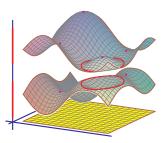
Toric Geometry of Periodic Operators

Computational Algebra, Algebraic Geometry and Applications II

Frank Sottile

Texas A&M University sottile@tamu.edu

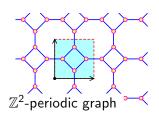


Work with Ngoc Do, Matthew Faust, Peter Kuchment, Jordy Lopez, Jonah Robinson, and Stephen Shipman.

Supported by NSF grant DMS-2201005

Operators on Periodic Graphs

A locally finite \mathbb{Z}^d -periodic graph Γ is a discrete model of a crystal. Vertices $\mathcal{V} \longleftrightarrow$ atoms, edges $\mathcal{E} \longleftrightarrow$ interactions, with action $\mathbb{Z}^d \times \mathcal{V} \to \mathcal{V} \quad (\alpha, v) \mapsto \alpha + v$.



Given periodic functions $V: \mathcal{V} \to \mathbb{R}$ (potential) and $e: \mathcal{E} \to \mathbb{R}^{\times}$ (edge weights), the Schrödinger operator H acts on functions $\psi: \mathcal{V} \to \mathbb{C}$. For $v \in \mathcal{V}$, the value of $H\psi$ at v is

$$(H\psi)(v) = V(v)\psi(v) - \sum_{v>u} e_{(v,u)}\psi(u).$$

H is self-adjoint (on $\ell_2(\mathcal{V})$), and its spectrum $\sigma(H) \subset \mathbb{R}$ consists of finitely many intervals, representing the familiar structure of electron energy bands and band gaps.

Quasi-periodic functions

The representation theory of \mathbb{Z}^d turns this spectral problem into an algebraic family of eigenvalue problems.

Let $z \in (\mathbb{C}^{\times})^d$, a character of \mathbb{Z}^d . A function $\psi \colon \mathcal{V} \to \mathbb{C}$ is z-quasi-periodic $(\psi \in \mathcal{Q}_z)$ if for $v \in \mathcal{V}$ and $\alpha \in \mathbb{Z}^d$,

$$\psi(\alpha+\nu) = z^{\alpha}\psi(\nu).$$

Let $W\subset \mathcal{V}$ be a set of orbit representatives. The map $\psi\mapsto \psi|_W$ identifies \mathcal{Q}_z with the vector space \mathbb{C}^W of functions $W\to\mathbb{C}$. The action of the Schrödinger operator H on $\psi\in\mathcal{Q}_z$ is

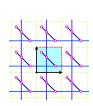
$$(H\psi)(v) = V(v)\psi(v) - \sum_{v\sim\alpha+u} e_{(v,\alpha_u)}z^{\alpha}\psi(u) \qquad v,u\in W.$$

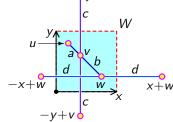
For $z \in (\mathbb{C}^{\times})^d$, this is multiplication by a $W \times W$ matrix H(z) of Laurent polynomials, which is a map of free $\mathbb{C}[z^{\pm}]$ -modules.

(This is an algebraic version of Fourier transform.)

Example

For the graph on the left, we show a labeling in a neighborhood of a fundamental domain W. ((x,y)=z)





We have

$$H(z) = \begin{pmatrix} u & -a & 0 \\ -a & v - c(y + y^{-1}) & -b \\ 0 & -b & w - d(x + x^{-1}) \end{pmatrix}.$$

Note that $H(x, y)^T = H(x^{-1}, y^{-1})$.

This is true in general as $v \sim \alpha + u \iff u \sim -\alpha + v$, and by periodicity both edges have the same label.

Bloch varieties

 $\mathbb{T}\subset\mathbb{C}^{\times}$: unit complex numbers & $\mathbb{T}^d=$ unitary characters of \mathbb{Z}^d . The reason we introduced quasi-periodic functions is the

Floquet Theorem.

$$\sigma(H) = \{ \lambda \in \mathbb{R} \mid \exists z \in \mathbb{T}^d \text{ and } \psi \in \mathcal{Q}_z \text{ s.t. } H\psi = \lambda \psi \}$$

The *(real) Bloch variety* $\mathrm{BV}_\mathbb{R} \subset \mathbb{R} \times \mathbb{T}^d$ is

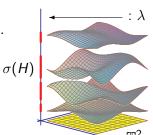
$$\mathrm{BV}_{\mathbb{R}} \; := \; \mathrm{Var}(\det(\lambda I - H(z))) \, .$$

By the Floquet Theorem, its projection to the λ -axis is $\sigma(H)$.

For $z \in \mathbb{T}^d$, $H(z)^T = H(z^{-1}) = H(\overline{z})$, so H(z) is hermitian, and $\mathrm{BV}_\mathbb{R} \twoheadrightarrow \mathbb{T}^d$ is a |W|-sheeted cover.

The *Bloch variety*, $\mathrm{BV} \subset \mathbb{C} \times (\mathbb{C}^{\times})^d$, is

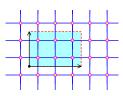
BV := $Var(\lambda I - det(H(z)))$, the complexification of BV_R.



Some history

1979: van Moerbeke and Mumford considered \mathbb{Z} -periodic *directed graphs*, showing an equivalence between the operators and curves with certain divisors. (The curves are the Bloch varieties).

1993: Gieseker, Knörrer, and Trubowitz studied the pure Schrödinger operator on the grid graph \mathbb{Z}^2 where \mathbb{Z}^2 acts via $a\mathbb{Z} \oplus b\mathbb{Z}$, with gcd(a,b)=1.



We show this with a = 3 and b = 2.

They determined many properties, including density of states and the irreducibility and smoothness of Bloch and Fermi varieties.

Their methods involved a compactification and modern results on algebraic curves.

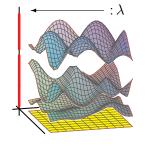
Presented in a Bourbaki Lecture by Peters in 1992.

Bättig provided a more appealing toric compactification, including compactifying the operator. (More later.)

Critical Points of λ

Assumptions and open problems from mathematical physics and quantum graphs provide a strong motivation to understand the critical points of λ .

Write $\Phi := \det(\lambda I - H(z))$, which is called the *dispersion polynomial*.

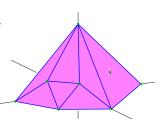


The critical points satisfy the *critical point equations*:

$$\Phi(z,\lambda) = z_1 \frac{\partial \Phi}{\partial z_1} = \cdots = z_d \frac{\partial \Phi}{\partial z_d} = 0.$$

These are formulated as toric derivatives so that all equations have the same Newton polytope.

Let \mathcal{N} be the Newton polytope of Φ .



Bounds on the number of critical points

Easy: $2^d |W| \le \# \text{ critical points} \le \text{n-vol}(\mathcal{N})$

 $2^d|W|$: comes from the symmetry $H(z)^T = H(z^{-1})$.

 $n\text{-vol}(\mathcal{N})$: Kushnirenko's Theorem

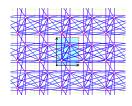
 $\overline{\mathrm{BV}}$: compactification of BV in the toric variety $X_{\mathcal{N}}$ of \mathcal{N} .

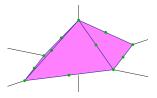
Faust-S.: # critical points < n-vol(\mathcal{N}) \Rightarrow

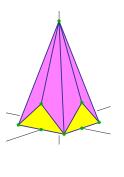
* Newton polytope ${\mathcal N}$ has vertical faces, or

* $\overline{\mathrm{BV}}$ is singular along a toric orbit of $X_{\mathcal{N}}.$

Faust-S.: Have equality if graph is dense:







Bernstein-generality and beyond

The critical point equations are not general given their support, yet they can have the expected (BKK) number of solutions.

Such a system is Bernstein-general. This work inspired:

Breiding, S., Woodcock

EDD for hypersurfaces is Bernstein-general.

With Faust and Robinson, we identify asymptotic contributions to the critical points.

 d_{vert} : Due to vertical faces of \mathcal{N} .

 d_{sing} : Singularities of BV along faces \mathcal{F} when

 Γ is "asymptotically disconnected",

and thus BV is asymptotically reducible.

Faust, et al.

$$2^d |W| \le \# \text{ critical points } \le \text{ n-vol}(\mathcal{N}) - d_{\mathrm{vert}} - d_{\mathrm{sing}}$$
 .

Both contributions arise from structural properties of graph Γ .

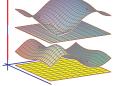
Toric Compactification of Bloch variety

Many recent results in spectral theory used the compactification \overline{BV} of the Bloch variety and its boundary $\overline{BV} \setminus BV$.

Filman, Liu, Matos: Proved irreducibility of BV for *d*-dimensional versions the grid graph (changing the period):

Faust, Lopez-Garcia: Used the boundary and geometric

combinatorics to prove irreducibility when changing the period of general graphs.

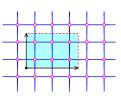


Faust, Liu: Showed that flat bands (eigenvalues of the operator) are not generic.

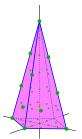
Faust, S.: Gave a criterion based on Newton polytopes to establish when λ is a perfect Morse function.

Bättig's compactification

1992: Bättig studied $H \colon \ell_2(\mathbb{Z}^2) \to \ell_2(\mathbb{Z}^2)$, with periodic action of $a\mathbb{Z} \oplus b\mathbb{Z}$. $\leadsto H(z) \colon \mathbb{C}[z^\pm]^{ab} \to \mathbb{C}[z^\pm]^{ab}$, with Bloch variety BV. The Newton polytope $\mathcal N$ is below.



To each face $\mathcal{F}=\operatorname{conv}\{ab\lambda,\pm bx,\pm ay\}$, he constructs an $ab\mathbb{Z}$ -periodic operator $H_{\mathcal{F}}\colon \ell_2(\mathbb{Z}) \to \ell_2(\mathbb{Z})$, and $H_{\mathcal{F}}(\zeta)\colon \mathbb{C}[\zeta^\pm]^{ab} \to \mathbb{C}[\zeta^\pm]^{ab}$ for $\zeta\in\mathbb{C}^\times$. Set $\xi:=\lambda x^{-a}$. Its Bloch variety, $\mathrm{BV}_{\mathcal{F}}:=\operatorname{Var}(\det(\xi I-H(\zeta)))$,



is the component of the boundary $\overline{BV} \setminus BV$ corresponding to \mathcal{F} .

How much of this can be done in general?

Toric compactification of periodic operators

Given a \mathbb{Z}^d -periodic graph, we have algebraic quasi-periodic functions $\mathcal{Q}:=\{\psi\in\mathbb{C}[z^\pm]^\mathcal{V}\mid \psi(\alpha+\nu)=z^\alpha\psi(\nu)\}.$

Choosing a fundamental domain W, we have $\mathcal{Q} \simeq \mathbb{C}[z^{\pm}]^{W}$.

Then the map $H(z) \colon \mathbb{C}[z^{\pm}]^W \to \mathbb{C}[z^{\pm}]^W$ of free modules is a map $H(z) \colon \mathcal{Q} \to \mathcal{Q}$.

Faust, Lopez-Garcia, Shipman, S.: Suppose that X is a toric variety compactification of $(\mathbb{C}^{\times})^d$ or of $\mathbb{C} \times (\mathbb{C}^{\times})^d$.

There is a natural sheaf of quasi-periodic functions $\mathcal{Q}_X\subset\mathcal{O}_X^\mathcal{V}$ with $\mathcal{Q}_X\simeq\mathcal{O}_X^W$.

This toric variety version of Fourier transform is a first step towards extending the operator H(z) to a toric compactification.

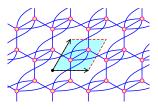
Full graphs

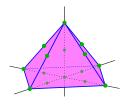
Let $\mathcal{A} := \mathcal{N}(\lambda I - H(z))$ be the Newton polytope of the entries.

A graph is *full* if $\mathcal{N} = |W|\mathcal{A}$.

Bättig's graph is not full. A dense graph is full.

Here is another, with $\mathcal N$ and $\mathcal A$.





Its characteristic matrix $\lambda I - H(x, y)$ is

$$\begin{pmatrix} \lambda-u & a+bx^{-1}+cy^{-1}+dx+ey \\ a+bx+cy+dx^{-1}+ey^{-1} & \lambda-v \end{pmatrix} \ .$$

Graceful restriction for full graphs

Faces \mathcal{F} of \mathcal{A} correspond to faces of \mathcal{N} , and to charts $X_{\mathcal{F}}$ of the toric variety $X_{\mathcal{N}}$.

The indicated face of A contains the monomial x^{-1} .

Mutiply $\lambda I - H(x, y)$ by $m^{-1} = x$ to obtain

$$\begin{pmatrix} \lambda x - ux & ax + b + cxy^{-1} + dx^2 + exy \\ ax + bx^2 + cxy + d + exy^{-1} & \lambda x - vx \end{pmatrix} \ .$$

All terms lie in the coordinate ring of $X_{\mathcal{F}}$ and give an operator on the sheaf $\mathcal{Q}_{\mathcal{F}}$ of quasi-periodic functions on $X_{\mathcal{F}}$, whose determinant defines $\overline{\mathrm{BV}} \cap X_{\mathcal{F}}$.

(This comes from a spectral problem on a directed graph.)

In this way, the original characteristic matrix $\lambda I - H(z)$ extends to an operator on the sheaf $\mathcal{Q}_{\mathcal{N}}$ of quasi-periodic functions on $X_{\mathcal{N}}$.

Extending Bättig?

A toric chart $X_{\mathcal{F}}$ is a neighborhood of the orbit $O_{\mathcal{F}}$ corresponding to \mathcal{F} , whose ideal is generated by monomials not in $x + \mathcal{F}$.

We had $x(\lambda I - H(x, y))$:

$$\begin{pmatrix} \lambda x - ux & ax + b + cxy^{-1} + dx^2 + exy \\ ax + bx^2 + cxy + d + exy^{-1} & \lambda x - vx \end{pmatrix} \ .$$

The highlighted terms lie on $x + \mathcal{F}$ and give the matrix

$$\lambda x I_2 - \begin{pmatrix} 0 & b + cxy^{-1} \\ d + exy^{-1} & 0 \end{pmatrix} = \lambda x I_2 - H_{\mathcal{F}}(xy^{-1}).$$

The matrix $H_{\mathcal{F}}(\zeta^{\pm})$ corresponds to a Schrödinger operator on a periodic directed graph, the initial graph along the face \mathcal{F} .

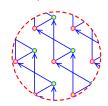
The initial graph

We have

$$\lambda x I_2 - \begin{pmatrix} 0 & b + cxy^{-1} \\ d + exy^{-1} & 0 \end{pmatrix} = \lambda x I_2 - H_{\mathcal{F}}(xy^{-1}).$$

The initial graph has the same vertices, with directed edges (and labeling) corresponding to entries in $H_{\mathcal{F}}$.

It is periodic with respect to a subgroup of \mathbb{Z}^d corresponding to \mathcal{F} .



Background

- N.W. Ashcroft and N.D. Mermin, Solid state physics, Cengage Learning, 2022.
- Berkolaiko and Kuchment, *Introduction to quantum graphs*, Mathematical Surveys and Monographs, vol. 186, AMS, 2013.
- Kittel and McEuen, *Introduction to solid state physics*, John Wiley & Sons, 2018.
- Kuchment, Floquet theory for partial differential equations,
 Operator Theory: Advances and Applications, vol. 60, Birkhäuser,
 1993.
- Kuchment, *An overview of periodic elliptic operators*, Bull. Amer. Math. Soc. (N.S.) **53** (2016), no. 3, 343–414.
- Stephen Shipman and Frank Sottile, *Algebraic aspects of periodic graph operators*, 2025, ArXiv.org/2502.03659.

Classic works

- Bättig, A toroidal compactification of the two-dimensional Bloch manifold, Comment. Math. Helv. 67 (1992), no. 1, 1–16.
- Gieseker, Knörrer, and Trubowitz, *The geometry of algebraic Fermi curves*, Perspectives Math., vol. 14, Academic Press, 1993.
- Kappeler, On Isospectral Potentials on Discrete Lattice I, Duke Math. Journal, **57** (1988), 135–150.
- Kappeler, On isospectral potentials on a discrete lattice II, Adv. in Appl. Math. **9** (1988), no. 4, 428–438.
- Van Moerbeke and Mumford, *The spectrum of difference operators* and algebraic curves, Acta Mathematica, 1979.
- Peters, Algebraic Fermi curves (after Gieseker, Trubowitz and Knörrer), Séminaire Bourbaki, 1990, 239–258.

Contemporary work

- Breiding, Sottile, and Woodcock, Euclidean distance degree and mixed volume, Found. Comput. Math. 22 (2022), 1743–1765.
- Do, Kuchment, Sottile, Generic properties of dispersion relation for discrete periodic operators, J. Math. Phys., 61, (2020).
- M. Faust and Wencai Liu, Rare flat bands for periodic graph operators, 2025, arXiv.org/2503.03632.
- M. Faust and J. Lopez-García, Irreducibility of the dispersion polynomial for periodic graphs, SIAGA 9 (2025).
- Faust, Sottile, *Critical points of discrete periodic operators*, Journal of Spectral Theory, 2024.
- Kravaris, On the density of eigenvalues on periodic graphs, SIAGA, 7, (2023).
- Liu, Fermi Isospectrality for Discrete Periodic Schrödinger Operators, arXiv/2106.03726.
- Fillman, Liu, and Matos, *Irreducibility of the Bloch variety for finite-range Schrödinger operators*, J. Funct. Anal. **283** (2022)