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What is Numerical Algebraic Geometry?

It includes, at least, Numerical Non-Linear Algebra, and all this implies.

More specifically, numerical algebraic geometry is the numerical

manipulation of polynomials and of sets/objects defined by polynomials.

Its importance is that it represents the future of computation in

algebraic geometry, and is foundational for many current and future

applications.

It represents the future, for computers are becoming wider, and

not faster. The core numerical routine underlying numerical algebraic

geometry, numerical path continuation, is trivially parallelizable, unlike

most algorithms (e.g. Gröbner bases) that underlie the current dominant

paradigm of symbolic computation.
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Sources of Numerical Algebraic
Geometry

Numerical Algebraic Geometry arose from Engineering Applications,

particularly Kinematics, which we have already seen this morning in

Charles’s address, and will see more of tomorrow.

It has the potential to become the fundamental tool in applications

that involve polynomials.

To acheive its potential, it needs a greater body of algorithms and

continued software development, as well as successful applications to

problems from other areas.
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Real Challenges

Applications often demand real solutions, so it is natural to ask how do

we compute the real solutions to a system of equations.

Dominant numerical algorithm for solving, homotopy continuation,

necessarily computes all solutions, both real and complex.

Two classes of numerical algorithms for real solutions:

— Exclusion methods.

Well-developed algorithms based on repeated subdivision.

— Semidefinite programming.

Proposed by Lasserre, Laurent, and Rostalski.

Frank Sottile, Texas A&M University 4



A third method

Khovanskii-Rolle continuation is a third numerical method to compute

real solutions.

— Based on proof of fewnomial bounds for real solutions.

— Uses 2 symbolic steps:

1) Gale duality reduces a (potentially high-degree) polynomial system

to a system of rational functions on a different space.

2) Reducing this to solving some systems of low-degree

polynomials & some path-continuation.

— Complexity is essentially the fewnomial bound.

Frank Sottile, Texas A&M University 5



Gale duality, via example

Suppose we have the system of polynomials,

v2w3 = 1 − u2v − uv2w ,

v2w = 1
2 − u2v + uv2w ,

uvw3 = 10
11(1 + u2v − 3uv2w) .

(1)
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Substituting (1) into this, writing x for u2v and y for uv2w, and

solving for 0, gives the Gale system of master functions

f := x2(1−x−y)3 − y2(12−x+y)(1011(1+x−3y))2 = 0 ,

g := y3(1−x−y) − x(12−x+y)31011(1 + x − 3y) = 0 .
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Gale duality, continued

The original system is equivalent to the Gale system

f := x2(1−x−y)3 − y2(12−x+y)(1011(1+x−3y))2 = 0 ,

g := y3(1−x−y) − x(12−x+y)31011(1 + x − 3y) = 0 ,

in the complement of the lines given by the linear factors.

f
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Khovanskii-Rolle continuation

Given a system of master functions

ℓ+n∏

i=1

pi(x)
ai,j = 1 j = 1, . . . , ℓ , (∗)

(pi(x) linear), we find solutions in the polyhedron

∆ := {x ∈ R
ℓ
| pi(x) > 0} .

The Khovanskii-Rolle Theorem (next slide) reduces solving (∗) to

solving low degree polynomial systems, together with path continuation.

This is our new algorithm, which we now explain.
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Khovanskii-Rolle Theorem

Theorem. Between any two zeroes of g along the curve V (f) : f = 0,

lies at least one zero of the Jacobian df ∧ dg.

V (f)
V (g)

a

df

dg

c

df
dg

b

df

dg

Starting where V (f) meets the boundary of the polyhedron ∆ and

where the Jacobian vanishes on V (f), tracing the curve V (f) in both

directions finds all solutions f = g = 0.
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Degree reduction (ℓ = 2)

A system of master functions

2+n∏

i=1

pi(x)
ai,j = 1 j = 1, 2

in logarithmic form

ϕj :=

2+n∑

i=1

ai,j log pi(x) = 0 j = 1, 2 ,

has Jacobians of low degree

J2 := Jac(ϕ1, ϕ2) J1 := Jac(ϕ1, J2) .

Here, n = deg(J2) and 2n = deg(J1).
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An example

Consider the system with ℓ = 2 and n = 4:

f1 :=
(3500)12x27(3 − x)8(3 − y)4

y15(4 − 2x + y)60(2x − y + 1)60
= 1 ,

f2 :=
(3500)12x8y4(3 − y)45

(3 − x)33(4 − 2x + y)60(2x − y + 1)60
= 1 .

(1, 3) (3, 3)

(0, 1)

(3, 2)

(0, 0) (2, 0)
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Low-Degree Jacobians

If ϕi := log(fi), then J2 := Jac(ϕ1, ϕ2) ·
∏

pi(x, y) =

2736 − 15476x + 2564y + 32874x2 − 21075xy + 6969y2 − 10060x3

−7576x2y + 8041xy2 − 869y3 + 7680x3y − 7680x2y2 + 1920xy3 .

(polynomial of degree n = 4.) J1 := Jac(ϕ1,Γ2) ·
∏

pi(x, y)
2 =

8357040x − 2492208y − 25754040x2 + 4129596xy − 10847844y2

−37659600x3 + 164344612x2y − 65490898xy2 + 17210718y3 + 75054960x4

−249192492x3y + 55060800x2y2 + 16767555xy3 − 2952855y4 − 36280440x5

+143877620x4y + 35420786x3y2 − 80032121x2y3 + 19035805xy4 − 1128978y5

+5432400x6 − 33799848x5y − 62600532x4y2 + 71422518x3y3 − 13347072x2y4

−1836633xy5 + 211167y6 + 2358480x6y + 21170832x5y2 − 13447848x4y3

−8858976x3y4 + 7622421x2y5 − 1312365xy6 − 1597440x6y2 − 1228800x5y3

+4239360x4y4 − 2519040x3y5 + 453120x2y6 .

(A polynomial of degree 8 = 2n.)
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Completing the example

Follow V (J2) ∩ ∂∆ and

J1 = J2 = 0 along V (J2)

to find J2 = ϕ1 = 0.

Follow V (ϕ1) ∩ ∂∆ and

ϕ1 = J2 = 0 along V (ϕ1)

to find ϕ1 = ϕ2 = 0.
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