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Convex Algebraic Geometry

This new mathemathical domain provides theoretical support to application

areas such as semi-definite programming, polynomial optimization, and

tensor analysis. You will see applications in the talks of Morton and Peña.

Its basic objects include convex hulls of semi-algebraic sets, as you will see

in the talk of Vinzant.

It enjoys strong connections with classical convexity, with real algebraic

geometry, and with numerical algebraic geometry. Since some natural

questions are intractable (e.g. those involving positive polynomials), it

poses interesting challeges from the perspectives of theory, algorithms, and

practice. This will be seen in the talks of Gouveia, Blekherman, and Nie.

I will introduce you to this field through a charismatic class of objects in

convex algebraic geometry, called orbitopes, which also appear in the talk of

Rostalski.
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Orbitopes

Throughout, G will be a real compact linear algebraic group.

E.g. G = SO(d), the special orthogonal group, or

G = U(d), the unitary group.

Let V be a finite-dimensional real vector space on which G acts.

The orbit of G through v ∈ V is G · v = {g · v | g ∈ G}, an

algebraic manifold. The orbitope Ov of G through v ∈ V is the convex

hull of G · v, a convex semi-algebraic set.

Orbitopes of finite groups G include

the beautifully symmetric Platonic and

Archimedean solids, such as the permu-

tahedron for S4, at right.

We will be interested in orbitopes for

continuous groups.
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Two examples of Orbitopes

⇒ The Harvey-Lawson (& Morgan, Bryant, Mackenzie...) theory of

calibrated geometry for minimal submanifolds amounts to identifying

faces of the Grassmann orbitope, which is the convex hull the SO(n)

orbit of a decomposable tensor in ∧kR
d. See Rostalski’s talk.

⇒ Motivated by protein structure reconstruction, Longinetti, Sgheri and I

studied SO(3) orbitopes in the space of symmetric 3 × 3 tensors. 
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Three perspectives on Orbitopes

While orbitopes have been studied previously in different areas of mathemat-

ics from different perspectives, their systematic study is now warranted from

the new perspective of convex algebraic geometry, which combines three

areas of mathematics, leading to several motivating questions.

Classical convexity : Determine the faces, face lattice, dual bodies, and

Carathéodory numbers of orbitopes.

Algebraic geometry : Describe the Zariski boundary of an orbitope, its

equation, and Whitney stratification.

Optimization : Can the orbitope be represented as a spectrahedron? How

can one efficiently optimize over an orbitope?
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Spectrahedra as noncommutative polytopes

A polyhedron P has a facet description

P = {x ∈ R
d
| x1a1 + x2a2 + · · · + xdad + b ≥ 0} ,

where ai, b ∈ R
n, and ≥ is componentwise comparison.

A symmetric matrix X ∈ R
n×n (or hermitian X ∈ C

n×n) is positive semi-

definite (PSD), X � 0, if all its eigenvalues are nonnegative, equivalently

if all symmetric minors are nonnegative. PSD matrices form a convex cone.

A spectrahedron is set consisting of those x ∈ R
d such that

x1A1 + x2A2 + · · · + xdAd + B � 0 ,

where Ai, B are symmetric (or hermitian) matrices. A polyhedron is a

spectrahedron when Ai, B mutually commute (are diagonal).
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Optimization

Polytopes are the natural domains of linear programs which are a critically

important class of optimization problems.

Semi-definite programming is a recent extension of linear programming. It

gives efficient algorithms for optimizing linear functions over spectrahedra.

Since linear functions pull back along (linear) projections, semi-definite

programming gives efficient algorithms for optimizing linear functions over

projections of spectrahedra.

Because of this, it is important to understand which convex semi-algebraic

sets are spectrahedra or projections of spectrahedra, together with spec-

trahedral representations. This question about the structure of convex

semi-algebraic sets is a basic open problem in the field of convex algebraic

geometry.
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Convexity

The convex hull of this trigonometric curve

has boundary consisting of two families of

line segments (yellow and green) and two

triangles. The extreme points are that part

of the curve lying in the boundary.

The triangle edges are special—they are not

exposed by any linear functional.
(cos(θ), sin(2θ), cos(3θ))

Each point lies in a convex hull of at most three extreme points (it is fibered

by triangular and rectangular slices), so it has Carathéodory number 3.

It is not a spectrahedron, as it has non-exposed faces, but it is a projection

of a spectrahedron (the Carathéodory orbitope C3), as we’ll see.
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Algebraic Geometry

This convex body is the bounded compo-

nent of the complement of a singular cubic

surface.

Its faces are the four singular points, the six

edges between them, and every other point

in its boundary is extreme. All are exposed.

This is a spectrahedron (hyperplane section of Carathéodory orbitope C2).

Its Zariski boundary is the cubic surface, while the boundary of the previous

body is a reducible hypersurface of degree 21, with the green ruled surface

having degree 16.
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Carathéodory orbitopes

The convex hull of the trigonometric moment curve,

{(cos(θ), sin(θ), cos(2θ), . . . , sin(dθ)) | θ ∈ [0, 2π)} ,

in R
2d is the Carathéodory orbitope Cd, studied by Carathéodory in 1907.

It is an orbitope, as R
2d = (R2)d is a representation of the circle group

SO(2) where a rotation matrix acts on the nth factor via its nth power,
(

cos(θ) − sin(θ)

sin(θ) cos(θ)

)n

=

(

cos(nθ) − sin(nθ)

sin(nθ) cos(nθ)

)

Every orbitope of SO(2) is a coordinate projection of some Carathéodory

orbitope, and convex hulls of trigonometric curves are projections of

Carathéodory orbitopes.
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Spectrahedral representation

By classical results on positive trigonometric polynomials, Cd is those

(x1, . . . , xd) ∈ C
d = (R2)d such that the Toeplitz matrix is PSD,















1 x1 x2 . . . xd

x1 1 x1 · · · xd−1

x2 x1 1 ...
... ... . . . x1

xd xd−1 · · · x1 1















� 0 .

Theorem. Cd is a neighborly, simplicial convex body whose faces are

in inclusion preserving correspondence with sets of at most d points on

SO(2). It has Carathéodory number d + 1.

Thus SO(2)-Orbitopes are projections of spectrahedra, but not in general

spectrahedra—they have non-exposed faces, by work of Smilansky and

Barvinok-Novik. See also the talk of Cynthia Vinzant tomorrow.
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Symmetric Schur-Horn Orbitopes

Permutahedra are orbitopes for the symmetric group Sd. Specifically, let D

be the diagonal d × d matrices of trace zero. Given p, q ∈ D, let λ(p)

be the components of p in nonincreasing order, and write q E p if

λ(q)1 + · · · + λ(q)k ≤ λ(p)1 + · · · + λ(p)k, k = 1, . . . , d−1.

Then the permutahedron through p ∈ D is

Πp = {q ∈ D | q E p}.

Let S2R
d be the space of symmetric d× d

matrices with trace zero, an irreducible repre-

sentation of SO(d) acting by conjugation.

The symmetric Schur-Horn orbitope OM through M ∈ S2R
d is the convex

hull of the orbit SO(d) · M .
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Non-commutative permutahedra

Schur-Horn Theorem. Given M ∈ S2R
d with diagonal D(M) ∈ D and

eigenvalues λ(M), we have D(M)E λ(M). In fact, D(OM) = Πλ(M)

and Πλ(M) is the intersection of OM with the diagonal.

Corollary. OM = {A ∈ S2R
d | λ(A) E λ(M)}.

This implies a complete facial description of OM (similar to that of Πλ(M)),

as well as a spectrahedral representation using Lie algebra Schur functors

(a.k.a additive compound matrices).

Let Lk : gl(R
d) → gl(∧kR

d) be the induced map on Lie algebras. The

eigenvalues of Lk(M) are sums of k distinct eigenvalues of M .

If lk(M) is the sum of the k largest eigenvalues of M ,

OM = {A ∈ S2R
d
| lk(M)I

(dk)
−Lk(A) � 0, k = 1, . . . , d−1}.
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Veronese Orbitopes

The Veronese map

νm : R
d

→ SymmR
d
≃ R

(d+m−1
m−1 )

has image the set of decomposable tensors.

The Veronese orbitope Vd,m is the convex hull of an orbit of decomposable

tensors, which we may take to be νm(Sd−1).

When m = 2n is even, the cone over the coorbitope V◦
d,2n is the cone of

non-negative d-ary forms of degree 2n. These cones are nearly unknowable,

except when d = 3 and 2n = 4.

⇒ This suggests that understanding orbitopes O and their polars O◦

will be at least as hard as understanding positive polynomials.
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Ternary Quartics

The Veronese orbitope V3,4 is a 14-dimensional convex body. Since non-

negative ternary quartics are sums of squares, V◦
3,4 is a projection of a

spectrahedron—but not a spectrahedron, as Blekherman showed it has

non-exposed faces.

The boundary of V◦
3,4 is the irreducible hypersurface of degree 27 cut out

by the discriminant of the ternary quartic.

Theorem. (Reznick) V3,4 is a spectrahedron. It equals those λabc such that


















λ400 λ220 λ202 λ310 λ301 λ211

λ220 λ040 λ022 λ130 λ121 λ031

λ202 λ022 λ004 λ112 λ103 λ013

λ310 λ130 λ112 λ220 λ211 λ121

λ301 λ121 λ103 λ211 λ202 λ112

λ211 λ031 λ013 λ121 λ112 λ022



















� 0 .

and λ400 + λ040 + λ004 + 2λ220 + 2λ202 + 2λ022 = 1.
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Thank You!


