Algebraic Aspects of Periodic Operators

Applications of Commutative Algebra Fields Institute, 26–30 May 2025

Frank Sottile

Texas A&M University sottile@tamu.edu

 $W/% \left(M^{2}\right) =0$ Matthew Faust and Stephen Shipman

Supported by NSF grant DMS-2201005

Tight Binding Model

A discrete model of a crystal is provided by a periodic graph Γ with vertices \mathcal{V} , edges \mathcal{E} , and a free cocompact action of \mathbb{Z}^d .

Two \mathbb{Z}^2 -periodic graphs with fundamental domains shaded:

Parameters of the *tight binding model* are \mathbb{Z}^d -invariant functions: a potential $V: \mathcal{V} \to \mathbb{R}$ and edge (interaction) weights $e: \mathcal{E} \to \mathbb{R}$.

The Schrödinger operator $H = H_{e,V}$ acts on $\ell_2(\mathcal{V})$: For $\psi \in \ell_2(\mathcal{V})$, $H\psi$ is defined by its value at $v \in \mathcal{V}$,

$$(H\psi)(\mathbf{v}) = V(\mathbf{v})\psi(\mathbf{v}) - \sum_{\mathbf{v}\sim u} e_{(\mathbf{v},u)}\psi(u).$$

H is self-adjoint, and its spectrum $\sigma(H) \subset \mathbb{R}$ corresponds to possible energy levels of electrons in the crystal.

Frank Sottile, Texas A&M University

Quasi-periodic functions

Write \mathbb{T} for the unit complex numbers. Each $z \in \mathbb{T}^d$ is a unitary character for \mathbb{Z}^d : $(z, \alpha) \mapsto z^{\alpha}$.

A function $\psi_z \colon \mathcal{V} \to \mathbb{C}$ is *z*-quasi-periodic if for $v \in \mathcal{V}$ and $\alpha \in \mathbb{Z}^d$

$$\psi_z(\mathbf{v}+\alpha) = z^{\alpha}\psi_z(\mathbf{v}).$$

A quasi-periodic function depends only on its restriction to a fundamental domain $W \subset \mathcal{V}$ for the \mathbb{Z}^d -action.

The Schrödinger operator acts on z-quasi-periodic functions ψ_z

$$(H\psi_z)(v) = V(v)\psi_z(v) - \sum_{v \sim u+\alpha} e_{(v,u+\alpha)} z^{\alpha} \psi_z(u) \qquad v, u \in W.$$

Floquet Theorem

$$\sigma(H) = \{\lambda \in \mathbb{R} \mid \exists z \in \mathbb{T}^d \text{ and } \psi_z \text{ s.t. } H\psi_z = \lambda \psi_z\}.$$

(Fourier transform on $\ell^2(\mathcal{V})$ also arrives at this formulation.)

Bloch Variety

Floquet Theorem

$$\sigma(H) = \{\lambda \in \mathbb{R} \mid \exists z \in \mathbb{T}^d \text{ and } \psi_z \text{ s.t. } H\psi_z = \lambda \psi_z \}.$$

Letting z vary, $\psi \colon \mathbb{T}^d \times \mathcal{V} \to \mathbb{C}$ is *quasi-periodic* if $\psi(\mathbf{v} + \alpha) = z^{\alpha}\psi(\mathbf{v})$. Then the Schrödinger operator

$$(H\psi)(v) = V(v)\psi(v) - \sum_{v\sim u+\alpha} e_{(v,u+\alpha)} z^{\alpha}\psi(u)$$

acts as a $W \times W$ matrix H(z) of Laurent polynomials.

The dispersion polynomial $\Phi(z, \lambda) = \det(H(z) - \lambda I_W)$ defines an algebraic hypersurface in $\mathbb{T}^d \times \mathbb{R}$, called the *(real) Bloch variety*. By Floquet Theorem, $\sigma(H)$ is the projection of the Bloch variety to \mathbb{R} .

Frank Sottile, Texas A&M University

Example: Hexagonal Lattice

The hexagonal lattice underlies the structure of graphene. We show a labeling in a neighboorhood of a fundamental domain W and a Bloch variety with a = b = c = 1 and $v \neq u$.

We have

$$H(z) = \begin{pmatrix} u & -a - bz_1^{-1} - cz_2^{-1} \\ -a - bz_1 - cz_2 & v \end{pmatrix}$$

Note that $H(z)^T = H(z^{-1})$.

The dispersion polynomial is $\Phi(z, \lambda) = \det(H - \lambda I)$, which is $(u - \lambda)(v - \lambda) - (a + bz_1^{-1} + cz_2^{-1})(a + bz_1 + cz_2).$

Some Reality

As
$$e_{(v,u+\alpha)} = e_{(v-\alpha,u)} = e_{(u,v-\alpha)}$$
 for all $u, v \in \mathcal{V}, \ \alpha \in \mathbb{Z}^d,$
 $H(z)^T = H(z^{-1}).$ (*)

Consequently, when $z \in \mathbb{T}^d$, H(z) is Hermitian. Thus H(z) has |W| real eigenvalues, and the Bloch variety is a |W|sheeted cover of \mathbb{T}^d .

It is (of course) natural to complexify, allowing $(z, \lambda) \in (\mathbb{C}^{\times})^d \times \mathbb{C}$.

By (*) Var($\Phi(z, \lambda)$) is invariant under the nonstandard complex structure $(z, \lambda) \mapsto (\overline{z}^{-1}, \overline{\lambda})$, so the real Bloch variety is the set of real points of the complex Bloch variety.

→ This alternate reality is an interesting feature of this subject.

Some Objects, Algebraic

For the hexagonal lattice, if the potentials are equal V(u) = V(v) and the edge weights form a triangle (!) then the real Bloch variety has two ordinary double points, called *Dirac points*.

The matrix $H(z) - \lambda I_W$ is a module endomorphism $\mathbb{C}[z^{\pm}, \lambda]^W$. Its kernel sheaf is called the *Bloch bundle* (by mathematical physicists). It is supported on the Bloch variety.

The level set of the Bloch variety at fixed λ is the *Fermi variety* F_{λ} .

Many basic objects in this area are algebraic in nature, as are a number of properties that have been studied.

Some Questions From Physics

- Density of states: Spatial density of eigenfunctions at energy λ . This has been studied using free resolutions and by integrating a differential 1-form.
- Natural physical questions ask for the irreducibility of Bloch and Fermi varieties.
- *Spectral edges conjecture*: For general operators on Γ, points on the Bloch variety above endpoints of spectral bands are nondegenerate extrema of *λ*.

Many physical properties rely upon this assumption, but it is largely unknown, even for discrete periodic operators.

- There is interest in the existence and persistence of Dirac points.
- There is interest in the existence of flat bands.
- There are inverse problems of identifiability (isospectrality).

Everything Old is New Again

Gieseker, Knörrer, and Trubowitz (1993) studied the Schrödinger operator with $e_{(u,v)} = 1$ on the grid graph \mathbb{Z}^2 where \mathbb{Z}^2 acts via $a\mathbb{Z} \oplus b\mathbb{Z}$, with gcd(a, b) = 1. We show this with a = 3 and b = 2.

They studied/determined:

- Density of states (gave a formula).
- Irreducibility of Bloch and Fermi varieties.
- Smoothness of Bloch and Fermi varieties.
- \bullet Used a toric compactification BV of the Bloch variety and the Torelli Theorem.

This was presented in a Bourbaki Lecture by Peters in 1992.

- Later work compactified the operator on the toric variety.

Frank Sottile, Texas A&M University

Example: Integrated Density of States

Write H_n for the restriction of H to $\Gamma/n\mathbb{Z}^d$, a finite graph with $|W|n^d$ vertices.

 H_n has $|W|n^d$ eigenvalues/vectors.

Let ρ_n be the discrete measure of point masses at the eigenvectors, normalised to have mass |W|.

$$ho := \lim_{n \to \infty}
ho_n$$
 has support $\sigma(H) \subset \mathbb{R}$.

Its density $d\rho/d\lambda$ with respect to Lebesgue measure is the *integrated density of states*.

[GKT] : there is a differential form ω_{λ} on the Fermi variety F_{λ} (a section of the sheaf of relative differentials $\overline{BV} \to \mathbb{P}^1$) such that

$$\frac{d\rho}{d\lambda} = \int_{F_{\lambda}(\mathbb{R})} \omega_{\lambda} \, .$$

Spectral Edges (Important Physics Assumption)

Each spectral edge is the image of a critical point of λ on the Bloch variety. The spectral edges conjecture posits that generically, these critical points are nondegenerate.

First step: study all critical points.

Equations for the critical points are:

$$\Phi(z,\lambda) = z_1 \frac{\partial \Phi}{\partial z_1} = \cdots = z_d \frac{\partial \Phi}{\partial z_d} = 0.$$
 (CPE)

All polynomials have support a subset of the Newton polytope $\mathcal{N}(\Phi)$ of the dispersion polynomial $\Phi(z, \lambda)$.

Kushnirenko # Critical Points $\leq vol(\mathcal{N}(\Phi))$.

Toric Compactification of Bloch Variety

 $\mathcal{N}(\Phi)$: Newton polytope of $\Phi(z, \lambda)$. Its projective toric variety $X_{\mathcal{N}(\Phi)}$ compactifies the ambient space $(\mathbb{C}^{\times})^d \times \mathbb{C}$ of Bloch variety.

The Critical Point Equations (CPE) are a linear section of $X_{\mathcal{N}(\Phi)}$.

Fact: # Critical Points $< vol(\mathcal{N}(\Phi))$ if and only if there are solutions to (CPE) on boundary

$$\partial X_{\mathcal{N}(D)} := X_{\mathcal{N}(D)} \smallsetminus ((\mathbb{C}^{\times})^d \times \mathbb{C}),$$

a union of orbits \mathcal{O}_F corresponding to non-base faces F of $\mathcal{N}(\Phi)$.

Contribution of Faces of $X_{\mathcal{N}(D)}$

Using homogenerity of facial forms:

- F vertical \implies CPE have solutions on $\overline{\mathcal{O}_F}$.
- If F is not vertical, then CPE have solutions on $\mathcal{O}_F \iff \mathsf{BV} \cap \mathcal{O}_F$ is singular.

With Faust and Robinson, we give a contribution $N_{\rm struct}$ from vertical faces and from certain oblique facets, determined by the structure of the graph Γ .

Theorem (F.-R.-S.). # critical points \leq vol $(\mathcal{N}(D)) - N_{\text{struct}}$

(\rightsquigarrow interesting theme in polynomial optimisation.)

A Bestiary of Bloch Varieties

html

Frank Sottile, Texas A&M University

Bibliography

- Shipman and Sottile, *Algebraic Aspects of Periodic Graph Operators*, ArXiv.org/2502.03659, February 2025.
- Sottile, *Toric Geometry and Discrete Periodic Operators*, Oberwolfach Reports, 2022.
- Do, Kuchment, Sottile, Generic properties of dispersion relation for discrete periodic operators, J. Math. Phys., 61, (2020), arXiV/1910.06472.
- Faust, Sottile, *Critical points of discrete periodic operators*, arXiv/2206.13469. Journal of Spectral Theory, **14** (2024) pp.1–35.
- Kravaris, On the density of eigenvalues on periodic graphs, SIAM J. Appl. Alg. and Geom., vol. 7, (2023), arXiv/2103:12734.
- Massatt, Shipman, Vekhter, Wilson, *Defect bound states in the continuum of bilayer electronic materials without symmetry protection*, Physical Review B, 2025.

Geography when for $u = v \quad a, b, c > 0$

The location and type of critical points in terms of $\Box = (a+b+c)(a-b+c)(a+b-c)(a-b-c).$

Robinson's Graph

The graph at right has an extremely fascinating Bloch variety. It has singularities, reality issues, critical points at infinity, etc. It is a deep challenge to study this, in part because of the lack of tools for treating nonstandard real structures.

We display two views of its Bloch variety; it has two singular points and the apparent curve of self-intersection is not what it appears.

