Convex Algebraic Geometry through Orbitopes SIAM Minisymposium on Convex Algebraic Geometry SIAM Annual Meeting, Pittsburgh 14 July 2010 Frank Sottile sottile@math.tamu.edu Work with Raman Sanyal and Bernd Sturmfels University of California, Berkeley #### Convex Algebraic Geometry This new mathemathical domain provides theoretical support to application areas such as semi-definite programming, polynomial optimization, and tensor analysis. You will see applications in the talks of Morton and Peña. Its basic objects include convex hulls of semi-algebraic sets, as you will see in the talk of Vinzant. It enjoys strong connections with classical convexity, with real algebraic geometry, and with numerical algebraic geometry. Since some natural questions are intractable (e.g. those involving positive polynomials), it poses interesting challeges from the perspectives of theory, algorithms, and practice. This will be seen in the talks of Gouveia, Blekherman, and Nie. I will introduce you to this field through a charismatic class of objects in convex algebraic geometry, called orbitopes, which also appear in the talk of Rostalski. #### Orbitopes Throughout, G will be a real compact linear algebraic group. E.g. G = SO(d), the special orthogonal group, or G = U(d), the unitary group. Let V be a finite-dimensional real vector space on which G acts. The *orbit* of G through $v \in V$ is $G \cdot v = \{g \cdot v \mid g \in G\}$, an algebraic manifold. The $\mathit{orbitope}\ \mathcal{O}_v$ of G through $v\in V$ is the convex hull of $G \cdot v$, a convex semi-algebraic set. Orbitopes of finite groups G include the beautifully symmetric Platonic and Archimedean solids, such as the permutahedron for S_4 , at right. We will be interested in orbitopes for continuous groups. # Two examples of Orbitopes - \Rightarrow The Harvey-Lawson (& Morgan, Bryant, Mackenzie...) theory of calibrated geometry for minimal submanifolds amounts to identifying faces of the *Grassmann orbitope*, which is the convex hull the SO(n) orbit of a decomposable tensor in $\wedge_k \mathbb{R}^d$. See Rostalski's talk. - \Rightarrow Motivated by protein structure reconstruction, Longinetti, Sgheri and I studied SO(3) orbitopes in the space of symmetric 3×3 tensors. #### Three perspectives on Orbitopes While orbitopes have been studied previously in different areas of mathematics from different perspectives, their systematic study is now warranted from the new perspective of convex algebraic geometry, which combines three areas of mathematics, leading to several motivating questions. Classical convexity : Determine the faces, face lattice, dual bodies, and Carathéodory numbers of orbitopes. Algebraic geometry: Describe the Zariski boundary of an orbitope, its equation, and Whitney stratification. Optimization: Can the orbitope be represented as a spectrahedron? How can one efficiently optimize over an orbitope? #### Spectrahedra as noncommutative polytopes A polyhedron P has a facet description $$P = \{x \in \mathbb{R}^d \mid x_1 a_1 + x_2 a_2 + \dots + x_d a_d + b \ge 0\},$$ where $a_i, b \in \mathbb{R}^n$, and \geq is componentwise comparison. A symmetric matrix $X \in \mathbb{R}^{n \times n}$ (or hermitian $X \in \mathbb{C}^{n \times n}$) is positive semi-definite (PSD), $X \succeq 0$, if all its eigenvalues are nonnegative, equivalently if all symmetric minors are nonnegative. PSD matrices form a convex cone. A spectrahedron is set consisting of those $x \in \mathbb{R}^d$ such that $$x_1A_1 + x_2A_2 + \cdots + x_dA_d + B \succeq 0$$, where A_i, B are symmetric (or hermitian) matrices. A polyhedron is a spectrahedron when A_i, B mutually commute (are diagonal). #### Optimization Polytopes are the natural domains of linear programs which are a critically important class of optimization problems. Semi-definite programming is a recent extension of linear programming. It gives efficient algorithms for optimizing linear functions over spectrahedra. Since linear functions pull back along (linear) projections, semi-definite programming gives efficient algorithms for optimizing linear functions over projections of spectrahedra. Because of this, it is important to understand which convex semi-algebraic sets are spectrahedra or projections of spectrahedra, together with spectrahedral representations. This question about the structure of convex semi-algebraic sets is a basic open problem in the field of convex algebraic geometry. #### Convexity The convex hull of this trigonometric curve $(\cos(\theta), \sin(2\theta), \cos(3\theta))$ #### Convexity The convex hull of this trigonometric curve has boundary consisting of two families of line segments (yellow and green) and two triangles. The extreme points are that part of the curve lying in the boundary. The triangle edges are special—they are not exposed by any linear functional. $(\cos(\theta), \sin(2\theta), \cos(3\theta))$ Each point lies in a convex hull of at most three extreme points (it is fibered by triangular and rectangular slices), so it has *Carathéodory number* 3. It is not a spectrahedron, as it has non-exposed faces, but it is a projection of a spectrahedron (the Carathéodory orbitope C_3), as we'll see. Algebraic Geometry This convex body is the bounded component of the complement of a singular cubic surface. Its faces are the four singular points, the six edges between them, and every other point in its boundary is extreme. All are exposed. This is a spectrahedron (hyperplane section of Carathéodory orbitope C_2). Its Zariski boundary is the cubic surface, while the boundary of the previous body is a reducible hypersurface of degree 21, with the green ruled surface having degree 16. # Carathéodory orbitopes The convex hull of the trigonometric moment curve, $$\{(\cos(\theta),\sin(\theta),\cos(2\theta),\ldots,\sin(d\theta))\mid\theta\in[0,2\pi)\},\$$ in \mathbb{R}^{2d} is the Carathéodory orbitope C_d , studied by Carathéodory in 1907. It is an orbitope, as $\mathbb{R}^{2d}=(\mathbb{R}^2)^d$ is a representation of the circle group SO(2) where a rotation matrix acts on the nth factor via its nth power, $$\begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}^n = \begin{pmatrix} \cos(n\theta) & -\sin(n\theta) \\ \sin(n\theta) & \cos(n\theta) \end{pmatrix}$$ Every orbitope of SO(2) is a coordinate projection of some Carathéodory orbitope, and convex hulls of trigonometric curves are projections of Carathéodory orbitopes. # Spectrahedral representation By classical results on positive trigonometric polynomials, C_d is those $(x_1, \ldots, x_d) \in \mathbb{C}^d = (\mathbb{R}^2)^d$ such that the Toeplitz matrix is PSD, $$egin{pmatrix} 1 & x_1 & x_2 & \dots & x_d \ \overline{x_1} & 1 & x_1 & \cdots & x_{d-1} \ \overline{x_2} & \overline{x_1} & 1 & & dots \ dots & dots & \ddots & x_1 \ \overline{x_d} & \overline{x_{d-1}} & \cdots & \overline{x_1} & 1 \end{pmatrix} \succeq 0 \,.$$ Theorem. C_d is a neighborly, simplicial convex body whose faces are in inclusion preserving correspondence with sets of at most d points on SO(2). It has Carathéodory number d+1. Thus SO(2)-Orbitopes are projections of spectrahedra, but not in general spectrahedra—they have non-exposed faces, by work of Smilansky and Barvinok-Novik. See also the talk of Cynthia Vinzant tomorrow. # Symmetric Schur-Horn Orbitopes Permutahedra are orbitopes for the symmetric group S_d . Specifically, let D be the diagonal $d \times d$ matrices of trace zero. Given $p, q \in D$, let $\lambda(p)$ be the components of p in nonincreasing order, and write $q \leq p$ if $$\lambda(q)_1 + \dots + \lambda(q)_k \le \lambda(p)_1 + \dots + \lambda(p)_k, \ k = 1, \dots, d-1.$$ Then the permutahedron through $p \in D$ is $$\Pi_p = \{ q \in D \mid q \le p \}.$$ Let $S_2\mathbb{R}^d$ be the space of symmetric $d \times d$ matrices with trace zero, an irreducible representation of SO(d) acting by conjugation. The symmetric Schur-Horn orbitope \mathcal{O}_M through $M \in S_2\mathbb{R}^d$ is the convex hull of the orbit $SO(d) \cdot M$. #### Non-commutative permutahedra Schur-Horn Theorem. Given $M \in S_2\mathbb{R}^d$ with diagonal $D(M) \in D$ and eigenvalues $\lambda(M)$, we have $D(M) \subseteq \lambda(M)$. In fact, $D(\mathcal{O}_M) = \Pi_{\lambda(M)}$ and $\Pi_{\lambda(M)}$ is the intersection of \mathcal{O}_M with the diagonal. Corollary. $\mathcal{O}_M = \{A \in S_2 \mathbb{R}^d \mid \lambda(A) \leq \lambda(M)\}.$ This implies a complete facial description of \mathcal{O}_M (similar to that of $\Pi_{\lambda(M)}$), as well as a spectrahedral representation using Lie algebra Schur functors (a.k.a additive compound matrices). Let $\mathcal{L}_k \colon \mathfrak{gl}(\mathbb{R}^d) \to \mathfrak{gl}(\wedge_k \mathbb{R}^d)$ be the induced map on Lie algebras. The eigenvalues of $\mathcal{L}_k(M)$ are sums of k distinct eigenvalues of M. If $l_k(M)$ is the sum of the k largest eigenvalues of M, $$\mathcal{O}_M = \{ A \in S_2 \mathbb{R}^d \mid l_k(M) I_{\binom{d}{k}} - \mathcal{L}_k(A) \succeq 0, \ k = 1, \dots, d-1 \}.$$ #### Veronese Orbitopes The Veronese map $$u_m: \mathbb{R}^d \to \operatorname{Sym}_m \mathbb{R}^d \simeq \mathbb{R}^{\binom{d+m-1}{m-1}}$$ has image the set of decomposable tensors. The Veronese orbitope $\mathcal{V}_{d,m}$ is the convex hull of an orbit of decomposable tensors, which we may take to be $\nu_m(\mathbb{S}^{d-1})$. When m=2n is even, the cone over the coorbitope $\mathcal{V}_{d,2n}^{\circ}$ is the cone of non-negative d-ary forms of degree 2n. These cones are nearly unknowable, except when d=3 and 2n=4. \Rightarrow This suggests that understanding orbitopes \mathcal{O} and their polars \mathcal{O}° will be at least as hard as understanding positive polynomials. #### Ternary Quartics The Veronese orbitope $\mathcal{V}_{3,4}$ is a 14-dimensional convex body. Since nonnegative ternary quartics are sums of squares, $\mathcal{V}_{3,4}^{\circ}$ is a projection of a spectrahedron—but not a spectrahedron, as Blekherman showed it has non-exposed faces. The boundary of $\mathcal{V}_{3,4}^{\circ}$ is the irreducible hypersurface of degree 27 cut out by the discriminant of the ternary quartic. Theorem. (Reznick) $\mathcal{V}_{3,4}$ is a spectrahedron. It equals those λ_{abc} such that $$\begin{pmatrix} \lambda_{400} & \lambda_{220} & \lambda_{202} & \lambda_{310} & \lambda_{301} & \lambda_{211} \\ \lambda_{220} & \lambda_{040} & \lambda_{022} & \lambda_{130} & \lambda_{121} & \lambda_{031} \\ \lambda_{202} & \lambda_{022} & \lambda_{004} & \lambda_{112} & \lambda_{103} & \lambda_{013} \\ \lambda_{310} & \lambda_{130} & \lambda_{112} & \lambda_{220} & \lambda_{211} & \lambda_{121} \\ \lambda_{301} & \lambda_{121} & \lambda_{103} & \lambda_{211} & \lambda_{202} & \lambda_{112} \\ \lambda_{211} & \lambda_{031} & \lambda_{013} & \lambda_{121} & \lambda_{112} & \lambda_{022} \end{pmatrix} \succeq 0.$$ and $\lambda_{400} + \lambda_{040} + \lambda_{004} + 2\lambda_{220} + 2\lambda_{202} + 2\lambda_{022} = 1$. # Thank You!