The Critical Point Degree of a Periodic Graph

Computations and Applications of Algebraic Geometry and Commutative Algebra NZMS-AustMS-AMS Joint International Meeting

13 December 2024

Frank Sottile

Texas A&M University sottile@tamu.edu

With Matthew Faust and Jonah Robinson

Supported by NSF grant DMS-2201005

Combinatorial Algebraic Geometry meets Mathematical Physics

Computations and Applications of Algebraic Geometry and Commutative Algebra NZMS-AustMS-AMS Joint International Meeting

13 December 2024

Frank Sottile

Texas A&M University sottile@tamu.edu

With Matthew Faust and Jonah Robinson

Supported by NSF grant DMS-2201005

Operators on Periodic Graphs

A locally finite \mathbb{Z}^d -periodic graph Γ is a discrete model of a crystal. Vertices $\mathcal{V} \leftrightarrow$ atoms, edges $\mathcal{E} \leftrightarrow$ interactions, with action $\mathcal{V} \times \mathbb{Z}^d \rightarrow \mathcal{V} \quad (v, \alpha) \mapsto v + \alpha$.

Electron transport is modeled by a Schrödinger operator (on $\ell_2(\mathcal{V})$) $H = V + \Delta$,

where $V : \mathcal{V} \to \mathbb{R}$ is a periodic potential and Δ is a weighted graph Laplacian (periodic weights $e : \mathcal{E} \to \mathbb{R}$ are interaction strengths)

As *H* is self-adjoint, its spectrum $\sigma(H) := \{\lambda \mid H - \lambda \text{ not invertible}\} \text{ is a subset of } \mathbb{R}.$ It consists of finitely many intervals, representing the familiar structure of electron energy bands and band gaps.

From Fourier (Floquet) Transform to Geometry

More structure is revealed by Fourier (Floquet) transform.

 \mathbb{T} : unit complex numbers. \mathbb{T}^d : unitary characters of \mathbb{Z}^d : $z \in \mathbb{T}^d$, $\alpha \in \mathbb{Z}^d \longmapsto z^{\alpha}$.

Fix $W \subset \mathcal{V}$ a fundamental domain for \mathbb{Z}^d -action.

After Fourier transform, *H* is multiplication by the $W \times W$ Floquet matrix, H(z), whose (u, v)-entry is $-\sum_{\alpha} e_{(u,v+\alpha)} z^{\alpha}$.

 $\sigma(H) = \{\lambda \mid \exists z \in \mathbb{T}^d \text{ with } \lambda \text{ an eigenvalue of } H(z)\}.$

Bloch variety $\mathsf{BV} \subset \mathbb{T}^d \times \mathbb{R}$ is the hypersurface defined by $\Phi := \det(\lambda I_W - H(z))$. $\sigma(H)$ The coordinate λ is a function on the Bloch variety, and $\sigma(H) = \lambda(\mathsf{BV})$.

The Floquet matrix is $H(x, y) =$	$\begin{pmatrix} V(u)\\ -a-bx-cy \end{pmatrix}$	$ -a - bx^{-1} - cy^{-1} \\ V(v) $	

and
$$\Phi = \lambda^2 + \lambda (V(u) + V(v)) + V(u)V(v)$$

- $(a^2 + b^2 + c^2 + ab(x + x^{-1}) + ac(y + y^{-1}) + bc(xy^{-1} + yx^{-1})).$

Here are several of its Bloch varieties.

Spectral Edges Nondegeneracy Conjecture

Spectral edges conjecture: For general operators on Γ , critical points of λ on BV above endpoints of spectral bands are nondegenerate extrema.

While many physical properties rely upon this assumption (made by all physicists), it is largely unknown, even for operators on discrete graphs.

 \rightsquigarrow First step: study complex critical points of λ on $\mathsf{BV}_{\mathbb{C}}$.

Lemma. A point $(z, \lambda) \in (\mathbb{C}^{\times})^d \times \mathbb{C}$ is a critical point of λ on $BV_{\mathbb{C}}$ if and only if it is a solution to the system

$$\Phi(z,\lambda) = z_i \frac{\partial \Phi}{\partial z_i}(z,\lambda) = 0 \qquad i=1,\ldots,d.$$

Call these the *critical point equations*.

Frank Sottile, Texas A&M University

Critical Points of Discrete Periodic Operators

$$ext{supp}\Big(rac{z_i\partial \Phi}{\partial z_i}ig)\subset\mathcal{N}$$
, the Newton polytope of Φ_i

Kushnirenko's Theorem implies

The projective toric variety X of \mathcal{N} compactifies $(\mathbb{C}^{\times})^d \times \mathbb{C}$. Set $\partial X := X \setminus ((\mathbb{C}^{\times})^d \times \mathbb{C}) = \bigcup_F X_F$, where X_F is the projective toric variety of the face F of \mathcal{N} , and F is not its base.

The critical point equations \longleftrightarrow a linear section $\Lambda_{\Phi} \cap X$. We have equality in (*) if and only if $\Lambda_{\Phi} \cap \partial X = \emptyset$.

Faust-S. (1) if F is vertical then $\Lambda_{\Phi} \cap X_F \neq \emptyset$. (2) Otherwise $\Lambda_{\Phi} \cap X_F \neq \emptyset$ implies that BV is singular along F.

 $\Lambda_{\Phi} \cap \partial X$ consists of *asymptotic critical points*.

Frank Sottile, Texas A&M University

Critical Point Degree

The *critical point degree* of Γ is the number of critical points, counted with multiplicity, on a generic Bloch variety for Γ .

 w/ Matt Faust, a post doc at Michigan State University and Jonah Robinson, an undergraduate student,
we identify contributions to the asymptotic critical points.

- d_{vert} : Due to vertical faces of \mathcal{N} .
- d_{sing} : Singularities of BV along faces F when Γ is "asymptotically disconnected", and thus BV is asymptotically reducible.

<u>Theorem</u>: Let Γ be a \mathbb{Z}^2 or \mathbb{Z}^3 -periodic graph. Then the critical point degree of Γ is at most n-vol $(\mathcal{N}) - d_{vert} - d_{sing}$.

Both contributions arise from structural properties of Γ .

Vertical Faces

Observation: If $F \subset \mathcal{N}$ is a vertical face, then $\#(\Lambda_{\Phi} \cap X_F) = \text{n-vol}(F)$. (Kushnirenko's Theorem)

Further: If $F \subset G$ are both vertical, then $\Lambda_{\Phi} \cap X_F \subset \Lambda_{\Phi} \cap X_G$.

Define:
$$d_G := n \cdot vol(G) - \sum_{F \subset G} n \cdot vol(F)$$
 (F vertical)
 $d_{vert} := \sum_{G \text{ is vertical }} d_G$

For each vertical facet G, n-vol(G) = 6 and n-vol(F) = n-vol(F') = 1, so that $d_G = 6 - 2 = 4$.

Then
$$d_{\text{vert}} = 4 \cdot 1 + 4 \cdot (6 - 2) = 20$$
.
(edges) (facets)

Frank Sottile, Texas A&M University

The vector $\eta = (-1, 1, -1)$ exposes the face A. Here is the characteristic matrix with η -initial terms underlined

$$\left(\begin{array}{ccc} \underline{\lambda} - u & a + bx^{-1} + \underline{cy^{-1}} & d \\ a + \underline{bx} + cy & \underline{\lambda} - v & e \\ d & e & \underline{\lambda} - w + fy + \underline{fy^{-1}} \end{array}\right)$$

The determinant of the initial matrix defines $BV \cap X_A$,

$$\det \left(\begin{array}{ccc} \lambda & cy^{-1} & 0 \\ bx & \lambda & 0 \\ 0 & 0 & \lambda + fy^{-1} \end{array}\right) \ = \ (\lambda^2 \ - \ bcxy^{-1})(\lambda + fy^{-1}) \, .$$

Thus we have two curves with one (singular) point of intersection.

Frank Sottile, Texas A&M University

The Critical Point Degree of a Periodic Graph

Graph Asymptotically Disconnected

The η -initial terms in the Floquet matrix

$$\begin{pmatrix} \underline{\lambda} - u & a + bx^{-1} + \underline{cy^{-1}} & d \\ a + \underline{bx} + cy & \underline{\lambda} - v & e \\ d & e & \underline{\lambda} - w + fy + \underline{fy^{-1}} \end{pmatrix}$$

determine directed edges of the initial graph, with quotient by \mathbb{Z}^2 .

The singularity (in BV) of asymptotic critical points is also structural.

In well over 10⁶ graphs—all observed generic asymptotic critical points arose from these structures.

Frank Sottile, Texas A&M University

The Critical Point Degree of a Periodic Graph