Phase limit set of linear spaces and discriminants

AMS Special Session on Non-Archimedean, Algebraic, Tropical Geometry and applications

Fall Central Section Meeting, San Antonio, 14 September 2024

Frank Sottile

Texas A&M University sottile@tamu.edu

Work with Mounir Nisse

Supported by NSF grant DMS-2201005

Amoebas and coamoebas

The amoeba $\mathcal{A}(X)$ of a very affine variety $X \subset (\mathbb{C}^{\times})^n$ is the set of lengths in X and its coamoeba $co\mathcal{A}(X)$ is its set of arguments:

 $z = e^r \theta \mapsto (r, \theta)$ identifies \mathbb{C}^{\times} with $\mathbb{R} \times \mathbb{T}$, where $\mathbb{T} = S^1$ is the unit complex numbers. This induces maps $(\text{Log}, \text{Arg}) \colon (\mathbb{C}^{\times})^n \xrightarrow{\sim} \mathbb{R}^n \times \mathbb{T}^n$. Then $\mathcal{A}(X)$ is the projection of X to \mathbb{R}^n and $co\mathcal{A}(X)$ is its projection to \mathbb{T}^n .

Frank Sottile, Texas A&M University

Phase limit set of linear spaces and discriminants

Phase limit set

Tropical variety $\mathcal{T}(X)$ is its logarithmic limit set; the cone over limiting directions of $\mathcal{A}(X)$. It encodes the nonempty initial schemes of X, $\mathcal{T}(X) = \{w \in \mathbb{R}^n \mid in_w X \neq \emptyset\}$. It has a (non-unique) fan structure with initial schemes constant on (rel. interiors of) cones.

The phase limit set $\mathcal{P}^{\infty}(X)$ is the collection of accumulation points of arguments $\{\operatorname{Arg}(x_i) \mid i \in \mathbb{N}\}\$ of unbounded sequences $\{x_i \mid i \in \mathbb{N}\} \subset X$.

We have $co\mathcal{A}(X) \cup \mathcal{P}^{\infty}(X) = \overline{co\mathcal{A}(X)}$.

<u>Theorem</u>. (Nisse-S.) For any fan structure on $\mathcal{T}(X)$,

$$\mathcal{P}^{\infty}(X) = \bigcup_{\rho \in \operatorname{ray}(\mathcal{T}(X))} \operatorname{co}\mathcal{A}(\operatorname{in}_{\rho} X) .$$

Frank Sottile, Texas A&M University

 $\mathcal{A}(\ell)$

 $T(\ell)$

The line

Recall the line $\ell = \mathcal{V}(x + y + 1)$, its tropical variety, and coamoeba:

The dashed lines are the phase limit set of ℓ . They are translates of the three subtori in the directions of rays of the tropical variety. In fact, they are coamoebae of the initial schemes of ℓ .

The plane $\Pi := \mathcal{V}(x + y + z + 1)$

The tropical variety $\mathcal{T}(\Pi)$ of the plane has four rays:

Each ray ρ has a corresponding subtorus $\mathbb{C}_{\rho}^{\times}$ which acts freely on the initial scheme $\operatorname{in}_{\rho} \Pi$, with the quotient isomorphic to a line $\mathcal{V}(x + y + 1)$.

A consequence is that $\mathcal{P}^\infty(\Pi)$ has four components, each a prism over the coamoeba of a line.

 $co\mathcal{A}(in_{(0,0,1)}(\Pi))$

Their union is the closure of the coamoeba $co\mathcal{A}(\Pi)$ of the plane, covering a typical point twice. Note the striking polyhedral structure.

Hyperplane complements

A set $B \subset \mathbb{C}^d$ of linear forms gives a hyperplane arrangement $\mathcal{H} = \mathcal{H}_B := \bigcup \{\mathcal{V}(b) \mid b \in B\} \subset \mathbb{C}^d$,

and a map $\lambda_B \colon \mathbb{C}^d \to \mathbb{C}^B$ where $\mathbb{C}^d \ni v \mapsto (b(v) \mid b \in B)$.

Intersections of hyperplanes are *flats* of \mathcal{H}_B , inducing a matroid structure on the set *B*.

Example. The column vectors Bof $\begin{pmatrix} 1 & 0 & 0 & 1 & -2 & 0 \\ 0 & 1 & 0 & 2 & -1 & -2 \\ 0 & 0 & 1 & 0 & -2 & 1 \end{pmatrix}$ defines a line arrangement in \mathbb{P}^2 :

The hyperplane complement $\mathcal{H}_B^c := \lambda_B(\mathbb{C}^d) \cap (\mathbb{C}^{\times})^B \simeq \mathbb{C}^d \setminus \mathcal{H}_B$ is a very affine variety. We study its coamoeba and phase limit set.

Structure of $\mathcal{P}^{\infty}(\mathcal{H}^{c})$

Using that $\mathcal{P}^{\infty}(\mathcal{H}^{c}) = \text{accumulation points of arguments,}$ <u>Theorem</u>. $\mathcal{P}^{\infty}(\mathcal{H}^{c}) = \bigcup_{L} \overline{co\mathcal{A}(\mathcal{H}/L)^{c}} \times co\mathcal{A}(\mathcal{H}|_{L})^{c}$, the union over all flats L of \mathcal{H} .

We refine this. Given a flag $\mathcal{L} \colon L_1 \subset \cdots \subset L_k \subset \mathbb{C}^d$ of flats, set

$$(\mathcal{H}(\mathcal{L})^{\mathsf{c}} := (\mathcal{H}|_{L_1})^{\mathsf{c}} \times \cdots \times ((\mathcal{H}/L_{i-1})|_{L_i})^{\mathsf{c}} \times \cdots \times (\mathcal{H}/L_k)^{\mathsf{c}}.$$

$$\underline{\text{Corollary}}. \quad \overline{co\mathcal{A}(\mathcal{H}^c)} = \bigcup_{\mathcal{L} \text{ a flag of flats}} co\mathcal{A}(\mathcal{H}(\mathcal{L})^c).$$

Flags of flats \longleftrightarrow cones in $\mathcal{T}(\mathcal{H}^c)$, with $\operatorname{in}_{\mathcal{L}} \mathcal{H}^c = \mathcal{H}(\mathcal{L})^c$, recovering the tropical decomposition of the phase limit set. We also relate this to the Bergman fan, which is a different fan structure on $\mathcal{T}(\mathcal{H}^c)$.

(Reduced) Discriminants

When $B \subset \mathbb{Z}^d$, Kapranov showed that the rational map

$$\pi_B : \mathbb{C}^d \ni z \longmapsto \prod_{b \in B} b(z)^b \in \mathbb{P}^{d-1}$$

has image the (reduced) discriminant $D_B \subset \mathbb{P}^{d-1}$.

This monomial map $(x_b | b \in B) \mapsto \prod x_b^b$ restricted to the hyperplane complement $\mathcal{H}_B^c \subset (\mathbb{C}^{\times})^B$ has been used to study discriminants and their tropicalizations.

Fact.
$$co\mathcal{A}(D_B) = \pi_B(co\mathcal{A}(\mathcal{H}_B^c), \text{ and } \mathcal{P}^{\infty}(D_B) = \mathcal{P}^{\infty}(co\mathcal{A}(\mathcal{H}_B^c).$$

Passare and I used this to (re)prove a strong structure theorem when d = 2, which motivated this work with Nisse.

Nisse and I have many technical structural results about $\mathcal{P}^{\infty}(D_B)$.

With the conjecture: $co\mathcal{A}(D_B) \subset \mathcal{P}^{\infty}(D_B)$, they imply $co\mathcal{A}(D_B)$ has a recursive polyhedral structure, as we saw for the plane.

The plane $\Pi := \mathcal{V}(x + y + z + 1)$ (reprised)

The plane $\Pi := \mathcal{V}(x + y + z + 1)$ is a discriminant. Its tropical variety $\mathcal{T}(\Pi)$ has four rays:

The initial scheme $in_{\rho} \Pi$ of a ray has a $\mathbb{C}_{\rho}^{\times}$ -action with quotient a line $\mathcal{V}(r + s + 1)$.

Consequently, $\mathcal{P}^{\infty}(\Pi)$ has four components, each a prism over the coamoeba of a line.

Their union is the closure of the coamoeba $co\mathcal{A}(\Pi)$ of the plane, covering a typical point twice.

