The Critical Point Degree of a Periodic Graph

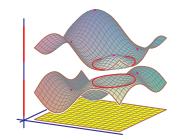
Applied and Computational Algebra AMS Fall Central Section Meeting, St. Louis University

18 October 2025

Frank Sottile

Texas A&M University sottile@tamu.edu

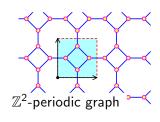
With Matt Faust and Jonah Robinson



Supported by NSF grant DMS-2201005

Operators on Periodic Graphs

A locally finite \mathbb{Z}^d -periodic graph Γ is a discrete model of a crystal. Vertices $\mathcal{V} \longleftrightarrow$ atoms, edges $\mathcal{E} \longleftrightarrow$ interactions, with action $\mathcal{V} \times \mathbb{Z}^d \to \mathcal{V} \quad (v,\alpha) \mapsto v + \alpha$.



Consider a Schrödinger operator (on
$$\ell_2(\mathcal{V})$$
)
$$H := V + \Delta.$$

where $V: \mathcal{V} \to \mathbb{R}$ is a periodic potential and Δ is a weighted graph Laplacian (given by periodic weights $e: \mathcal{E} \to \mathbb{R}$).

As H is self-adjoint, its spectrum $\sigma(H) \subset \mathbb{R}$ consists of finitely many intervals, representing the familiar structure of electron energy bands and band gaps.

From Floquet Transform to Geometry

More structure is revealed by Floquet (Fourier) transform.

 \mathbb{T} : unit complex numbers.

 \mathbb{T}^d : unitary characters of \mathbb{Z}^d :

$$z \in \mathbb{T}^d$$
, $\alpha \in \mathbb{Z}^d \longmapsto z^\alpha := z_1^{\alpha_1} \cdots z_d^{\alpha_d}$.

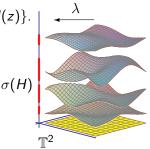
Fix $W \subset \mathcal{V}$, a fundamental domain for \mathbb{Z}^d -action.

After Floquet transform, H is multiplication by the $W \times W$ matrix H(z) whose (u, v)-entry is $-\sum_{\alpha} e_{(u,v+\alpha)} z^{\alpha}$, and

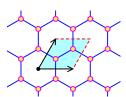
$$\sigma(H) = \{\lambda \mid \exists z \in \mathbb{T}^d \text{ with } \lambda \text{ an eigenvalue of } H(z)\}.$$

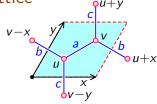
This leads to the *Bloch variety* BV $\subset \mathbb{T}^d \times \mathbb{R}$, which is defined by the *dispersion polynomial*, $\Phi := \det(\lambda I_W - H(z))$.

The coordinate λ is a function on the Bloch variety, and $\sigma(H) = \lambda(BV)$.



Example: Hexagonal Lattice

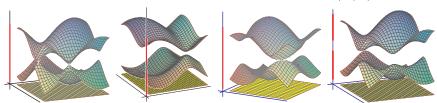




The Floquet matrix is
$$H(x,y) = \begin{pmatrix} V(u) & -a - bx^{-1} - cy^{-1} \\ -a - bx - cy & V(v) \end{pmatrix}$$

and
$$\Phi = \lambda^2 - \lambda(V(u) + V(v)) + V(u)V(v) - (a^2 + b^2 + c^2 + ab(x + x^{-1}) + ac(y + y^{-1}) + bc(xy^{-1} + yx^{-1})).$$

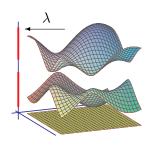
Here are several of its Bloch varieties for different a, b, c, V.



Spectral Edges Nondegeneracy Conjecture

Kuchment made the *Spectral Edges Conjecture:* For general operators on Γ , critical points of λ on BV above endpoints of spectral bands are nondegenerate extrema.

While many physical properties rely upon this assumption (made by all physicists), it is largely unknown, even for operators on discrete graphs.



 $\overset{}{\sim}$ A first step: study critical points of λ on the complexified Bloch variety, $\mathsf{BV}_\mathbb{C} \subset (\mathbb{C}^\times)^d \times \mathbb{C}$.

Lemma. A point $(z,\lambda) \in (\mathbb{C}^{\times})^d \times \mathbb{C}$ is a critical point of λ on $BV_{\mathbb{C}}$ if and only if it is a solution to the system of equations

(CPE)
$$\Phi(z,\lambda) = z_i \frac{\partial \Phi}{\partial z_i}(z,\lambda) = 0 \qquad i = 1,\ldots,d.$$

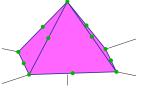
These are highly structured polynomial equations.

Critical Points of Discrete Periodic Operators

The Newton polytope ${\mathcal N}$ of the dispersion polynomial Φ is

$$\mathcal{N} \; := \; \mathsf{conv}\{(\alpha,j) \mid z^{\alpha}\lambda^{j} \; \mathsf{appears in} \; \Phi\} \,.$$

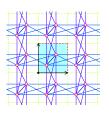
Critical point equations involve Φ and the $z_i \partial \Phi / \partial z_i$. All have support in \mathcal{N} .



Kushnirenko (mostly)

(*) # Critical points
$$\leq n$$
-vol (\mathcal{N}) .

Do, et al. proved the Spectral Edges Conjecture for this graph whose Newton polytope is above by computing one instance (over a finite field) with $32 = \text{n-vol}(\mathcal{N})$.



<u>Aside:</u> While not general, the system was <u>Bernstein-general</u> in that it had the expected number of solutions. This example inspired:

Breiding, S., Woodcock

EDD for hypersurfaces is Bernstein-general.

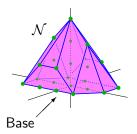
Asymptotic Critical Points

 $\mathsf{BV}_\mathbb{C}$ is compactified in a toric variety X, whose geometry is encoded by the polytope \mathcal{N} .

Each face F of $\mathcal{N} \longleftrightarrow$ a toric subvariety X_F of X, and

$$\frac{\partial X}{} := X \setminus \left((\mathbb{C}^{\times})^d \times \mathbb{C} \right) = \bigcup_F X_F,$$

the union over proper, non-base faces F.



The critical point equations (*CPE*) are a system of linear equations on X, expressed geometrically as $\Lambda_{\Phi} \cap X$.

We have
$$\#(\Lambda_{\Phi} \cap X) = \text{n-vol}(\mathcal{N})$$
.

Consequently, we have equality in (*) if and only if $\Lambda_{\Phi} \cap \partial X = \emptyset$.

Faust-S. (1) if F is vertical then $\Lambda_{\Phi} \cap X_F \neq \emptyset$.

(2) Otherwise, $\Lambda_{\Phi} \cap X_F \neq \emptyset$ implies that BV is singular along X_F .

 $\Lambda_{\Phi} \cap \partial X$ consists of asymptotic critical points.

Critical Point Degree

The *critical point degree* of Γ is the number of critical points, counted with multiplicity, on a generic Bloch variety for Γ .

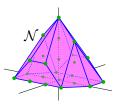
With Matt Faust and Jonah Robinson, we identify contributions from the asymptotic critical points.

 d_{vert} : Due to vertical faces of \mathcal{N} .

 d_{sing} : Singularities of BV along faces F when

 Γ is "asymptotically disconnected",

and thus BV is asymptotically reducible.



Theorem: Let Γ be a \mathbb{Z}^2 or \mathbb{Z}^3 -periodic graph. Then the critical point degree of Γ is at most n-vol(\mathcal{N}) – d_{vert} – d_{sing} . Both contributions arise from structural properties of Γ .

→ Like earlier work, this suggests possibilities for algebraic optimization.

Vertical Faces

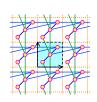
Observation: If $F \subset \mathcal{N}$ is a vertical face, then

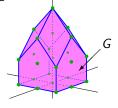
$$\#(\Lambda_{\Phi} \cap X_F) = \text{n-vol}(F)$$
. (Kushnirenko's Theorem)

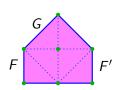
Easier: If $F \subset G$ are both vertical, then $\Lambda_{\Phi} \cap X_F \subset \Lambda_{\Phi} \cap X_G$.

Define:
$$d_G := \text{n-vol}(G) - \sum_{F \subset G} \text{n-vol}(F)$$
 (F vertical)
 $d_{\text{vert}} := \sum_{G \text{ vertical}} d_G$

Example:



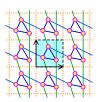


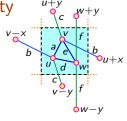


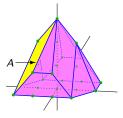
For each vertical facet G, n-vol(G) = 6 and n-vol(F) = n-vol(F') = 1, so that $d_G = 6 - 2 = 4$.

Then
$$d_{\text{vert}} = 4 \cdot 1 + 4 \cdot (6 - 2) = 20.$$
 (edges) (facets)

Asymptotic Reducibility







The linear function given by $\eta=(-1,1,-1)$ is minimized on A. Characteristic matrix with η -minimal terms underlined

$$\left(\begin{array}{ccc} \underline{\lambda} - u & a + bx^{-1} + \underline{cy^{-1}} & d \\ a + \underline{bx} + cy & \underline{\lambda} - v & e \\ d & e & \underline{\lambda} - w + fy + \underline{fy^{-1}} \end{array}\right) \ .$$

Determinant of the η -initial matrix defines BV $\cap X_A$,

$$\det \left(\begin{array}{ccc} \lambda & cy^{-1} & 0 \\ bx & \lambda & 0 \\ 0 & 0 & \lambda + fy^{-1} \end{array} \right) = (\lambda^2 - bcxy^{-1})(\lambda + fy^{-1}),$$

two curves with one (singular) point of intersection.

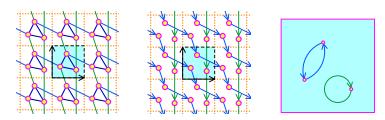
Asymptotically Disconnected Graph

The η -minimal terms in the matrix

$$\begin{pmatrix} \frac{\lambda}{a} - u & a + bx^{-1} + \underline{cy^{-1}} & d \\ a + \underline{bx} + cy & \underline{\lambda} - v & e \\ d & e & \underline{\lambda} - w + fy + \underline{fy^{-1}} \end{pmatrix}$$

correspond to directed edges of the η -initial graph.

This has disconnected quotient by \mathbb{Z}^2 .



Disconnected initial graph \Longrightarrow singularity along X_A .