Newton Polytopes via Witness Sets

Algebraic and Geometric Methods in
Applied Discrete Mathematics

11 January 2015

Frank Sottile
sottile@math.tamu.edu

Work with Jon Hauenstein and Taylor Brysiewicz.



Fundamental Problem

By algebraic geometry, an irreducible hypersurface H in C" is defined by
the vanishing of a single irreducible polynomial, f € Clx1, ..., z4,],

H =V(f) = {zeC"| f(z) =0}.

The problem | want to consider is: Suppose that we know the hypersurface,
but not the polynomial?
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We would like to understand the polynomial f defining H.
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What Does Understand Mean’?

Best: Complete knowledge. There are finite sets A C Z" and
{ca | a € A} C C such that

— anma (2" = 2{t- - 2l™)

acA

Pretty Good: Knowing the support, A.

We'll Settle For: Newton Polytope of H,

N(H) := convex hull of A.

Easier: The degree of H.
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How to Know H but not f

The hypersurface H might be the image of a map,
wo: X — H C C".

This is fairly common, for example

S = {(p,f) | peP, deg(f) =4, f(p) = fy(p)}
pr T
Pt e

pr: 3 — P is a projective bundle,
and 7 (22) is the classical discriminant
of a d-form.
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Example: Liroth Quartics

Liroth, 1869: If £1, ..., £5 are equations for lines, then

q = 5152533435( ‘|‘ + + +£5)

defines a quartic that inscribes
the great pentagon,

V(£102030405).

This set of quartics is the im-
age of a map (C*)°— — P™
(P'* = plane quartics),

and it forms a hypersurface, L.

Morley, 1919: L has degree 54. /ﬁ/\ §

The defining equation of L is the Liroth invariant, which could have as

many as (°*/}'*) = 123234279768160 monomials.
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How to Represent a Polytope?

P = convex hull of a finite subset of R™.

P = ﬂ {z|w-x < b,},

w in a finite set
the intersection of finitely many half-spaces.

Oracle Representation:
For w € R", set h(w) = max{w -z | x € P}.

The face P, of P exposed by w is
P, = {x€P|lw-z=h(w)}

The oracle representation of P is a function that given w € R"
returns P, if it is a vertex.

We propose a method, based on numerical algebraic geometry to compute
an oracle representation of the Newton polytope of a hypersurface.
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Witness Sets

Numerical Algebraic Geometry uses numerical analysis to represent and
manipulate varieties on a computer.

Let V' C C" be a variety of codimension k, given as a component of
F(x) = 0. A witness set for
V is a pair (W, L), where

L

— L is a general affine plane /_\\ /
of dimension k, and ‘
-W=VnL. &I \
|%4

%%
L is either parameterized, or cut out by n—k affine forms, and W' consists
of numerical approximations to V N L.
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Continuation

In numerical algebraic geometry, the basic operation is continuation, which
traces points along implicitly-defined paths.

Suppose that L(t) for t € Cis a family of k-planes, and we have a witness
set (W1, L(1)) for V.

We numerically continue these points O/\/O

in VNL(t) fromt = 1tot = 0to N

get another witness set (W, L(0)) N__©
t

for V.

This allows us to sample points from V.

Frank Sottile, Texas A&M University 7



Witness Sets of Projections

Our hypersurfaces come as the image under a projection.

Suppose that X C C" @ C™ and H = w(X) C C" is a hypersurface.

Hauenstein, Sommese, Wampler: Given a witness set (X N L, L) for X,
compute a witness set (H N £, £) for H:
— Choose a general lines £ C C"
— Move L to a non-general plane A with w(A) = £.
Set W' := X N A. Then (w(W'), £) is a witness set for H.

Delicate: A is not in general position.
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Witness set of a Hypersurtace

Suppose f = Z cqox” is a polynomial, H := V(f), and P = conv(A).
acA

Let p, g € C" be general, and define

lpq(s) =4L(s) := {sp—q|seC}.
Then f(£(s)) = O defines the witness set H N £.

Thus a witness set gives roots of f(£(s)).

Forw € R"and t > 0, set t* := (¢“1,...,t“™). Then,
F(E7.0(s)) = D calspr — q)™ -+ (spn — qn)™" £
acA
! w a a,w-a—h(w
= ¢ )(Z ca(sp — Q)" + D calsp — q) " ))
Ame A\Pw

= 3dd, > Osuchthatw-a — h(w) < —d, fora € AN P,.
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Main Lemma

ft7.4(s)) = th(w)( Z ca(sp—q)" + Z ca(sp—q)at“"“_h(w)>

.AﬂPw A\Pw

Set f,, to be the sum of terms in f from P,

Lemma. In the limit as t — oo, t ") (¥ 4(s)) — fu(£(s)).
deg(f)—deg(f.) zeroes will diverge to oo, while the remaining deg( f.,)
remaining bounded.

If P, is a vertex, say a (which holds when w is generic), then

foll(s)) = calspr —q1)™ - (spn — qn)™" .

Thus a; zeroes of f(t“.4(s)) coalesce to q;/p; as t — oc.

Our paper describes how to turn this idea into an algorithm.
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Liroth quartics, again

We created a test implementation and used it to compute a few vertices of
the Liroth polytope (Newton polytope of the Liiroth hypersurface).

Ciani quartics: The Liiroth quartics whose monomials are squares,
ax? + By4 + fyz4 + 2(5:132y2 + p:c222 + ay2z2 :

form a face of the Liiroth polytope, which we computed.

Itis 148 + a464fy4,

where & is equivalent to the
bipyramid,

O 1 0 0 1
conv | O O 1 0 1 =
O 0 O 1 1
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Ciani Face of Luroth Invariant

We used a numerical factorization algorithm and an LLL-based interpolation
method to compute the Liiroth invariant, restricted to this face of Ciani

quartics, f(L)w.
F(0)e = &"BY LI fs

where f1, ..., fs have integer coefficients, between 1 and 2401 = 7*.

f1, f2, f3, f4 have the same Newton polytope, &, but
f5 has Newton polytope 4 &

Subsequently, Basson, Lercier, Ritzenthaler, and Sijsling found an expression
for the Liroth invariant in terms of the fundamental and secondary invariants
of GL(3) acting on quartics.
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3
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The Future

This approach to finding Newton polytopes of hypersurface, and possibly us-
ing that information with interpolation to find a defining polynomial appears
feasible, and would have many applications, were a proper implementation
made.

This is a current project of Taylor Brysiewicz, a graduate student at TAMU.
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