Periodic Operators for Algebraic Geometry

Minisymposium on Nonlinera Algebra in Applications

11 October 2024

Frank Sottile

Texas A&M University sottile@tamu.edu

I thank my co-authors: Do, Faust, Kuchment, Lopez-García, Regan, Robinson, Shipman, and Telen, as well as colleagues Berkolaiko, Fillman, and Liu.

Supported by NSF grant DMS-2201005

Periodic graph operators to matrices

A \mathbb{Z}^d -periodic graph $\Gamma=(\mathcal{V}, \mathcal{E})$ is a discretization of a crystal. Schrödinger operator (on $\ell_2(\mathcal{V})$) is

$$
H = V + \Delta,
$$

where $V: \mathcal{V} \to \mathbb{R}$ is a potential and Δ is a weighted graph Laplacian (V and Δ are both periodic).

As H is self-adjoint, its spectrum $\sigma(H) := {\lambda | H - \lambda \text{ not invertible}}$ is a subset of R. It has finitely many intervals, representing electron energy bands.

After Fourier (Floquet) transform, H becomes multiplication by the *Floquet matrix*, $L(z) \in \mathsf{Mat}_{n \times n} \, \mathbb{R}[z_1^{\pm}]$ $z_1^{\pm}, \ldots, z_d^{\pm}$ $\frac{1}{d}$.

Here, *n* is the number of \mathbb{Z}^d -orbits on $\mathcal{V}.$

As
$$
\Gamma
$$
 is undirected, $L(Z)^T = L(z^{-1})$.

Twisted reality of Bloch varieties

Let $\mathbb{T} := \{ z \in \mathbb{C}^\times \mid \overline{z} = z^{-1} \}$, the unit complex numbers. Then \mathbb{T}^d = unitary characters of \mathbb{Z}^d , and $\sigma(H) = \{ \lambda \in \mathbb{R} \mid \exists z \in \mathbb{T}^d \text{ such that } \det(L(z) - \lambda I_n) = 0 \}.$

The dispersion polynomial is $D(z, \lambda) := det(L(z) - \lambda I_n) \in \mathbb{R}[z^{\pm}].$ It defines the (real) Bloch variety $BV_{\mathbb{R}}$ in $\mathbb{T}^d \times \mathbb{R}$, and the spectrum $\sigma(H)$ is its image under the coordinate function λ . $\sigma(H)$

The *Bloch variety* BV $\subset (\mathbb{C}^{\times})^d \times \mathbb{C}$ is the hypersurface defined by dispersion polynomial.

As $L(z)^{\mathcal{T}} = L(z^{-1}), \ D(z,\lambda) = D(z^{-1},\lambda)$, and $\mathsf{BV}_\mathbb{R}$ is the subset of BV fixed by the twisted complex conjugation $(z, \lambda) \longmapsto (\overline{z^{-1}}, \overline{\lambda})$ on $({\mathbb C}^\times)^d \times {\mathbb C}$ and BV .

Everything old is new again

1979: van Moerbeke and Mumford considered Z-periodic *directed* graphs, showing an equivalence between the operators and curves with certain divisors. (The curves are the Bloch varieties).

1993: Gieseker, Knörrer, Trubowitz (GKT) studied pure the Schrödinger operator on the grid graph \mathbb{Z}^2 where \mathbb{Z}^2 acts via $a\mathbb{Z} \oplus b\mathbb{Z}$, with $gcd(a, b) = 1$. We show this with $a = 3$ and $b = 2$.

They studied/determined:

- Density of states (gave a formula).
- Irreducibility of Bloch and Fermi (λ = const. on BV) varieties.
- Smoothness of Bloch and Fermi varieties.
- Used a toric compactification and the Torelli Theorem.
- Presented in a Bourbaki Lecture by Peters in 1992.

Critical Points

Kuchment: Physicists assume that the critical points on $BV_{\mathbb{R}}$ lying over edges of the spectrum are non-degenerate, which implies many important physical properties. This Spectral Edges Nondegeneracy Conjecture is largely open.

 \rightarrow First step: study complex critical points of λ on BV.

Faust-S.: Number of critical points is at most the volume of the Newton polytope N of $D(z, \lambda)$. It is less than the volume only if N has vertical faces, or if the Bloch variety is singular along the boundary divisors.

Used the toric compactification given by N .

10:45 Sunday: Jonah Robinson will explain how to quantify this asymptotic contribution to the number of critical points.

Frank Sottile, Texas A&M University Periodic Operators for Algebraic Geometry 4

Irreducibility

A Fermi variety is a λ -level set of Bloch variety.

(Ir)reducibility has long been studied (GKT). Kuchment-Vainberg: Irreducible Fermi variety implies no embedded eigenvalues, and Liu: Irreducibility implies quantum ergodicity.

Fillman-Liu-Matos: Used "top homogeneous component" of $D(z, \lambda)$ to show irreducibility for operators on certain graphs.

Faust-Lopez: Generalized this to study irreducibility using facial forms of $D(z, \lambda)$. These are restrictions of $D(z, \lambda)$ to faces of Newton polytope.

Sheaves and Compactification

 $L(z)$: $\mathbb{C}[z^{\pm}]^n \to \mathbb{C}[z^{\pm}]^n$ is a map of free modules.

Kravaris: Used a free resolution of L to study density of states.

Better: $L(z)$ is an endomorphism of $\left(\mathcal{O}_{(\mathbb{C}^{\times})^{d}}\right)^{n}$, and the Bloch variety in $({\mathbb C}^\times)^d \times {\mathbb C}$ is the support of the kernel sheaf to $L(z) - \lambda I_n$ consisting of solutions to $L\psi = \lambda \psi$.

Faust-Lopez-Shipman-S.: Study toric compactfications of

- $(\mathcal{O}_{(\mathbb{C}^\times)^d})^n$ (in any toric variety).
- solution sheaf in toric variety of N .
- the operator H (for certain graphs).

15:55 Saturday: Jordy Lopez-García will sketch this toric compactification.

Frank Sottile, Texas A&M University Periodic Operators for Algebraic Geometry 7