Factor the following polynomials as much as you can, using integer coefficients. 1. $x^2 - 1$.

- 2. $x^3 1$.
- 3. $x^2 a^2$.
- 4. $x^3 a^3$.
- 5. $x^4 a^4$.
- 6. $x^5 a^5$.
- 7. $x^6 a^6$.
- 8. $x^7 a^7$.
- 9. $x^8 a^8$.
- 10. Find a formula for

$$\sum_{i=1}^{n} (2i-1) = 1+3+5+\dots+(2n-1).$$

The coefficient $\binom{n}{i} := \frac{n!}{i!(n-i)!}$ of $a^{n-i}b^i$ in the expansion $(a+b)^n$ is called a *binomial coefficient*. That is, $(a+b)^n$ equals

$$\binom{n}{0}a^{n} + \binom{n}{1}a^{n-1}b + \dots + \binom{n}{n-1}ab^{n-1} + \binom{n}{n}b^{n}.$$

11. Show that $\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n} = 2^n$.

- 12. When n = 7, we noticed that all except the first and last binomial coefficient was divisible by 7. Can you explain this using the formula?
- 13. What about binomial coefficients $\binom{p}{i}$ when p is a prime number?
- 14. Use induction to show that $1 + r + \dots + r^n = \frac{1 - r^{n+1}}{1 - r}.$
- 15. What is the simplest function? Why?
- 16. What is the second-simplest type of function? Explain.
- 17. If f and g are functions, what is f + g?
- 18. If f and g are functions, what is $f \cdot g$?
- 19. What is a polynomial function?
- 20. What is the domain of a polynomial function?
- 21. What is a rational function?
- 22. What is the domian of a rational function?

- 23. Does there exist a rational function with non-constant denominator and domain all of \mathbb{R} ?
- 24. What is π ?
- 25. What is π ? (This is not a typo. There are two answers.)
- 26. Define $\sin x$ in terms of the unit circle.
- 27. Define $\cos x$ in terms of the unit circle.
- 28. What is $\tan x$?
- 29. What is $\sec x$?
- 30. What is $\cot x$?
- 31. What is $\csc x$?
- 32. Show that $\sin(-x) = -\sin x$.
- 33. Show that $\cos(-x) = \cos x$.
- 34. Show that $\sin(y+z) = \sin y \cos z + \cos y \sin z$.
- 35. Derive a formula for $\tan(2\omega)$.
- 36. Show that $\sin(\frac{\pi}{2} \alpha) = \cos \alpha$.
- 37. Give the numerical values of $\sin \frac{\pi}{3}$, $\cos \frac{\pi}{3}$, $\tan \frac{\pi}{3}$, $\sec \frac{\pi}{3}$, $\cot \frac{\pi}{3}$, $\arctan \frac{\pi}{3}$, $\sec \frac{\pi}{3}$, $\cot \frac{\pi}{3}$, and $\csc \frac{\pi}{3}$ as radicals.
- 38. Give the numerical values of $\sin 0$, $\cos 0$, $\tan 0$, $\sec 0$, $\cot 0$, and $\csc 0$ as radicals.
- 39. Give the numerical values of $\sin \frac{\pi}{2}$, $\cos \frac{\pi}{2}$, $\tan \frac{\pi}{2}$, $\sec \frac{\pi}{2}$, $\cot \frac{\pi}{2}$, and $\csc \frac{\pi}{2}$ as radicals.
- 40. Give the numerical values of $\sin(-\frac{\pi}{6})$, $\cos(-\frac{\pi}{6})$, $\tan(-\frac{\pi}{6})$, $\sec(-\frac{\pi}{6})$, $\cot(-\frac{\pi}{6})$, and $\csc(-\frac{\pi}{6})$ as radicals.

41. Show that
$$\frac{\sec a - 1}{\sec a + 1} + \frac{\cos a - 1}{\cos a + 1} = 0$$

42. Show that $1 + \cot^2(\pi/2 - x) = \frac{1}{\sin^2(\pi/2 - x)}$.

43. Show that
$$\frac{\sin\beta}{\csc\beta} + \frac{\cos\beta}{\sec\beta} = 1.$$

- 44. Show that $\sec^4 \theta \sec^2 \theta = \frac{1}{\cot^4 \theta} + \frac{1}{\cot^2 \theta}$.
- 45. Show that $\tan 3\beta = \frac{3\tan\beta \tan^3\beta}{1 3\tan^2\beta}$.
- 46. Show that $\sin(x+y)\sin(x-y) = \sin^2 x \sin^2 y$.
- 47. Show that $\cot(x/2) = \frac{1 + \cos x}{\sin x}$.
- 48. Show that $\csc y \sec y = 2 \csc 2y$.