Phase limit set of linear spaces and discriminants

AMS Special Session on Non-Archimedean, Algebraic, Tropical Geometry and applications

Fall Central Section Meeting, San Antonio, 14 September 2024

Frank Sottile

Texas A&M University sottile@tamu.edu

Work with Mounir Nisse

Supported by NSF grant DMS-2201005

Amoebas and coamoebas

The amoeba $A(X)$ of a very affine variety $X \subset (\mathbb{C}^\times)^n$ is the set of lengths in X and its *coamoeba co* $A(X)$ is its set of arguments:

 $z = e^r \theta \mapsto (r, \theta)$ identifies \mathbb{C}^\times with $\mathbb{R} \times \mathbb{T}$, where $\mathbb{T} = S^1$ is the unit complex numbers. This induces maps $(\text{Log}, \text{Arg}) \colon (\mathbb{C}^{\times})^n \xrightarrow{\sim} \mathbb{R}^n \times \mathbb{T}^n$. Then $\mathcal{A}(X)$ is the projection of X to \mathbb{R}^n and $co\mathcal{A}(X)$ is its projection to \mathbb{T}^n .

Phase limit set

Tropical variety $\mathcal{T}(X)$ is its logarithmic limit set; the cone over limiting directions of $A(X)$. It encodes the nonempty initial schemes of X , $\mathcal{T}(X) = \{ w \in \mathbb{R}^n \mid \text{in}_w X \neq \emptyset \}.$ It has a (non-unique) fan structure with initial schemes constant on (rel. interiors of) cones.

The phase limit set $\mathcal{P}^{\infty}(X)$ is the collection of accumulation points of arguments $\{Arg(x_i) | i \in \mathbb{N}\}\$ of unbounded sequences ${x_i \mid i \in \mathbb{N}} \subset X$.

We have $coA(X) \cup \mathcal{P}^{\infty}(X) = coA(X)$.

Theorem. (Nisse-S.) For any fan structure on $T(X)$,

$$
\mathcal{P}^{\infty}(X) = \bigcup_{\rho \in \mathsf{ray}(\mathcal{T}(X))} co\mathcal{A}(\text{in}_{\rho} X) .
$$

 $\mathcal{A}(\ell)$

 $\mathcal{T}(\ell)$

The line

Recall the line $\ell = \mathcal{V}(x + y + 1)$, its tropical variety, and coamoeba:

The dashed lines are the phase limit set of ℓ . They are translates of the three subtori in the directions of rays of the tropical variety. In fact, they are coamoebae of the initial schemes of ℓ .

The plane $\Pi := \mathcal{V}(x + y + z + 1)$

The tropical variety $\mathcal{T}(\Pi)$ of the plane has four rays:

Each ray ρ has a corresponding subtorus \mathbb{C}_ρ^\times which acts freely on the initial scheme $\text{in}_{\rho} \Pi$, with the quotient isomorphic to a line $V(x + y + 1)$.

A consequence is that $\mathcal{P}^{\infty}(\Pi)$ has four components, each a prism over the coamoeba of a line.

Their union is the closure of the coamoeba $coA(\Pi)$ of the plane, covering a typical point twice. Note the striking polyhedral structure.

Hyperplane complements

A set $B\subset\mathbb{C}^d$ of linear forms gives a hyperplane arrangement $\mathcal{H} = \mathcal{H}_B := \bigcup \{ \mathcal{V}(b) \mid b \in B \} \subset \mathbb{C}^d,$

and a map $\lambda_B\colon\mathbb{C}^d\to\mathbb{C}^B$ where $\mathbb{C}^d\ni v\mapsto (b(v)\mid b\in B).$

Intersections of hyperplanes are *flats* of \mathcal{H}_B , inducing a matroid structure on the set B.

Example. The column vectors B of $\sqrt{ }$ $\overline{1}$ 1 0 0 1 −2 0 $0 \quad 1 \quad 0 \quad 2 \quad -1 \quad -2$ 0 0 1 0 −2 1 \setminus defines a line arrangement in \mathbb{P}^2 :

The hyperplane complement $\mathcal{H}_B^c:=\lambda_B(\mathbb{C}^d)\cap (\mathbb{C}^\times)^B\simeq \mathbb{C}^d\smallsetminus \mathcal{H}_B$ is a very affine variety. We study its coamoeba and phase limit set.

Structure of $\mathcal{P}^{\infty}(\mathcal{H}^c)$

Using that $\mathcal{P}^{\infty}(\mathcal{H}^c)$ = accumulation points of arguments, $\overline{\text{Theorem}}$. $\mathcal{P}^{\infty}(\mathcal{H}^c) = \left. \begin{matrix} \ \ \end{matrix} \right\}$ L $\overline{\mathit{coA}(\mathcal{H}/L)^c}\times\mathit{coA}(\mathcal{H}|_L)^c$, the union over all flats L of H.

We refine this. Given a flag $\mathcal{L}\colon L_1\subset\cdots\subset L_k\subset\mathbb{C}^d$ of flats, set

$$
\mathcal{H}(\mathcal{L})^c := (\mathcal{H}|_{L_1})^c \times \cdots \times ((\mathcal{H}/L_{i-1})|_{L_i})^c \times \cdots \times (\mathcal{H}/L_k)^c.
$$

Corollary.
$$
\overline{co\mathcal{A}(\mathcal{H}^c)} = \bigcup_{\mathcal{L} \text{ a flag of flats}} co\mathcal{A}(\mathcal{H}(\mathcal{L})^c).
$$

Flags of flats \longleftrightarrow cones in $\mathcal{T}(\mathcal{H}^c)$, with $\text{in}_{\mathcal{L}} \mathcal{H}^c = \mathcal{H}(\mathcal{L})^c$, recovering the tropical decomposition of the phase limit set. We also relate this to the Bergman fan, which is a different fan structure on $\mathcal{T}(\mathcal{H}^c)$.

(Reduced) Discriminants

When $B\subset \mathbb{Z}^d$, Kapranov showed that the rational map

$$
\pi_B: \ \mathbb{C}^d \ni z \ \longmapsto \ \prod_{b \in B} b(z)^b \ \in \ \mathbb{P}^{d-1}
$$

has image the (reduced) discriminant $D_B\subset \mathbb{P}^{d-1}.$

This monomial map $(x_b \mid b \in B) \mapsto \prod x_b^b$ restricted to the hyperplane complement $\mathcal{H}^c_B \subset \left(\mathbb{C}^\times\right)^{\bar{B}}$ has been used to study discriminants and their tropicalizations.

Fact.
$$
coA(D_B) = \pi_B(coA(\mathcal{H}_B^c)
$$
, and $\mathcal{P}^{\infty}(D_B) = \mathcal{P}^{\infty}(coA(\mathcal{H}_B^c))$.

Passare and I used this to (re)prove a strong structure theorem when $d = 2$, which motivated this work with Nisse.

Nisse and I have many technical structural results about $\mathcal{P}^{\infty}(D_B)$.

With the conjecture: $coA(D_B) \subset \mathcal{P}^{\infty}(D_B)$, they imply $coA(D_B)$ has a recursive polyhedral structure, as we saw for the plane.

The plane $\Pi := \mathcal{V}(x + y + z + 1)$ (reprised)

The plane $\Pi := \mathcal{V}(x + y + z + 1)$ is a discriminant. Its tropical variety $\mathcal{T}(\Pi)$ has four rays:

The initial scheme $\text{in}_{\rho} \Pi$ of a ray has a \mathbb{C}_q^{\times} $_{\rho}^{\times}$ -action with quotient a line $\mathcal{V}(r+s+1)$.

Consequently, $\mathcal{P}^{\infty}(\Pi)$ has four components, each a prism over the coamoeba of a line.

Their union is the closure of the coamoeba $coA(\Pi)$ of the plane, covering a typical point twice.

