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27 Lines on a Cubic Surface

By the Cayley-Salmon Theorem (1849),
there are exactly 27 lines on a smooth
cubic surface V(F ) ⊂ P3.

Schläfli (1858) showed these have a
remarkable incidence configuration with
symmetry group the Coxeter group E6.

In his 1870 book (the first book on Galois theory),
Traité des substitutions et des équations algébriques, Jordan
related this to Galois theory.

Suppose that F has rational (Q) coefficients and let K be the field
of definition of the lines. Then K/Q is a Galois extension, and its
Galois group Gal(K/Q) acts on the 27 lines.

In fact, he showed that this action is faithful, Gal(K/Q) ⊂ E6.
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Modern View

Let us work over C and consider the incidence variety,

Γ := {(`,F ) ∈ G(1,P3)× P19
cubics : F |` ≡ 0} .

?

P19
cubics

The extension C(Γ)/C(P19) of function fields has degree 27, and if
K is the normal closure of C(Γ)/C(P19), then
Gal(K/C(P19)) = E6.
(Many proofs were given in the 20th century.)

Over the locus of smooth cubics (open and dense in P19), this is a
covering space of degree 27.

Its monodromy group is also E6.
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Enumerative Geometry
Enumerative Geometry is the art of determining the number d
of geometric figures x having specified positions with respect to
other, fixed figures b. — Schubert (1879)

Example: Lines lying on a cubic surface.

X := the space of the figures x we count, and B := configuration
space of the fixed figures. The incidence variety Γ ⊂ X × B
consists of pairs (x , b) where x ∈ X has the specified position with
respect to b ∈ B.

The projection Γ→ B has degree d , as its fibers are the solutions.

More generally, a branched cover is a dominant map π : Γ→ B of
irreducible varieties of the same dimension. Let d be its degree.

Branched covers appear in applications as families (incidence
varieties) of systems of polynomial equations.
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Galois = Monodromy

Let π : Γ→ B be a branched cover of degree d . Then the
extension C(Γ)/C(B) of function fields has degree d .

Let K be the Galois closure of the field extension C(Γ)/C(B).
The Galois group of π is Galπ := Gal(K/C(B)).

There is an open dense subset of B over which π is a covering
space of degree d . Let Monπ be the monodromy group.

Both Galπ and Monπ are transitive subgroups of the symmetric
group Sd , well-defined up to conjugation.

Theorem. [Hermite 1851 · · · Harris 1979 SGA1 V.8.2 1961]
Galπ = Monπ.

This has an interesting story.
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Harris’s Principle

In Galois groups in enumerative geometry (1979), Harris studied
Galois groups of many enumerative problems. Like the 27 lines,
some had small (not equal to symmetric group) Galois groups, and
he showed how this was explained by structure of their solutions.

He showed that others—such as the problem of 3264 conics—were
fully symmetric and had no apparent structure.

Harris’s Principle: An (enumerative) Galois group should be as
large as possible, given the structure of the solutions.

A Galois/monodromy group that is not full-symmetric is enriched,
as the solutions (should be) enriched with extra structure.

Examples of this are in the beautiful paper of Hashimoto and
Kadets: 38406501359372282063949 & all that: Monodromy of
Fano Problems.
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Some Enriched Problems

The four bar synthesis problem of Alt is to
find the four bar mechanisms whose coupler
curve passes through 9 points in the plane.
The Roberts-Chebyschev Theorem reveals a
hidden symmetry: each coupler curve is gen-
erated by three cognate linkages.

Standard formulations have left↔right label-swapping, which
implies that the Galois group is enriched, lying in
(Z/3Z× Z/2Z)1442 o S1442.

We still do not have a proof that 6 · 1442 = 8652 is the correct
number, or if the Galois group is the full wreath product (the
second, if true, is easier to establish).
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Five-point Reconstruction Problem:

Given images of five points in two views
of a camera, find the relative pose of the
cameras (and the world points).
This problem possesses a hidden symmetry,
called a twisted pair: Rotating the second
camera 180◦ about the line connecting the
two camera centres (and a reflection of the
world points) gives a second solution.

This implies that Galois group is a subgroup of (Z/2Z)10 o S10,
which is exploited in solvers.

There are many other examples from applications. To paraphrase
Joos Heintz: “You may not care about Galois, but Galois cares
about you(r problems)”.
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Sparse Polynomial Systems

Let A ⊂ Zn be exponents for monomials in x1, . . . , xn. Then

f =
∑
a∈A

cax
a (ca ∈ C)

is a sparse polynomial with support A. These form the vector
space CA.

Given a list A• = (A1, . . . ,An) of supports, consider
CA• := space of polynomials (f1, . . . , fn) with Ai = support of fi .

Bernstein-Kuchnirenko Theorem. The number of solutions in
(C×)n to a system f1 = · · · = fn = 0 of polynomials with support
A• is MV(A•), the mixed volume of the convex hulls of the Ai .

Let Γ ⊂ (C×)n × CA• be the corresponding incidence variety.
Then Γ→ CA• is a branched cover of degree MV(A•).

Let GalA• be the corresponding Galois group of systems with
support A•.
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Esterov’s Theorem
There are two obvious ways for GalA• 6= SMV(A•):

Lacunary: f (x) has the form g(x3).

Triangular: The system is f (x , y) = g(y) = 0.

For both, the system is solved in stages, which implies that GalA•

lies in a wreath product, so that it is imprimitive and is not the full
symmetric group.

Esterov’s Theorem. GalA• = SMV(A•) unless A• is lacunary or
triangular.

 With Lionel Lang, Alex has been working to understand GalA• .
It is still not clear what GalA• is in general.

You may exploit the imprimitivity given by Esterov’s Theorem for
solving, even when GalA• is unknown.
(Joint work with Brysiewicz, Rodriguez, and Yahl.)
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The Problem of Four Lines
What are the lines mi meeting four general lines `1, `2, `3, and `4?

`1, `2, `3 lie on a unique hyperboloid Q of one sheet, and the lines
meeting them form one ruling of Q. The solutions mi are the lines
in that ruling passing through the points of intersection `4 ∩ Q.

Rotating the line `4 180◦

around the point p inter-
changes the two solution
lines m1, m2.

This shows that

The Galois group of the problem of four lines is the symmetric
group S2.
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Schubert Problems

The Schubert calculus is an algorithmic method of Schubert to
solve a wide class of problems in enumerative geometry.

Schubert problems are
problems from enumera-
tive geometry involving
linear subspaces of a vec-
tor space incident upon
other linear spaces, such
as the problem of four
lines. `1

`2

`3

`4

m1

m2

Q

As there are many millions of computable Schubert problems, many
with their own unique geometry, they provide a rich and convenient
laboratory for studying Galois groups of geometric problems.
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Schubert Galois Groups
c. 2003 Vakil’s Method can show that a Schubert Galois group is
at least alternating. All problems on G (2, n) for n ≤ 16 and on
G (3, n) for n ≤ 9 are at least alternating.

Derksen and Vakil constructed enriched problems, from G (4, 8) up.
These have Galois group Sn ⊂ S(nk)

(acting on k-subsets of [n]).

2009: With Leykin: Using numerical methods, many simple
Schubert problems are full symmetric, including one with 17,589
solutions.

2012: With Brooks and Mart́ın del Campo: All Schubert problems
on G (2, n) are at least alternating.

2015: With White: All Schubert problems on G (3, n) are
2-transitive.

2023: With Mart́ın del Campo and Williams: Classified all
Schubert problems on G (4, 8) and G (4, 9). Most (99.5%) are at
least alternating.
Those that are not fall into three geometrically distinct families.

Frank Sottile, Texas A&M University Galois Groups in Enumerative Geometry 17



More recent
2022: With Williams and Li Ying: Constructed one of the families:
Schubert problems A and B of degrees a and b may be composed
to get a new problem with Galois group a subset of the wreath
product (GalA)b o GalB .

2025: With C.J. Bott: Composed Schubert problems on different
Grassmannians to get a new problem on a flag manifold with full
wreath product. (Analog of triangular.)

2025: Sophia Liao and Leonid Rybnikov: Used combinatorics to
show that most simple Schubert problems on the Grassmannian
are at least alternating.

2025: With C.J. Bott: Found many
enriched problems on
Lagrangian Grassmannians.
Some Galois groups:
D2m+3 (Fano problem) and (Z/2Z)n.
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Thank You!
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Derksen’s example
Q: What 4-planes H in C8 that meet each of general 4-planes
K1,K2,K3,K4 in a 2-dimensional subspace?

Auxiliary problem: There are four (h1, h2, h3, h4) 2-planes in C8

meeting each of K1,K2,K3,K4. Schematically,
4

= 4.

Fact: All solutions H to our problem have the form Hi ,j = 〈hi , hj〉

for 1 ≤ i < j ≤ 4. Schematically,

4

= 6.

It follows that the Galois group of

4

= 6 is equal to the Galois

group of
4

= 4, which is known to be the symmetric group
S4.

This problem

4

= 6 also has exceptional reality: If
K1,K2,K3,K4 are real, then either two or six of the Hi ,j are real,
and never four or zero.
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Known Schubert Galois Groups

The three families:
(1) For 1 ≤ k < n, the problem of 2k-planes in C2n meeting 4 Cns
in a Ck has Galois group Sn ⊂ S(nk)

. Call this G
(n
k

)
.

(2) For Schubert problems λ on G (k, n) and µ on G (l ,m), there is
a new Schubert problem λ ◦ µ on G (k + l , n + m).
The number, d(λ ◦ µ) of solutions is the product d(λ) · d(µ) and

Galλ◦µ ⊆ (Galµ)d(λ) o Galλ .
(3) There is a third, less-understood class.

All known Schubert Galois groups are iterated wreath products of
the G

(n
k

)
.

Conjecture. These are the only Schubert Galois groups.

Hope. Enriched Schubert problems can be classified.

(2) is work with Williams and Ying, and involves interesting
combinatorics.
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Transitive Permutation Groups

A permutation group H ⊂ Sd has an action on [d ].
It is transitive if it has only one orbit on [d ].
It is t-transitive if it has only one orbit on [d ]t r ∆
(the complement of the diagonal).

There are few highly (t > 2) transitive permutation groups.

H is primitive is it preserves no nontrivial partition of [d ].

Otherwise, H is imprimitive.

When H is imprimitive, d = a · b (1 < a, b), so that [d ] = [a]× [b].

Furthermore, the action of H preserves the fibration [a]× [b]→ [a].

Then H lies in the wreath product (Sb)a o Sa.
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