue by induction on the degree of f . When f has degree 1,
then we are in one of the following two cases, depending upon the sign of f ′

f(t)

f ′(t)

c− ǫ

c c+ ǫ

f(t)

f ′(t)

c− ǫ c

c+ ǫ

In both cases, var(δf, c− ǫ) = 1, but var(δf, c) = var(δf, c+ ǫ) = 0, which proves the claim
when f is linear.

Now suppose that the degree of f is greater than 1 and let m be the order of vanishing
of f at c. We first treat the case when f(c) = 0, and hence m > 0 so that f ′ vanishes at c
to order m−1. We apply our induction hypothesis to f ′ and obtain that

var(δf ′, c) = var(δf ′, c+ ǫ), and var(δf ′, c− ǫ) ≥ var(δf ′, c) + (m− 1) ,

and the difference is even. By Lagrange’s Mean Value Theorem applied to the intervals
[c− ǫ, c] and [c, c+ ǫ], f and f ′ must have opposite signs at c− ǫ, but the same signs at c+ ǫ,
and so

var(δf, c) = var(δf ′, c) = var(δf ′, c+ ǫ) = var(δf, c+ ǫ) ,

var(δf, c− ǫ) = var(δf ′, c− ǫ) + 1 ≥ var(δf ′, c) + (m− 1) + 1 = var(δf, c) +m,
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and the difference is even. This proves the claim when f(c) = 0.
Now suppose that f(c) 6= 0 so that m = 0. Let n be the order of vanishing of f ′ at c.

We apply our induction hypothesis to f ′ to obtain that

var(δf ′, c) = var(δf ′, c+ ǫ), and var(δf ′, c− ǫ) ≥ var(δf ′, c) + n ,

and the difference is even. We have f(c) 6= 0, but f ′(c) = · · · = f (n)(c) = 0, and f (n+1)(c) 6=
0. Multiplying f by −1 if necessary, we may assume that f (n+1)(c) > 0. There are four
cases: n even or odd, and f(c) positive or negative. We consider each case separately.

Suppose that n is even. Then both f ′(c − ǫ) and f ′(c + ǫ) are positive and so for each
t ∈ {c− ǫ, c, c+ ǫ} the first nonzero term in the sequence

f ′(t), f ′′(t), . . . , f (k)(t) (2.3)

is positive. When f(c) is positive, this implies that var(δf, t) = var(δf ′, t) and when f(c) is
negative, that var(δf, t) = var(δf ′, t)+1. This proves the claim as it implies that var(δf, c) =
var(δf, c+ ǫ) and also that

var(δf, c− ǫ) − var(δf, c) = var(δf ′, c− ǫ) − var(δf ′, c) ,

but this last difference exceeds n by an even number, and so is even as n is even.
Now suppose that n is odd. Then f ′(c− ǫ) < 0 < f ′(c+ ǫ) and so the first nonzero term

in the sequence (2.3) has sign −,+,+ at t = c − ǫ, c, c + ǫ, respectively. If f(c) is positive,
then var(δf, c − ǫ) = var(δf ′, c − ǫ) + 1 and the other two variations are unchanged, but if
f(c) is negative, then the variation at t = c− ǫ is unchanged, but it increases by 1 at t = c
and t = c+ ǫ. This again implies the claim, as var(δf, c) = var(δf, c+ ǫ), but

var(δf, c− ǫ)− var(δf, c) = var(δf ′, c− ǫ)− var(δf ′, c) ± 1 .

Since the difference var(δf ′, c− ǫ)− var(δf ′, c) is equal to the order n of the vanishing of f ′

at c plus a nonnegative even number, if we add or subtract 1, the difference is a nonnegative
even number. This completes the proof of the Budan-Fourier Theorem.

2.2 Sturm’s Theorem

Let f, g be univariate polynomials. Their Sylvester sequence is the sequence of polynomials

f0 := f, f1 := g, f2, . . . , fk ,

where fk is a greatest common divisor of f and g, and

−fi+1 := remainder(fi−1, fi) ,

the usual remainder from the Euclidean algorithm. Note the sign. We remark that we have
polynomials q1, q2, . . . , qk−1 such that

fi−1(t) = qi(t)fi(t) − fi+1(t) , (2.4)

and the degree of fi+1 is less than the degree of fi. The Sturm sequence of a univariate
polynomial f is the Sylvester sequence of f, f ′.
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Theorem 2.4 (Sturm’s Theorem) Let f be a univariate polynomial and a, b ∈ R∪{±∞}
with a < b and f(a), f(b) 6= 0. Then the number of zeroes of f in the interval (a, b) is the

difference

var(F, a) − var(F, b) ,

where F is the Sturm sequence of f .

Example 2.5 The sextic f of Example 2.3 has Sturm sequence

f = 5t6 − 4t5 − 27t4 + 55t2 − 6

f1 := f ′(t) = 30t5 − 20t4 − 108t3 + 110t

f2 = 84
9
t4 + 12

5
t3 − 110

3
t2 − 22

9
t+ 6

f3 = 559584
36125

t3 + 143748
1445

t2 − 605394
7225

t− 126792
7225

f4 = 229905821875
724847808

t2 + 1540527685625
4349086848

t+ 7904908625
120807968

f5 = −280364022223059296
58526435357253125

t+ 174201756039315072
292632176786265625

f6 = −17007035533771824564661037625
162663080627869030112013128

.

Evaluating the Sturm sequence at t = 0 gives

−6, 0, 6, −126792
7225

, 174201756039315072
292632176786265625

, −17007035533771824564661037625
162663080627869030112013128

,

which has 4 variations in sign, while evaluating the Sturm sequence at t = 2 gives

−26, −4, 1114
45
, 3210228

36125
, −1076053821625

2174543424
, −2629438466191277888

292632176786265625
, −17007035533771824564661037625

162663080627869030112013128
,

which has 2 variations in sign. Thus by Sturm’s Theorem, we see that f has 2 roots in the
interval [0, 2], which we have already seen by other methods.

An application of Sturm’s Theorem is to isolate real solutions to a univariate polynomial
f by finding intervals of a desired width that contain a unique root of f . When (a, b) =
(−∞,∞), Sturm’s Theorem gives the total number of real roots of a univariate polynomial.
In this way, it leads to an algorithm to investigate the number of real roots of generic
systems of polynomials. We briefly describe this algorithm here. This algorithm was used in
an essential way to get information on real solutions which helped to formulate many results
discussed in later chapters.

Suppose that we have a system of real multivariate polynomials

f1(x1, . . . , xn) = f2(x1, . . . , xn) = · · · = fN(x1, . . . , xn) = 0 , (2.5)

whose number of real roots we wish to determine. Let I ⊂ R[x1, . . . , xn] be the ideal
generated by the polynomials f1, f2, . . . , fN . If (2.5) has finitely many complex zeroes, then
the dimension of the quotient ring R[x1, . . . , xn]/I (the degree of I) is finite. Thus, for each
variable xi, there is a univariate polynomial g(xi) ∈ I of minimal degree, called an eliminant

for I. The significance of eliminants comes from the following observation.
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Proposition 2.6 The roots of an eliminant g(xi) ∈ I form the set of ith coordinates of

solutions to (2.5).

The algorithm for counting the number of real solutions to (2.5) is a consequence of
Sturm sequences and the Shape Lemma [5].

Theorem 2.7 (Shape Lemma) Suppose that I has an eliminant g(xi) whose degree is

equal to the degree of I. Then the number of real solutions to (2.5) is equal to the number

of real roots of g.

Suppose that the coefficients of the polynomials fi in the system (2.5) lie in a computable
subfield of R, for example, Q (e.g. if the coefficients are integers). Then the degree of I may
be computed using Gröbner bases, and we may also use Gröbner bases to compute an
eliminant g(xi). Since Buchberger’s algorithm does not enlarge the field of the coefficients,
g(xi) ∈ Q[xi] has rational coefficients, and so we may use Sturm sequences to compute the
number of its real roots. We state this more precisely.

Algorithm
Given: I = 〈f1, . . . , fN〉 ⊂ Q[x1, . . . , xn]

1. Use Gröbner bases to compute the degree d of I.

2. Use Gröbner bases to compute an eliminant g(xi) ∈ I ∩Q[xi] for I.

3. If deg(g) = d, then use Sturm sequences to compute the number r of real roots of
g(xi), and output “The ideal I has r real solutions.”

4. Otherwise output “The ideal I does not satisfy the hypotheses of the Shape Lemma
for the variable xi.”

If this algorithm halts with a failure (step 4), it may be called again to compute an elim-
inant for a different variable. Another strategy is to apply a random linear transformation
before eliminating. An even more sophisticated form of elimination is Roullier’s rational
univariate representation [94].

2.2.1 Traditional Proof of Sturm’s Theorem

Let f(t) be a real univariate polynomial with Sturm sequence F . We prove Sturm’s Theorem
by looking at the variation var(F, t) as t increases from a to b. This variation can only change
when t passes a number c where some member fi of the Sturm sequence has a root, for then
the sign of fi could change. We will show that if i > 0, then this has no effect on the
variation of the sequence, but when c is a root of f = f0, then the variation decreases by
exactly 1 as t passes c. Since multiplying a sequence by a nonzero number does not change
its variation, we will at times make an assumption on the sign of some value fj(c) to reduce
the number of cases to examine.
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Observe first that by (2.4), if fi(c) = fi+1(c) = 0, then fi−1 also vanishes at c, as do
all the other polynomials fj. In particular f(c) = f ′(c) = 0, so f has a multiple root at c.
Suppose first that this does not happen, either that f(c) 6= 0 or that c is a simple root of f .

Suppose that fi(c) = 0 for some i > 0. The vanishing of fi at c, together with (2.4)
implies that fi−1(c) and fi(c) have opposite signs. Then, whatever the sign of fi(t) for t near
c, there is exactly one variation in sign coming from the subsequence fi−1(t), fi(t), fi+1(t),
and so the vanishing of fi at c has no effect on the variation as t passes c. Note that this
argument works equally well for any Sylvester sequence.

Now we consider the effect on the variation when c is a simple root of f . In this case
f ′(c) 6= 0, so we may assume that f ′(c) > 0. But then f(t) is negative for t to the left of c
and positive for t to the right of c. In particular, the variation var(F, t) decreases by exactly
1 when t passes a simple root of f and does not change when f does not vanish.

We are left with the case when c is a multiple root of f . Suppose that its multiplicity is
m + 1. Then (t − c)m divides every polynomial in the Sturm sequence of f . Consider the
sequence of quotients,

G = (g0, . . . , gk) := (f/(t− c)m, f ′/(t− c)m, f2/(t− c)m, · · · , fk/(t− c)m) .

Note that var(G, t) = var(F, t) when t 6= c, as multiplying a sequence by a nonzero number
does not change its variation. Observe also that G is a Sylvester sequence. Since g1(c) 6= 0,
not all polynomials gi vanish at c. But we showed in this case that there is no contribution
to a change in the variation by any polynomial gi with i > 0.

It remains to examine the contribution of g0 to the variation as t passes c. If we write
f(t) = (t− c)m+1h(t) with h(c) 6= 0, then

f ′(t) = (m+ 1)(t− c)mh(t) + (t− c)m+1h′(t) .

In particular,

g0(t) = (t− c)h(t) and g1(t) = (m+ 1)h(t) + (t− c)h′(t) .

If we assume that h(c) > 0, then g1(c) > 0 and g0(t) changes from negative to positive as t
passes c. Once again we see that the variation var(F, t) decreases by 1 when t passes a root
of f . This completes the proof of Sturm’s Theorem.

2.3 A topological proof of Sturm’s Theorem

We present a second, very elementary, proof of Sturm’s Theorem due to Burda and Khovan-
skii [64] whose virtue is in its tight connection to topology. We first recall the definition of
topological degree of a continuous function ϕ : RP1 → RP1. Since RP1 is isomorphic to the
quotient R/Z, we may pull ϕ back to the interval [0, 1] to obtain a map [0, 1] → RP1. This
map lifts to the universal cover of RP1 to obtain a map ψ : [0, 1] → R. Then the mapping

degree, mdeg(ϕ), of ϕ is simply ψ(1)− ψ(0), which is an integer. We call this the mapping
degree to distinguish it from the usual algebraic degree of a polynomial or rational function.
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The key ingredient in this proof is a formula to compute the mapping degree of a rational
function ϕ : RP1 → RP1. Any rational function ϕ = f/g where f, g ∈ R[t] are polynomials
has a continued fraction expansion of the form

ϕ = q0 +
1

q1 +
1

q2 +
1

. . .

+
1

qk

(2.6)

where q0, . . . , qk are polynomials. Indeed, this continued fraction is constructed recursively.
If we divide f by g with remainder h, so that f = q0g+ h with the degree of h less than the
degree of g, then

ϕ = q0 +
h

g
= q0 +

1

g

h

.

We may now divide g by h with remainder, g = q1h+ k and obtain

ϕ = q0 +
1

q1 +
1

h

k

.

As the degrees of the numerator and denominator drop with each step, this process termi-
nates with an expansion (2.6) of ϕ.

For example, if f = 4t4 − 18t2 − 6t and g = 4t3 + 8t2 − 1, then

f

g
= t− 2 +

1

−2t+ 1 +
1

−2t− 3 +
1

t+ 1

This continued fraction expansion is just the Euclidean algorithm in disguise.
Suppose that q = c0 + c1t+ · · ·+ cdt

d is a real polynomial of degree d. Define

[q] := sign (cd) · (d mod 2) ∈ {±1, 0} .

Theorem 2.8 Suppose that ϕ is a rational function with continued fraction expansion (2.6).
Then the mapping degree of ϕ is

[q1]− [q2] + · · ·+ (−1)k−1[qk] .

We may use this to count the roots of a real polynomial f by the following lemma.
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Lemma 2.9 The number of roots of a polynomial f , counted without multiplicity is the

mapping degree of the rational function f/f ′.

We deduce Sturm’s Theorem from Lemma 2.9. Let f0, f1, f2 . . . , fk be the Sturm sequence
for f . Then f0 = f , f1 = f ′, and for i > 1, −fi+1 := remainder(fi−1, fi). That is,
deg(fi) < deg(fi−1) and there are univariate polynomials g1, g2, . . . , gk with

fi−1 = gifi − fi+1 for i = 1, 2, . . . , k−1 .

We relate these polynomials to those obtained from the Euclidean algorithm applied to f, f ′

and thus to the continued fraction expansion of f/f ′. It is clear that the fi differ only by a
sign from the remainders in the Euclidean algorithm. Set r0 := f and r1 = f ′, and for i > 1,
ri := remainder(ri−2, ri−1). Then deg(ri) < deg(ri−1), and there are univariate polynomials
q1, q2, . . . , qk with

ri−i = qiri + ri+1 for i = 1, . . . , k−1 .

We leave the proof of the following lemma as an exercise for the reader.

Lemma 2.10 We have gi = (−1)i−1qi and fi = (−1)⌊
i

2
⌋ri, for i = 1, 2, . . . , k.

Write F for the Sturm sequence (f0, f1, f2 . . . , fk) for f and f top for the leading coefficient
of fi. Then var(F,∞) is the variation in the leading coefficients (f top

0 , f top
1 , . . . , f top

k ) of the
polynomials in F . Similarly, var(F,−∞) is the variation in the sequence

((−1)deg(f0)f top
0 , (−1)deg(f1)f top

1 , . . . , (−1)deg(fk)f top
k ) .

Note that the variation in a sequence (c0, c1, . . . , ck) is just the sum of the variations in each
subsequence (ci−1, ci) for i = 1, . . . , k. Thus

var(F,−∞)− var(F,∞)

=
k

∑

i=1

[

var((−1)deg(fi−1)f top
i−1, (−1)deg(fi)f top

i ) − var(f top
i−1, f

top
i )

]

. (2.7)

Since fi−1 = gifi − fi+1 and deg(fi+1) < deg(fi) < deg(fi−1), we have

f top
i−1 = gtopi f top

i and deg(fi−1) = deg(gi) + deg(fi) .

Thus we have

var(f top
i−1, f

top
i ) = var(gtopi , 1) , and

var((−1)deg(fi−1)f top
i−1, (−1)deg(fi)f top

i ) = var((−1)deg(gi)gtopi , 1) .

Thus the summands in (2.7) are

var((−1)deg(gi)gtopi , 1) − var(gtopi , 1) = sign (gtopi )(deg(gi) mod 2)

= [gi] = (−1)i−1[qi] ,
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This proves that

var(F,−∞)− var(F,∞) = [g1] + [g2] + · · ·+ [gk]

= [q1]− [q2] + · · ·+ (−1)k−1[qk] .

But this proves Sturm’s Theorem, as this is the number of roots of f , by Theorem 2.8 and
Lemma 2.9.

The key to the proof of Lemma 2.9 is an alternative formula for the mapping degree
of a continuous function ϕ : RP1 → RP1. Suppose that p ∈ RP1 is a point with finitely
many inverse images ϕ−1(p). To each inverse image we associate an index that records the
behavior of ϕ(t) as t increases past the inverse image. The index is +1 if ϕ(t) increases
past p, it is −1 if ϕ(t) decreases past p, and it is 0 if ϕ stays on the same side of p. (Here,
increase/decrease are taken with respect to the orientation of RP1.) For example, here is a
graph of a function ϕ in relation to the value p with the indices of inverse images indicated.

ϕ

p
0

−1 0 +1

With this definition, the mapping degree of ϕ is the sum of the indices of the points in a
fiber ϕ−1(p), whenever the fiber is finite. That is,

mdeg(ϕ) =
∑

a∈ϕ−1(p)

index of a .

Proof of Lemma 2.9. The zeroes of the rational function ϕ := f/f ′ coincide with the zeroes
of f . Suppose f(a) = 0 so that a lies in ϕ−1(0). The lemma will follow once we show that
a has index +1. Then we may write f(t) = (t − a)dh(t), where h is a polynomial with
h(a) 6= 0. We see that f ′(t) = d(t− a)d−1h(t) + (t− a)dh′(t), and so

ϕ(t) =
f(t)

f ′(t)
=

(t− a)h(t)

dh(t) + (t− a)h′(t)
≈

t− a

d
,

the last approximation being valid for t near a as h(t) 6= 0. Since d is positive, we see that
the index of the point a in the fiber ϕ−1(0) is +1.

Proof of Theorem 2.8. Suppose first that ϕ and ψ are rational functions with no common
poles. Then

mdeg(ϕ+ ψ) = mdeg(ϕ) + mdeg(ψ) .

To see this, note that (ϕ+ ψ)−1(∞) is just the union of the sets ϕ−1(∞) and ψ−1(∞), and
the index of a pole of ϕ equals the index of the same pole of (ϕ+ ψ).
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Next, observe that mdeg(ϕ) = −mdeg(1/ϕ). For this, consider the behavior of ϕ and
1/ϕ near the level set 1. If ϕ > 1 than 1/ϕ < 1 and vice-versa. The two functions
have index 0 at the same points, and opposite index at the remaining points in the fiber
ϕ−1(1) = (1/ϕ)−1(1).

Now consider the mapping degree of ϕ = f/g as we construct its continued fraction
expansion. At the first step f = f0g+ h, so that ϕ = f0 + h/g. Since f0 is a polynomial, its
only pole is at ∞, but as the degree of h is less than the degree of g, h/g does not have a
pole at ∞. Thus the mapping degree of ϕ is

mdeg(f0 + h/g) = mdeg(f0) + mdeg
(

h
g

)

= mdeg(f0)−mdeg
(

g

h

)

.

The theorem follows by induction, as mdeg(f0) = [f0].

We close this chapter with an application of this method. Suppose that we are given
two polynomials f and g, and we wish to count the zeroes a of f where g(a) > 0. If
g = (x− b)(x− c) with b < c, then this will count the zeroes of f in the interval [b, c], which
we may do with either of the main results of this chapter. If g has more roots, it is not a
priori clear how to use the methods in the first two sections of this chapter to solve this
problem.

A first step toward solving this problem is to compute the mapping degree of the rational
function

ϕ :=
f

gf ′
.

We consider the indices of its zeroes. First, the zeroes of ϕ are those zeroes of f that are
not zeroes of g, together with a zero at infinity if deg(g) > 1. If f(a) = 0 but g(a) 6= 0, then
f = (t− a)dh(t) with h(a) 6= 0. For t near a,

ϕ(t) ≈
t− a

d · g(a)
,

and so the preimage a ∈ ϕ−1(0) has index sign (g(a)). If deg(g) = e > 1 and deg(f) = d
then the asymptotic expansion of ϕ for t near infinity is

ϕ(t) ≈
1

dgete−1
,

where ge is the leading coefficient of g. Thus the index of ∞ ∈ ϕ−1(0) is sign (ge)(e−1
mod 2) = [g′]. We summarize this discussion.

Lemma 2.11 If deg(g) > 1, then

∑

{a|f(a)=0}

sign (g(a)) = mdeg(ϕ) − [g′] ,

and if deg(g) = 1, the correction term −[g′] is omitted.

Since mdeg(ϕ) = −mdeg(1/ϕ), we have the alternative expression for this sum.
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Lemma 2.12 Let q1, q2, . . . , qk be the successive quotients in the Euclidean algorithm applied

to the division of f ′g by f . Then

∑

{a|f(a)=0}

sign (g(a)) = [q2]− [q3] + · · ·+ (−1)k[qk] .

Proof. We have

mdeg
f

f ′g
= −mdeg

f ′g

f
= −[q1] + [q2]− · · ·+ (−1)k[qk] ,

by Theorem 2.8. Note that we have f ′g = q1f + r1. If we suppose that deg(f) = d and
deg(g) = e, then deg(q1) = e− 1. Also, the leading term of q is dge, where ge is the leading
term of g, which shows that [q1] = [g′]. Thus the lemma follows from Lemma 2.11, when
deg(g) ≥ 2.

But it also follows when deg(g) < 2 as [q1] = 0 in that case.

Now we may solve our problem. For simplicity, suppose that deg g > 1. Note that

1
2

(

sign (g2(a)) + sign(g(a))
)

=

{

1 if g(a) > 0
0 otherwise

.

And thus

#{a | f(a) = 0, g(a) > 0} =
1

2
mdeg

(

f

g2f ′

)

+
1

2
mdeg

(

f

gf ′

)

,

which solves the problem.
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