The Critical Point Degree of a Periodic Graph

Mathematics of Topological Insulators Joint Mathematics Meetings, Seattle

10 January 2025

Frank Sottile

Texas A&M University sottile@tamu.edu

With Matthew Faust and Jonah Robinson

Supported by NSF grant DMS-2201005

Combinatorial Algebraic Geometry meets Mathematical Physics

Mathematics of Topological Insulators Joint Mathematics Meetings, Seattle

10 January 2025

Frank Sottile

Texas A&M University sottile@tamu.edu

With Matthew Faust and Jonah Robinson

Supported by NSF grant DMS-2201005

Operators on Periodic Graphs

A locally finite \mathbb{Z}^d -periodic graph $\mathsf \Gamma$ is a discrete model of a crystal. Vertices $V \leftrightarrow$ atoms. edges $\mathcal{E} \leftrightarrow$ interactions, with $\mathsf{action} \; \mathcal{V} \times \mathbb{Z}^{\mathcal{d}} \to \mathcal{V} \quad (\mathsf{v}, \alpha) \mapsto \mathsf{v} + \alpha.$

Consider a Schrödinger operator (on $\ell_2(\mathcal{V})$)

$$
H = V + \Delta,
$$

where $V: V \to \mathbb{R}$ is a periodic potential and Δ is a weighted graph Laplacian (given by periodic weights $e: \mathcal{E} \to \mathbb{R}$).

As *H* is self-adjoint, its spectrum $\sigma(H) \subset \mathbb{R}$ consists of finitely many intervals, representing the familiar structure of electron energy bands and band gaps.

From Floquet Transform to Geometry

More structure is revealed by Floquet (Fourier) transform.

 T : unit complex numbers.

 \mathbb{T}^d : unitary characters of \mathbb{Z}^d :

$$
z\in\mathbb{T}^d,\,\alpha\in\mathbb{Z}^d\longmapsto z^\alpha:=z_1^{\alpha_1}\cdots z_d^{\alpha_d}.
$$

Fix $W \subset V$ a fundamental domain for \mathbb{Z}^d -action.

After Floquet transform, *H* is multiplication by the $W \times W$ matrix $H(z)$ whose (u, v) -entry is $\quad -\sum_{\alpha} e_{(u, v+\alpha)} z^{\alpha}$, and

$$
\sigma(H) = \{ \lambda \mid \exists z \in \mathbb{T}^d \text{ with } \lambda \text{ an eigenvalue of } H(z) \}.
$$

A global perspective on band functions is given by the *Bloch variety* $\mathsf{BV}\subset \mathbb{T}^d\times\mathbb{R}$, which is defined by $0 = \Phi := \det(\lambda I_W - H(z)).$ The coordinate λ is a function on the Bloch variety, and $\sigma(H) = \lambda(BV)$. $\sigma(H)$

The Floquet matrix is $H(x, y) = \begin{pmatrix} V(u) & -a - bx^{-1} - cy^{-1} \\ 0 & bw & V(u) \end{pmatrix}$ $-a - bx - cy$ $V(v)$ \setminus and $\Phi = \lambda^2 - \lambda(V(u) + V(v)) + V(u)V(v)$ $-(a^2 + b^2 + c^2 + ab(x + x^{-1}) + ac(y + y^{-1}) + bc(xy^{-1} + yx^{-1})).$

Here are several of its Bloch varieties for different *a*, *b*, *c*, *V*.

Frank Sottile, Texas A&M University Combinatorial Algebraic Geometry meets Mathematical Physics 4

Spectral Edges Nondegeneracy Conjecture

Kuchment made the *Spectral edges conjecture:* For general operators on Γ, critical points of λ on BV above endpoints of spectral bands are nondegenerate extrema.

While many physical properties rely upon this assumption (made by all physicists), it is largely unknown, even for operators on discrete graphs.

 \rightarrow A first step: study critical points of λ on the complexified Bloch variety, $\mathsf{BV}_\mathbb{C}\subset (\mathbb{C}^\times)^d\times\mathbb{C}.$

Lemma. *A point* $(z, \lambda) \in (\mathbb{C}^{\times})^d \times \mathbb{C}$ *is a critical point of* λ *on* $BV_{\mathbb{C}}$ *if and only if it is a solution to the system of equations*

$$
(\mathit{CPE}) \qquad \Phi(z,\lambda) = z_i \frac{\partial \Phi}{\partial z_i}(z,\lambda) = 0 \qquad i=1,\ldots,d\,.
$$

These are highly structured polynomial equations.

Frank Sottile, Texas A&M University Combinatorial Algebraic Geometry meets Mathematical Physics 5

Critical Points of Discrete Periodic Operators

Exponents (α,i) of monomials $z^\alpha\lambda^i$ in Φ are points in $\mathbb{Z}^d \times \mathbb{N}$. They form supp (Φ) , the support of Φ, whose convex hull is the *Newton polytope*, N of Φ.

For each *i*, we have supp $\left(\frac{z_i\partial\Phi}{\partial z_i}\right)$ $\left(\frac{\partial \Phi}{\partial z_i}\right) \subset \mathcal{N}.$

Kushnirenko's Theorem implies

(*) # critical points \leq n-vol(\mathcal{N}), the normalized volume of N .

To understand the inequality in $(*)$, we consider the projective toric variety X of N .

This is a compactification of $(\mathbb{C}^{\times})^d \times \mathbb{C}$, and the equations (CPE) become a system of linear equations on *X*.

Tomorrow at 2:30 in Room 605 Jordy Lopez will present other physically meaningful aspects of this compactification.

Asymptotic Critical Points

The polytope N encodess the geometry of X . Each face F of N corresponds to a toric subvariety X_F of X, and we have

$$
\partial X := X \setminus ((\mathbb{C}^{\times})^d \times \mathbb{C}) = \bigcup_{F} X_F,
$$

the union over proper, non-base faces *F*.

Recall that the equations (*CPE*) are a system of linear equations on X, expressed geometrically as $\Lambda_{\Phi} \cap X$.

We have
$$
\#(\Lambda_{\Phi} \cap X) = \text{n-vol}(\mathcal{N}).
$$

Consequently, we have equality in $(*)$ if and only if $\Lambda_{\Phi} \cap \partial X = \emptyset$.

Faust-S. (1) *if F is vertical then* $\Lambda_{\Phi} \cap X_F \neq \emptyset$ *.* (2) *Otherwise,* $\Lambda_{\Phi} \cap X_F \neq \emptyset$ *implies that BV is singular along* X_F .

Λ^Φ ∩ ∂*X* consists of *asymptotic critical points*.

Critical Point Degree

The *critical point degree* of Γ is the number of critical points, counted with multiplicity, on a generic Bloch variety for Γ.

With Matt Faust and Jonah Robinson,

we identify contributions from the asymptotic critical points.

 d_{vert} : Due to vertical faces of N.

*d*sing : Singularities of BV along faces *F* when Γ is "asymptotically disconnected", and thus *BV* is asymptotically reducible. \mathcal{N}

Theorem: *Let* Γ *be a* Z ² *or* Z 3 *-periodic graph. Then the critical point degree of* Γ *is at most n-vol*(\mathcal{N}) – $d_{\text{vert}} - d_{\text{sinc}}$.

Both contributions arise from structural properties of Γ*.*

In well over 10^6 graphs, all generic asymptotic critical points arose from these structures.

Vertical Faces

For each vertical facet G, n-vol(G) = 6 and ${\sf n\text{-}vol}(\bar F)={\sf n\text{-}vol}(F')=1,$ so that $d_{\bar G}=6-2=4.$

Then
$$
d_{\text{vert}} = 4 \cdot 1 + 4 \cdot (6 - 2) = 20.
$$

(edges) (facets)

Asymptotic Reducibility

The linear function given by $\eta = (-1, 1, -1)$ is minimized on A. Characteristic matrix with η -minimal terms underlined

$$
\left(\begin{array}{ccc} \frac{\lambda-u}{d} & a+bx^{-1}+cy^{-1} & d \\ a+\frac{bx}{d}+cy & \frac{\lambda-v}{e} & \frac{\lambda-w+fy+\underline{fy}^{-1}}{\lambda-w+fy+\underline{fy}^{-1}} \end{array}\right).
$$

Determinant of the η -initial matrix defines $\overline{BV} \cap X_A$,

$$
\det\left(\begin{array}{ccc} \lambda & cy^{-1} & 0 \\ bx & \lambda & 0 \\ 0 & 0 & \lambda + fy^{-1} \end{array}\right) = (\lambda^2 - b cxy^{-1})(\lambda + fy^{-1}),
$$

two curves with one (singular) point of intersection.

Frank Sottile, Texas A&M University Combinatorial Algebraic Geometry meets Mathematical Physics 10

Asymptotically Disconnected Graph

The η -minimal terms in the matrix

$$
\left(\begin{array}{ccc}\n\frac{\lambda - u}{a + bx + cy} & a + bx^{-1} + cy^{-1} & d \\
a + \frac{bx}{d} + cy & \frac{\lambda - v}{e} & \frac{e}{\lambda - w + fy + \frac{fy^{-1}}{y}}\n\end{array}\right)
$$

correspond to directed edges of the η -initial graph. This has disconnected quotient by \mathbb{Z}^2 .

Disconnected initial graph \implies singularity along X_A .