
Draft of December 22, 2009

NUMERICAL REAL ALGEBRAIC GEOMETRY

FRANK SOTTILE

Abstract. Sottile’s lectures from the Oberwolfach Seminar “New trends in algorithms for
real algebraic geometry”, November 23–28, 2009.

1. Introduction

We seek meaningful information about the non-degenerate solutions to a system

(1.1) f1(x1, . . . , xn) = f2(x1, . . . , xn) = · · · = fN(x1, . . . , xn) = 0

of N polynomial equations in n variables. We are particularly interested in the following
questions:

(a) What can be said about the number of solutions?
(b) How can we effecively compute them?

While systems with more equations that variables (N > n) arise naturally in algebraic
geometry, we restrict ourselves to systems with the same number of variables as equatios,
N = n, also called square systems.

Our ultimate goal will be to address these questions for the real solutions to a system of
equations, but we will also address them for the complex solutions. It turns out that for both
real and complex solutions, these two questions are linked. Table 1 gives the organization
of this chapter in a 2 × 2 grid.

Bounds Numerical Algorithms

C I) Bernstein’s Theorem
and Mixed Volumes

II) Numerical Homotopy Continuation
and Polyhedral Homotopies

R III) Fewnomial Bounds
and Gale Duality

IV) Khovanskii-Rolle Continuation

Table 1. Organization

We will see that theoretical bounds lead to numerical algorithms with optimal complexity,
in a suitible sense. We will also see that many important questions remain over R.

Here, a solution to a system (1.1) is non-degenerate if and only if the differentials of
the polynomials fi are linearly independent at that solution. Non-degenerate solutions are
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particularly meaningful for numerical algorithms, as they are well-behaved under pertu-
bations of the coefficients of the fi. The polynomial system is generic if all solutions are
non-degenerate.

2. Bernstein’s Theorem and Mixed Volume

The most fundamental result about the number of solutions to a system of polynomial
equations (1.1) is the classical theorem of Bézout [4].

Theorem 2.1 (Bézout, 1776). If, for each i = 1, . . . , n, the polynomial fi in (1.1) has degree

di, then there are at most d1d2 · · · dn non-degenerate complex solutions. If the polynomials

are general given their degrees, then there are exactly d1d2 · · · dn solutions.

We are interested in the case when the polynomials are not general given their degrees,
which occurs quite often in nature. For example, the discriminant of a polynomial f(x) is
the polynomial in the coefficients of f that vanishes when f(x) has a multiple root. The
discriminant of x3 + ax2 + bx + c is

4a3c − a2b2 − 18abc + 4b3 + 27c2 ,

which is not a general polynomial of degree 4 in the variables a, b, c. In particular, it only
has 5 monomials, whereas a general quartic in a, b, c has 35 monomials. Even worse, the
exponents (αa, αb, αc) of the monomials lie on the plane

αa + 2αb + 3αc = 6 .

We consider instead polynomials with given combinatorial structure determined by their
monomials. Vectors α ∈ Zn may be identified with monomials

Zn ∋ α ⇐⇒ xα := xα1
1 xα2

2 · · ·xαn

n ∈ C[x±
1 , x±

2 , . . . , x±
n ] ,

in the ring of Laurent polynomials. When α ∈ Nn has non-negative components, this is
a monomial in an ordinary polynomial ring. The support of a polynomial f is the set of
exponent vectors of monomials in f . The Newton polytope New(f) of the polynomial f is
the convex hull of its exponent vectors.

Example 2.2. The bivariate polynomial

1 + 2xy − 3xy2 − 4x2y + 5x3y

has support {(0, 0), (1, 1), (1, 2), (2, 1), (3, 1)} and its Newton polytope is

conv{(0, 0), (1, 1), (1, 2), (2, 1), (3, 1)} =

Bernstein’s Theorem concerns systems of polynomials (1.1) when the polynomials have
fixed Newton polytopes. It is in terms of a quantity called mixed volume, which we now
define.

The Minkowski sum of polytopes P1, . . . , Pm,

P1 + P2 + · · · + Pm := {x1 + x2 + · · · + xm | xi ∈ Pi, i = 1, · · · ,m}
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is their pointwise sum. In Exercise 4 you are asked to prove the following easy fact. Given
polynomials f and g,

New(f · g) = New(f) + New(g) .

Theorem-Definition 2.3. Suppose that P1, . . . , Pn are polytopes in Rn. Then

vol(t1P1 + t2P2 + · · · + tnPn)

is a homogeneous polynomial of degree n in t1, . . . , tn. The coefficient of tni in this polynomial
is the volume of Pi, and the coefficient of t1t2 · · · tn in this polynomial is the mixed volume,
MV(P1, . . . , Pn) of the polytopes P1, . . . , Pn.

We will give a proof of this result later in this lecture, and give an interpretation for all
coefficients in this polynomial. We are now ready to state Bernstein’s Theorem [2].

Theorem 2.4 (Bernstein [2]). Let f1, . . . , fn ∈ C[x±
1 , . . . , x±

n ] be Laurent polynomials. Then

the number of isolated solutions to the system

(2.5) f1(x1, . . . , xn) = f2(x1, . . . , xn) = · · · = fn(x1, . . . , xn) = 0 ,

in the torus (C×)n is at most the mixed volume of the Newton polytopes of the polynomials,

MV(New(f1), . . . , New(fn)) ,

and is equal to this mixed volume when the polynomials are general given their Newton

polytopes.

Example 2.6. For example, consider the system

f : 1 + 2xy − 3xy2 − 4x2y + 5x3y = 0

g : 1 − 2x + 3x2 − 5y + 7xy − 11xy2 = 0 .

It has 8 solutions, all non-zero, but the product of its degrees is 4 · 3 = 12. We cpompute
the corresponding mixed volume using Exercise 6, in which you are asked to show that if
P,Q ⊂ R2 are polygons, then

MV(P,Q) = area(P + Q) − area(P ) − area(Q) .

The Newton polygon P of f is the triangle of Example 2.2 and theeasy Newton polygon Q
of g is a quadrilateral. We compute their Minkowski sum,

+ = .

We see that P and Q both have area 5/2 while P + Q has area 13, so their mixed volume
is 13 − 5/2 − 5/2 = 8.

We follow an algorithmic proof of Bernstein’s Theorem given in [11], which involves three
steps.
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(1) A local computation of the solutions to a system of binomials,
(2) a degeneration to the local computation,
(3) showing that this root count equals the mixed volume.

We treat these steps in the next three subsections.

2.1. Binomial systems. Let α(1), β(1), . . . , α(n), β(n) ∈ Zn be exponent vectors of monomi-
als and a1, b1, . . . , an, bn ∈ C× be non-zero complex numbers. We consider the system of
binomial equations on (C×)n,

(2.7) aix
α(i)

+ bix
β(i)

= 0 for i = 1, . . . , n .

Setting ci := −ai/bi and γ(i) = β(i) − α(i) for each i = 1, . . . , n, this is equaivalent to

(2.8) xγ(i)

= ci for i = 1, . . . , n .

For example, the binomial system

(2.9) 7xy2 − 5x4y = 2x2y−1 + 3x−1y2 = 0 ,

is equivalent to

x3y−1 = 7/5 and x−3y3 = −2/3 .

To solve (2.8), we introduce the homomorphism

ϕ : (C×)n −→ (C×)n

x 7−→ (xγ(1)
, xγ(2)

, . . . , xγ(n)
) .

Then our system (2.8) has the form ϕ−1(c), where c = (c1, . . . , cn) ∈ (C×)n. The system
has solutions when c lies in the image of ϕ and the solutions are in bijection with the kernel
of ϕ.

The map ϕ of tori is obtained from the map of free abelian groups

Γ : Zn −→ Zn

ei 7−→ γ(i) , for i = 1, . . . , n ,

by applying the functor Hom(·, C×). (Here ei is the ith standard basis vector.) It follows
that the kernel of ϕ is

Hom(Zn/Z{γ(1), γ(2), . . . , γ(n)}, C×) .

We see that ϕ is surjective if and only if the exponents γ(1), . . . , γ(n) span a full-rank sub-
lattice of Zn, and when this occurs, the number of solutions is exactly the cardinality of the
kernel. We summarize this computation.

Lemma 2.10. The number of solutions to the binomial system (2.7) is
∣∣Zn/Z{β(1) − α(1), β(2) − α(2), . . . , β(n) − α(n)}

∣∣ .

This number is exacty the volume of the parallelepiped spanned by the vectors γ(1), . . . , γ(n),
or more intrinsically, of the Minkowski sum of line segments

α(1), β(1) , α(2), β(2) , . . . , α(n), β(n) .
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For example, the binomial system (2.9) has 6 solutions, which we may see from the paral-
lelepiped obtained from the Minkowski sum of their exponent vectors,

+ = .

2.2. Toric degenerations. We reduce counting the solutions to the system (2.5) in Bern-
stein’s Theorem to the binomial systems of Subsection 2.1 using toric degenerations.

Suppose that fi(x) is one of the polynomials in (2.5),

fi(x) =
∑

α∈New(fi)

cα,ix
α .

For each monomial xα in fi, pick an integer να,i and multiply that monomial by tνα,i , which
gives the polynomial

fi(x; t) =
∑

α∈New(fi)

cα,it
να,ixα .

We now consider the system of polynomial equations,

(2.11) f1(x; t) = f2(x; t) = · · · = fn(x; t) = 0 .

There are at least two ways to view this system.

(1) We may consider it as a system in (C×)n×C, where the parameter t lies in C. Then
it defines a curve in (C×)n ×C, and the points with t = 1 correspond to solutions of
our original system (2.5). These are all fibres of the projection to the last coordinate.
Their number is therefore the degree of the projection to the last coordinate, which
we will compute by determining the number of branches of the curve for |t| small.
We may parametrize each branch by a Puiseaux series

(2.12) X(t) = tu.X0 + higher order terms in t ,

where u ∈ Zn, tu = (tu1
1 , . . . , tun

n ) ∈ (C×)n, and X0 ∈ (C×)n.
(2) Alternatively (in fact equivalently), we consider the polynomial f(x; t) to lie in the

Laurent ring K[x±
1 , . . . , x±

n ], where

K =
⋃

m

C((t
1
m )) ,

the field of Puiseaux series in t. This is an algebraically closed field of characteristic
zero. Suppose that X(t) ∈ (K×)n is a solution to the system of polynomials in the
Puiseaux field. Then X(t) is a (vector-valued) power series as in (2.12).



6 FRANK SOTTILE

We first determine the exponents u of t. Let us expand the equation 0 = fi(X(t); t) in
powers of t,

0 = fi(X(t); t) =
∑

α∈New(fi)

cα,it
να,iX(t)α

=
∑

α∈New(fi)

cα,it
να,i

(
tu.X0 + higher order terms in t

)α

=
∑

α∈New(fi)

cα,it
να,itα·uXα

0 + higher order terms in t.

This implies that if we collect powers of t, then every coefficient vanishes, in particular, the
coefficient of the minimal power of t vanishes. But that can only happen if there are two or
more monomial terms of fi(x; t) for which this minimum is acheived.

Lemma 2.13. The set u of leading exponents for solutions X(t) (2.12) is a subset of the

set

T := {u | min{να,i + α · u | α ∈ New(fi)} is acheived at least twice} .

For every weight vector u ∈ Qn (or more generally u ∈ Rn) let the initial form iniu(fi)
be the sum of the terms cα,ix

α of fi for which να,i + α · u is minimal among all terms of f .
The initial system of (2.5) is the system

iniu(f1) = iniu(f2) = · · · = iniu(fn) = 0 .

We have seen that if tu is the lowest exponent in a solution x(y) of the lifted system, then
its coefficient X0 ∈ (C×)n is a solutio to the u-initial system, which implies that no initial
form iniu(fi) is a monomial.

The set T is an example of a tropical prevariety cite. It, and in particular its cardinality,
depends upon the choice of lifts να,i. However, for generic lifts, this is a tropical complete
intersection, which means that it consists of finitely many weights u, and for each weight
and polynomial, the minimum is attained exactly twice. That is the initial system is a
system of binomials.

Fix the lifts να,i so that the set T is a tropical complete intersection. Let u be a point of
T , and we now ask about the number of power series solutions (2.12) with initial exponents
tu. Write the initial forms as

iniu(fi) := cα(i),ix
α(i)

+ cβ(i),ix
β(i)

.

Then the initial coefficients X0 of the power series (2.12) with initial exponent u satisfy the
initial binomial system

0 = cα(i),iX
α(i)

0 + cβ(i),iX
β(i)

0 , for i = 1, . . . , n .

By Lemma 2.10 the solutions to this system are in bijection with

Zn/Z{β(i) − α(i) | i = 1, . . . , n} .

By the theory of Puiseaux series, each of these solutions X0 to the initial binomial system
may be developed into a unique Puiseaux series solution to the original (lifted) system (2.11).
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Corollary 2.14. The number of solutions to the original system (2.5), which is equal to

the number of solutions to the lifted system (2.11), is equal to
∑

u∈T

∣∣Zn/Z{β(i) − α(i) | i = 1, . . . , n}
∣∣ .

2.3. Mixed subdivisions. We show that the root count in Corollary 2.14 may be inter-
preted as the mixed volume, and give a concrete realization of mixed volume and therefore
a proof of Definition-Theorem 2.3.

For each i = 1, . . . , n set Pi = New(fi), the Newton polytope of the polynomial fi, which
lies in Rn. We also define the lift of Pi,

P+
i := conv{(α, να,i) | α ∈ Pi} ,

which is a polytope in Rn+1. The lower faces of P+
i are the faces where a linear function of

the form (x, z) 7→ x · u + z is minimized on P+
i . Write F u

i for the face of P+
i on which this

linear function is minimized. We may project these lower faces into Rn. Their images forms
a regular polyhedral subdivision of the Newton polytope Pi. Write ∆i for this subdivision.

We may similarly consider the Minkowski sum of these lifts. Set P+ := P+
1 + · · ·+P+

n . It
also has lower faces, which also project to the Minkowski sum P := P1 + · · · + Pn, forming
a regular polyhedral subdivision of P . This subdivision is called a mixed subdivision, for
its faces are Minkowski sums of faces of the subdivisions ∆i. Indeed, projection commutes
with Minkowski sum and a lower face F u of P+ on which a linear function (u, 1) acheives its
minimum is necessarily the Minkowski sum of the faces F u

i of P+
i on which (u, 1) acheives

its minimum on P+
i .

Complete this, following Huber-Sturmfels [11]. Include pictures and a nice running example.
Maybe 2-3 pages?

Exercises on Bernstein’s Theorem.

(1) What does Bernstein’s Theorem say for univariate polynomials?
(2) Solve the following binomial systems

(a) x5y3 − 2xy−1 = 5xy − x3y4 = 0.

(b) x11y − 3x3y−5 = xy13 − 7x3y4 = 0.

(c) xyz2 − x2y−1 = x3y3 − 2x−1z3 = y3 − xz3 = 0.

(d) x3w − 5y2z−3 = y3w5 − x7z = xyz − 7y5w9 = y3 − x4yz4w2 = 0.
(3) Determine the Newton polytope of each polynomial, and the mixed volume of each

polynomial systyem. Check the conclusion of Bernstein’s Theorem using a computer
algebra system such as Singular, Macualay2, or CoCoA.
(a) 1 + 2x + 3y + 4xy = 1 − 2xy + 3x2y − 5xy2 = 0.

(b)
1 + 2x + 3y − 5xy + 7x2y2 = 0

1 − 2xy + 4x2y + 8xy2 − 16x3y + 32xy3 − 64x2y2 = 0
.

(c)
2 + 5xy − x2y − 6xy2 + 4xy3 = 0

2x − y − 2y2 − xy2 + 2x2y + x2 − 5xy = 0
.
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(d)
1 + x + y + z + xy + xz + yz + xyz = 0

xy + 2xyz + 3xyz2 + 5xz + 7xy2z + 11yz + 13x2yz = 0
4 − x2y + 2x2z − xz2 + 2yz2 − y2z + 2y2x − 8xyz = 0

.

(4) Show that Newton polytopes are additive under polynomial multiplication,

New(f · g) = New(f) + New(g) .

(5) Determine the mixed volumes of each of the lists of polytopes given below and verify
Bernstein’s Theorem by solving a randomly generated polynomial system with the
given Newton polytopes.

(a) (b)

(c)

x

y

z

(d)

x

y

z

(6) Prove the following formula for the mixed area of two polygons P and Q.

MV(P,Q) = vol(P + Q) − vol(P ) − vol(Q) .

(7) Prove the following Lemma. If F (t1, . . . , tn) is a homogeneous polynomial of degree
n, then the coefficient of t1t2 · · · tn is the alternating sum,

∑

x∈{0,1}n

(−1)n−|x|F (t) .

Use this to give an expression for the mixed volume MV(P1, . . . , Pn).
(8) Find integer lifting functions and compute the corresponding mixed subdivision of

the lists of polytopes in Exercise 5.
(9) Deduce Bézout’s Theorem from Bernstein’s Theorem.

(10) Kushnirenko’s Theorem is the special case of Bernstein’s Theorem when all the
Newton polytopes are equal. Formulate a statement of Kushnirenko’s Theorem and
deduce it from Bernstein’s Theorem.

(11) For each i = 1, . . . , k let x(i) := (x
(i)
1 , . . . , x

(i)
ni ) be a list of ni variables. A polynomial

f(x(1), . . . , x(k)) has multidegree d = (d1, . . . , dk) if it has degree di in the variables
x(i), for each i = 1, . . . , k. Use Kushnirenko’s Theorem to deduce the bound for
the number of common zeroes to a system of n = n1 + · · · + nk equations that has
multidegree d.
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3. Numerical Homotopy Continuation and Polyhedral Homotopies

Homotopy continuation is a basic numerical algorithm that is fundamental to the emerg-
ing field of numerical algebraic geometry. This aims to develop numerical algorithms to
manipulate and study algebraic varieties. Besides algorithms to compute all solutions to a
system of equations (the goal of this section), Numerical Algebraic Geometry has algorithms
for the irreducible decomposition of a variety, for computing exceptional fibers of a map,
for primary decomposition, and for finding the equations of an irreducible component of a
variety. The standard references for numerical algebraic geometry are the book [19] and the
survey [18].

The importance of numerical algebraic geometry is that numerical computation is the
future of computation in algebraic geometry. The reason for this is simple. Current and
future increases in computer power will come from the greater use of parallelism, instead
of increased clock speed, which was the case until in the early 21st century. Symbolic
algorithms based upon Gröbner bases, which is the dominant paradigm for computation
in algebraic geometry, do not appear to be parallelizable, and so they will not be able to
take advantage of increases in computer power due to parallelism. In contrast, algorithms
based on numerical homotopy are trivially parallelizable, and are therefore poised to reap the
benefits of our parallel future. There is also an intellectual appeal to numerical computation.
In many cases, we are able to compute precise information (number of real solutions, degree
of embedded component, monodromy group, genus of curve, or Chern numbers) using the
inherently imprecise methods of numerical analysis and computation with floating point
numbers.

The basic idea of numerical homotopy continuation is simple: When faced with the task
of solving a system of polynomial equations,

(3.1) f1(x1, x2, . . . , xn) = f2(x1, x2, . . . , xn) = · · · = fn(x1, x2, . . . , xn) = 0 ,

don’t, at least not directly. Instead, solve a different system, perhaps one whose solutions
are easy to find (or whose solutions you already now), and then use these solutions to find
solutions to your original system (3.1).

There are two steps towards making this idea work.

(1) Design. Embedd your system (3.1) into a family of systemsparametrized by t ∈ C

called a homotopy,

H(x; t) = 0 ,

which satisfies,
• H(x; 1) is the original system, called the target system, and
• H(x, 0) is the system you know how to solve, called the start system.

(2) Tracking. Use numerical continuation to follow solutions from t = 0 to t = 1.

We discuss these steps separately in the following two subsections.

3.1. Tracking. Treat the complex numbers C as a two-dimensional real vector space R2

via (a, b) 7→ a + b
√
−1. Restricting to t ∈ R, we may regard H(x, t) = 0 as a system of 2n

real equations on R2n ×R. Assuming that the polynomials of the homotopy are sufficiently
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general, this system defines a collection of smooth directed paths in R2n × [0, 1], which we
display schemetically.

0 1

t

Then, starting with the solutions to the start system at t = 0, we track each path from
t = 0 to t = 1 to find solutions to the target system.

Path-tracking consists of iteratively constructing a sequence of points (x0, t0), (x1, t1),
. . . , (xs, ts) that lie on or near the desired path, and where 0 = t0 < t1 < · · · < ts = 1.
The transition from point (xi, ti) to (xi+1, ti+1) uses a predictor-corrector algorithm, which
proceeds in two steps: Given the initial point (xi, ti) and some steplength ∆t, the algorithm
first predicts a point (x′, ti + ∆t) near the path, and then it freezes the value of t at ti+1 =
ti +∆t, and employs Newton’s method to correct this to a point (xi+1, ti+1) sufficiently close
to the path. Such predictor-corrector algorithms are standard in numerical analysis.

There are several schemes for the predictor step; we describe a first-order predictor in
which (x′, ti + ∆t) lies on the tangent line to the arc through (xi, ti). For the correction
step, we freeze t = ti+1 = ti + ∆t for the Newton iterations.

(xi, ti)

(x′, ti + ∆t)

xi+1

t = ti + ∆t =: ti+1

More specifically, let Hx be the 2n × 2n Jacobian matrix of partial derivatives of the
functions H with respect to the variables x and Ht be the vector of partial derivatives of
H with respect to t. Then the tangent line to the arc H(x; t) = 0 at a point (xi, ti) has
direction the kernel of the matrix [Hx(xi, ti) : Ht(xi, ti)]. The point (xi +∆x, ti +∆t) along
the tangent line is found by solving the equation

[Hx(xi, ti) : Ht(xi, ti)] ·
[
∆x

∆t

]
= 0 .

Multiplying on the left by Hx(xi, ti)
−1 and solving for ∆x, we get

(3.2) ∆x = −∆tHx(xi, ti)
−1Ht(xi, ti) .

For the corrector step, we add the equation t = ti+1 to the other equations H(x, t) = 0
to get a square system and then use Newton’s method to refine the approximate solution
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(x′, ti+1). Newton’s method uses the linear approximation

Λ(x′ + ∆x) = H(x′, ti+1) + Hx(x
′, ti+1) · ∆x

to find ∆x so that Λ(x′ + ∆x) = 0, which is

∆x = −Hx(x
′, ti+1)

−1 · H(x′, ti+1) .

When the point (x′, ti+1) is sufficiently close to a solution of H(x, ti+1), Newton’s method
converges quite rapidly, doubling the precision at each step.

If the correction fails to converge after a fixed number (e.g.two) iterations of Newton’s
method, the stepsize is halved and the algorithm returns to the prediction, recomputing
∆x (3.2) and then applying Newton iterations. Conversely, if correction succeeds, ∆t is
doubled. This adaptive steplength heuristic provides a balance between speed and security
in actual path tracking.

Remark 3.3. Since (xi, ti) does not necessarily lie on the path but instead is close to it,
we are not actually computing points on a tangent line to the curve H(x, t) = 0, but rather
on the tangent line to the nearby curve H(x, t) = H(xi, ti).

Observe that both the predictor and the corrector steps require that we compute the
inverse of the Jacobian matrix Hx at the points generated in the algorithm. Thus the
numerical efficiency and accuracy of these computations depends strongly on how close this
Jacobian is to being singular. This is typically measured by the condition number of the
Jacobian matrix Hx, which is

‖Hx‖ · ‖Hx‖−1 ,

where ‖.‖ is any (fixed) matrix norm. In numerical analysis, ‖.‖ is typically the matrix
norm induced by the usual Euclidean norm on R2n so that ‖A‖ is the least singular value
of A, and the condition number of A is then the ratio of its largest to its smallest singular
values.

3.2. Homotopies. While path-tracking is a more-or-less standard procedure in numerical
analysis, finding a homotopy to solve a given set of equations is more of an art form.
Fortunately, in algebraic geometry we often study varieties that naturally live in families,
and this extends to natural families of systems of equations. We also often study varieties
by degenerating them into simpler varieties—such degenerations were at the heart of the
proof of Bernstein’s Theorem that we gave in Section 2. Such families and degenerations
of systems lead naturally to homotopies that are optimal for solving the equations from a
given family.

The general challenge when designing a homotopy to solve a system of polynomials is
to find a homotopy that connects the target system to a start system that we can solve,
while ensuring that each solution in target system is connected to a solution in the start
system. This guarantees that all solutions to the target system will be found by tracing
paths from the solutions to the start system. Geometrically, H(X, t) = 0 should define
a curve in Cn × C whose components project dominantly onto the last factor and which
is smooth above the point 0 ∈ C. Restricting this last coordinate to a real curve γ in C

connecting 0 to 1 gives paths that may be tracked.
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The homotopy is optimal if each solution to the start system is connected to a unique
solution to the target system along a smooth arc. This is illustrated below in Figure 1.
Optimality ensures that there are no extraneous paths to be followed when finding all

0 1

t

optimal
0 1

not optimal

t

0 1
not optimal

t

Figure 1. Optimal and non-optimal homotopies

solutions to the target system. We describe three optimal homotopies.

3.2.1. Cheater Homotopy. As we noted, many systems of equations occur in well-defined
families in which each system has the same number of solutions. This situation is common in
enumerative geometry which also typcally gives rise to non-square (N > n in (1.1)) systems.
Given such a family, if you have one solved instance, then this may be bootstrapped to solve
other related systems.

For example, suppose that F (x, s) = 0 is a family of systems depending on a parameter
s, which we will take to lie in some variety S. If we have the solutions to F (x, s0) = 0
for some fixed s0 ∈ S, but want solutions for a given parameter s1, we may find a real
path γ : [0, 1] → S with γ(0) = s0 and γ(1) = s1, and then construct the homotopy
H(x, t) = F (x, γ(t)). If the two points s0 and s1 correspond to general members of the
family and if the path γ is chosen sufficiently general, then this will define an optimal
homotopy.

This selection is particularly straightforward when the space of parameters is Cn, for
then, we may simply let γ be the straight line connecting s0 to s1, γ(t) = (1 − t)s0 + ts1.
This gives the straight-line homotopy

H(x, t) = (1 − t)F (x, s0) + tF (x, s1) .

In the exercises, you are invited to explore a well-known shortcoming in the straight-line
homotopy, together with a remedy which is often used in practice.

Cheater homotopies got their name because they do not involve clever design; one simply
exploits the properties of a given family of systems. The name is however misleading, for
cheater homotopies are an integral part of any numerical homotopy software. One reason
is that the software first solves a random instance of the system of equations, which almost
surely has no singularities and has the expected number of solutions. These solutions
are then used as the input for a cheater homotopy that connects this general system to
the particular one whose solutions are desired. In this way special (and computationally
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expensive) routines to handle possible non-optimality of the paths are only employed in the
second homotopy. Another reason is that numerical homotopy continuation is used for far
more than merely solving systems of equations, and these other uses often rely upon cheater
homotopies. (Their ubitquity is one reason they are also called parameter homotopies.)

3.2.2. Bézout Homotopy. The Bézout homotopy is conceptually the simplest homotopy and
is a special case of a cheater homotopy. To solve a system

(3.4) f1(x1, . . . , xn) = f2(x1, . . . , xn) = · · · = fn(x1, . . . , xn) = 0 ,

where the polynomial fi has degree di for i = 1, . . . , n, we instead solve the system

(3.5) xd1
1 − 1 = xd2

2 − 1 = · · · = xdn

n − 1 = 0 .

This has the d1d2 · · · dn solutions

(ζk1
1 , ζk2

2 , . . . , ζkn

n ) for all 0 ≤ ki ≤ di − 1 , i = 1, . . . , n ,

where ζi = e2π/di is a primitive dith root of unity. The Bézout homotopy is then the
straight-line homotopy between the two systems (3.4) and (3.5). That is,

hi(x, t) := (1 − t)fi(x) + t(xdi − 1) , for i = 1, . . . , n .

3.2.3. Polyhedral Homotopy. This homotopy is substantially more refined than the previous
two. It is based on the proof we saw of Bernstein’s Theorem, and it is optimal for solving
sparse systems of equations. Both it and the algorithmic proof of Bernstein’s Theorem were
introduced in the seminal article [11]. The current fastest continuation software for solving
systems of equations as of 2009 relies on polyhedral homotopy

Follow the Huber-Sturmfels paper
Make sure to state a Theorem about the optimality of polyhedral homotopy. Mention the

combinatorial complexity of computing mixed decompositions. ?Include Schubert example to
illustrate the non-univerality of polyhedral homotopies?

Exercises on Homotopy Continuation.

(1) Suppose that we use the straight-line homotopy

H(x; t) = t(x2 − x − 1) + (1 − t)(x2 − 1) for t ∈ [0, 1]

to compute the golden ratio numerically. Sketch the path taken by the roots of
H(x; t) for t ∈ [0, 1]. Discuss the suitability of the predictor-corrector path tracking
algorithm for this homotopy.

(2) For an arbitrary complex number θ ∈ C, consider the homotopy

H(x; t) = t(x2 − x − 1) + θ(1 − t)(x2 − 1) for t ∈ [0, 1] .

Sketch the paths taken by the roots of H(x; t) for t ∈ [0, 1] for different values of θ.

(For example, θ ∈ {ei 3π
4 , ei π

2 , ei π
4 , ei π

6 }.)
(3) Interpreting the coefficents of vectors v and w in a convex combination τv+(1−τ)w

as points in CP1, plot curves tv+θ(1− t)w for t ∈ [0, 1] and different values of θ, say
those in the previous exercise together with θ = 1, in CP1. That is, plot t/(t(1−θ)+θ)
for t ∈ [0, 1].
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(4) Download and install PHCPack, Hom4PS2, and Bertini onto a computer, and test
them on a suite of polynomial systems in three variables of your choosing. Compare
their performance. Push your computer, and look for the limits of computability.

Bonus: Install Singular or Macaulay2 or CoCoA, and try to compute the dimension
and degrees of the varieties defined by the equations from the first part of this
exercise.
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4. Fewnomial Bounds and Gale Duality

The first two sections dealt with bounds for the number of complex solutions to systems of
equations and optimal numerical algorithms based on those bounds. In this section and the
next, we turn to the real numbers, beginning with bounds on the number of real solutions to
a system of equations. The gold standard in this topic is Descartes’ bound which is derived
from his rule of signs. Both appeared in his 1637 treatise La Géométrie [10].

Theorem 4.1 (Descartes). Suppose that a0 < a1 < · · · < al are integers. Then the number

of positive solutions (x ∈ R>0) to

c0x
a0 + c1x

a1 + · · · + clx
al = 0 ,

where the coefficients cj are nonzero, is at most the number of sign changes in the coeffi-

cients,

#{i | ci−1 · cj < 0} .

We deduce Descartes’ bound.

Corollary 4.2. The number of positive roots of a univariate polynomial with k + 1 terms

is at most k.

Descartes’ bound is sharp, as may be seen from the polynomial

k∏

i=1

(x − i) ,

which has degree k, and hence k+1 terms, and k positive roots.
In 1980, Khovanskii gave a multivariate generalization of Descartes’ bound [12, 13].

Theorem 4.3. The number of non-degenerate positive solutions to a system

(4.4) f1(x1, x2, . . . , xn) = f2(x1, x2, . . . , xn) = · · · = fn(x1, x2, . . . , xn) = 0 ,

of n polynomials in n variables with a total of n + l + 1 monomial terms is at most

2(n+l

2 )(n + 1)n+l .

This was a remarkable theorem, as it showed that the number of real solutions has a
completely different character than the number of complex solutions. It is also a special
case of a much more general bound he established involving quasi-polynomials and Pfaff
functions. Consequently, Khovanskii’s bound is enormous. For example, when n = l = 2,

the bound is 2(
4
2)34 = 5184 for the number of positive solutions to a system of two equations

in two unknowns, having a total of five monomial terms.
Let χ(n, l) be the maximum number of non-degenerate positive solutions to a system of

n polynomials in n variables having a total of l + n + 1 monomials. Khovanskii showed

that χ(n, l) ≤ 2(n+l

2 )(n + 1)n+l. While it was widely believed there was considerable slack in
this bound, no improvements were found until quite recently. Not only has a smaller bound
been found, but also a lower bound in the form of a construction which shows that this new
bound is asymptotically sharp, in a certain sense.
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Theorem 4.5 ([3, 5, 6, 7]).
e2 + 3

4
2(l

2)nl > χ(n, l) ≥ l−lnl .

This upper bound is an improvement over the bound of Khovanskii; when (n, l) = (2, 2),
this bound becomes

e2 + 3

4
2(2

2) · 22 ≥ 2.597 · 21 · 22 ≥ 20.77 .

This can be further improved to 15 by simplifying a complicated expression from which the
bound of Theorem 4.5 was obtained.

A reason for this parametrization (n variables, n+l+1 monomials) is that when l =
0, there is a change of coordinates so that the system (4.4) becomes a system of linear
equations, which has either 1 or 0 positive solutions. For the case case l = 1, we have a
bound n+1 ≥ χ(n, l) [3], which is sharp by Bihan’s construction of systems for any n having
n+1 positive solutions [5]. The general case was treated in [7], giving the upper bound,

e2 + 3

4
2(l

2)nl > χ(n, l) .

The method employed to derive these new bounds is to first transform the system into an
equavalent Gale dual system and then use Khovanskii’s generalization of Rolle’s Theorem
to estimate the number of solutions to this new system. We will derive these new bounds
in the next two subsections. A construction of systems in km variables with km+k+1
distinct monomials having (m+1)k positive solutions was given in [6] using the construction
in [5]. This gives the lower bound χ(n, l) ≥ l−1nl. We present this construction in the last
subsection in this section.

These bounds show that, for l fixed and n large, the number χ(n, l) has order nl. It
remains an open problem to tighten the inequality of Theorem 4.5 and also to give any
asymptotic bound when n is fixed and l is large. The first place to look for an improvement
is when (n, l) = (2, 2) for which there is a gap 15 ≥ χ(2, 2) ≥ 5 between known bounds and
constructions. The exercises explore these bounds.

4.1. Gale duality for polynomial systems. The upper bound for χ(n, l) of Theorem 4.5
is actually an upper bound for the number of positive solutions to a system of rational
functions, called a Gale system. We establish that upper bound in the next subsection.
Here, we show how to transform a system of polynomials into an equivalent Gale system.

Let A = {0, a1, . . . , an+l} ⊂ Zn be a collection of exponent vectors for Laurent poly-
nomials. Suppose that we have a system of n polynomial equations (4.4) in which every
polynomial fi has support A, and therefore the system has n+l+1 monomials in all. We
want to estimate the non-degenerate positive solutions to this system. This number will
not decrease if we perturb the coefficients of the polynomials, so we may assume that all
solutions are simple, and the coefficients are general.

We can solve these equations for the monomials xa1 , . . . , xan to get an equivalent system

xai = ci,0 + ci,1x
an+1 + · · · + ci,lx

an+l(4.6)

= pi(x
an+1 , xan+2 , . . . , xan+l) , for i = 1, . . . , n .
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where pi(y1, . . . , yl) = ci,0 + ci,1y1 + · · ·+ ci,lyl is an affine linear polynomial for i = 1, . . . , n.
For i = 1, . . . , l, define the affine polynomial

pn+i(y1, y2, . . . , yl) := yi .

An integer linear relation on A,

(4.7) bia1 + b2a2 + · · · + bn+lan+l = 0 ,

where b = (b1, . . . , bn+l) ∈ Zn+l, gives the consequence of (4.6),

1 =
n+l∏

i=1

(xai)bi =
n+l∏

i=1

(
pi(x

an+1 , . . . , xan+l)
)bi

=:
(
p(xan+1 , . . . , xan+l)

)b
.

Thus if b(1), . . . , b(l) ∈ Zn+l is a basis for the free abelian group of all linear relations (4.7),
we have the consequence of (4.6),

1 =
(
p(xan+1 , . . . , xan+l)

)b(j)
j = 1, . . . , l .

Let us introduce new variables y = (y1, . . . , yl) ∈ Cl and consider the system

(4.8) 1 =
(
p(y1, y2, . . . , yl)

)b(j)
j = 1, . . . , l ,

in the set where
∏

i pi(y) 6= 0. We call this the Gale (dual) system, as its exponents come
from the vector configuration Gale dual to the exponents A. The reason for introducing
this new Gale system (4.8) is that it is equivalent to the original system (4.4).

Theorem 4.9 ([8]). Suppose that A spans the integer lattice of all exponents, that is, ZA =
Zn. Then the association yi = xan+i for i = 1, . . . , l gives a scheme-theoretic isomorphism

between solutions to the polynomial systems (4.4) or (4.6) in (C×)n and solutions to the

Gale system (4.8) in the region {y ∈ Cl | pi(y) 6= 0, i = 1, . . . , n+l}.
When ZA has odd index in Zn, this association yi = xan+i is a scheme-theoretic iso-

morphism between real solutions to the two systems, and in general the association is an

isomorphism between positive solutions to the polynomial systems (4.4) and solutions to the

Gale system in ∆ := {y | pi(y) > 0, i = 1, . . . , n+l}.

Example 4.10. Let A = {(4,−1), (3, 2), (4, 1), (1, 2), (0, 0)} ⊂ Z2, which we display below.

Suppose that we have the system of polynomial equations

(4.11)
2x4y−1 − 3x3y2 − 4x4y + xy2 − 1

2
= 0

x3y2 + 2x4y − xy2 − 1
2

= 0
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in the torus (C×)2, which has support A. Here n = l = 2 and m = 0. We may diagonalize
this to obtain

x3y2 = x4y−1 − x4y − 1
2

=: p1(x
4y−1, x4y) ,

xy2 = x4y−1 + x4y − 1 =: p2(x
4y−1, x4y) .

Let s, t be new variables and set p3(s, t) := s and p4(s, t) := t.
Note that

(x3y2)−1(xy2)3(x4y−1)2(x4y)−2 = (x3y2)3(xy2)−1(x4y−1)(x4y)−3 = 1 ,

and so the vectors b(1) := (−1, 3, 2,−2) and b(2) := (3,−1, 1,−3) are integer linear relations
on A. Since ZA = Z2 and b(1), b(2) are a basis for the free abelian group of integer linear
relations on A, by Theorem 4.9 the polynomial system (4.11) in (C×)2 is equivalent to the
Gale system

(4.12)
s2t−2(s − t − 1

2
)−1(s + t − 1)3 = 1

st−3(s − t − 1
2
)3(s + t − 1)−1 = 1 ,

where st(s+t−1)(s−t− 1
2
) 6= 0. We display these two systems in Figure 2, drawing also the

excluded lines. Each system has three solutions with the positive solution to the polynomial
equation coresponding to the solutions of the Gale system lying in the quadrilateral ∆.

x = 0

y = 0

s = 0

t = 0

s + t − 1 = 0

s − t − 1
2

= 0

Figure 2. The polynomial system (4.11) and the Gale system (4.12).

Remark 4.13. There is no relation between the two pairs of curves in Figure 2. Only the
three common points of intersection are related by the Gale duality of Theorem 4.9.

4.2. Proof of fewnomial upper bound. By Gale duality (Theorem 4.9), to establish the
upper bound in Theorem 4.5, it suffices to prove the following result.

Theorem 4.14. Let p1(y), . . . , pn+l(y) be affine linear polynomials that, together with the

constant polynomial 1, span the space of affine linear polynomials on Rl. For any linearly

independent vectors B = {b(1), . . . .b(l)} ⊂ Zn+l, the number of solutions to

(4.15) 1 =
(
p(y)

)b(j)
for j = 1, . . . , l ,
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in the region ∆ := {y ∈ Rl | pi(y) > 0 for i = 1, . . . , n + l} is at most

e2 + 3

4
2(l

2)nl .

Our proof of this Theorem is as easy as 1-2-3.

4.2.1. One idea. The primary tool in establishing these bounds is Khovanskii’s generaliza-
tion of Rolle’s classical theorem from elementary calculus. We begin with some definitions.
Let ∆ be an open subset of Rl whose boundary is piecewise algebraic. For functions f1, . . . , fs

on ∆, let

V∆(f1, . . . , fs) := {y ∈ ∆ | fi(y) = 0 for i = 1, . . . , s} ,

be their common zeroes. If C is a curve in ∆, let ubc∆(C) be the number of unbounded
components of C in ∆.

Theorem 4.16 (Khovanskii-Rolle). Let f1, . . . , fl be smooth functions defined on a domain

∆ ⊂ Rl where the first l−1 functions, f1, . . . , fl−1 define a smooth curve C = V∆(f1, . . . , fl−1)
with finitely many components which meets the zero set V∆(J) of the Jacobian determinant

J of f1, . . . , fl in finitely many points. Then V∆(f1, . . . , fl) is finite with

(4.17) #V∆(f1, . . . , fl) ≤ ubc∆(C) + #V∆(f1, . . . , fl−1, J) .

This is not the Khovanskii-Rolle Theorem in its complete generality, but rather in the
form which we use. This form follows from the usual Rolle Theorem. Suppose that fl(a) =
fl(b) = 0, for points a, b on the same component of C. Let s(t) be the arclength along this
component of C, measured from a point t0 ∈ C, and consider the map,

C −→ R2

t 7−→ (s(t), fl(t)) .

This is the graph of a differentiable function g(s) which vanishes when s = s(a) and s = s(b),
so there is a point s(b) between s(a) and s(b) where its derivative aso vanishes, by the usual
Rolle Theorem. But then c lies between a and b on that component of C, and the vanishing
of g′(s(c)) is equivalent to the Jacobian J vanishing at c.

Thus along any arc of C connecting two zeroes of fl, the Jacobian vanishes at least once.

C = V∆(f1, . . . , fl−1)

fl = 0

V∆(f1, . . . , fl−1, J)³³³)
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4.2.2. Two Reductions. We make two assumptions about the degree 1 polynomials pi(y)
and the exponents b(j) that appear in (4.15).

(1) Without any loss of generality, we may assume that the hyperplanes defined by
pi(y) = 0 for i = 1, . . . , n+l meet with nornal crossings, and that this is also true
at infinity—they meet the hyperplane at infinity with normal crossings. This means
that any j of the hyperplanes (including the hyperplane at infinity) either have
empty intersection or they meet in an affine space of codimension j.

This may be arranged by simply perturbing the affine linear polynomials pi(y),
which will not affect the number of nondegenerate real solutions to (4.15).

(2) Without any loss of generality, we may assume that the matrix B whose rows are
b(1), . . . , b(l) is general in that each of its minors is non-singular.

This may also be arranged by simply perturbing the exponents b(j). However,
the perturbation requires some justification. First observe that we may replace the
affine linear polynomials pi(y) by their absolute values, |pi(y)|, and get the system

1 =
∣∣p(y)

∣∣b(j) for j = 1, . . . , l ,

which defines the same set in ∆, but may have more zeroes outside of ∆.
In these new equations, it does not matter that the exponents are integral, and

they may be perturbed to obtain real number exponents whose matrix B has all
minors non-singular. We may even assume that these new exponents b(j) are rational
vectors, as any real number is approximated by rationals. Lastly, we may clear
denominators in these rational exponents to obtain integer exponents, and then
safely drop the absolute values and assume that we have our original system (4.15),
but whose exponents are sufficiently general.

4.2.3. Three Lemmata. We will find it useful to replace the system (4.15) of rational func-

tions by equivalent systems of polynomials and of logarithms. For each j = 1, . . . , l, let b
(j)
±

be the coordinatewise maximum of ±b(j) and the 0 vector, and define the polynomial

(4.18) fj(y) :=
(
p(y)

)b
(j)
+ −

(
p(y)

)b
(j)
− =

(
pb(j) − 1

)(
p(y)

)b
(j)
− ,

as well as the transcendental function

ψj(y) := log
∣∣p(y)

∣∣b(j) =
n+l∑

i=1

b
(j)
i log |pi(y)| .

We use these functions to define varieties µj for each j = 1, . . . , l. Set

µj := V(f1, . . . , fj) .

This is an algebraic variety, which, outside of the hyperplanes pi(y) = 0, is also defined as
V(ψ1, . . . , ψl). We will also regard the polyhedron ∆ as possibly having one of its facets be
the hyperplane at infinity, so that it has n+l+1 facets.

Lemma 4.19. The variety µj has codimension j and is smooth outside the hyperplanes

pi(y) = 0. It meets the boundary ∂∆ of ∆ in a union of codimension j faces of ∆ and in

the neighborhood of any point of µj ∩ ∂∆, µj has exactly one branch in ∆.
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The smoothness is guaranteed by the genericity of the degree 1 polynomials, while the
other properties make use of the assumptions on the exponents. This is deduced in [7].

Define Jacobians Jl, Jl−1, . . . , J1 by downward induction on j by setting Jj to be the
Jacobian determinant of the functions ψ1, . . . , ψj, Jj+1, . . . , Jl.

Lemma 4.20. The Jacobian Jj is a rational function with denominators the degree 1 poly-

nomials pi(y). If we clear denominators,

J̃j = Jj ·
(n+l∏

i=1

pi(y)
)2l−j

,

we obtain a polynomial of degree 2l−j · n.

This follows from expanding the Jacobian determinant using the Binet-Cauchy Theorem,
and a proof is given in [7].

For the third lemma, set Cj := µj−1∩V(J̃j+1, . . . , J̃l), which is defined in ∆ by µj−1 and the
Jacobians Jj+1, . . . , Jl. We may ensure this is a smooth curve by perturbing the polynomials

J̃i without invalidating the conclusions of the Khovanskii-Rolle Theorem. (Details for this
are similar to the arguments given in [9].) Since V∆(fj) = V∆(ψj), the Khovanskii-Rolle
Theorem implies that

(4.21)
#V∆(f1, . . . , fl) ≤ ubc(Cl) + #V∆(f1, . . . , fl−1, Jl)

≤ ubc(Cl) + · · · + ubc(C1) + #V∆(J1, . . . , Jl) .

Observe that by Lemma 4.19, the points where Cj meets the boundary of ∆ are a subset

of the points on the codimension j faces F of ∆ where the polynomials J̃j+1, . . . , J̃l vanish.
By our assumption on the degree 1 polynomials, these faces are where j of the pi(y) vanish.

The last lemma provides three estimates for these numbers. The first two use Bézout’s

Theorem, replacing the Jacobian Ji by the polynomial J̃j (see the discussion following
Proposition 5.9), and the last is a simple combinatorial argument.

Lemma 4.22. With the above definitions we have,

(1) #V∆(J1, . . . , Jl) ≤ 2(l

2)nl .

(2) ubc(Cj) ≤ 1

2

(
n+l+1

j

)
nl−j2(l−j

2 ) .

(3)

(
n+l+1

j

)
nl−j2(l−j

2 ) ≤ 2(l

2)nl · 2j−1

j!
.

We complete the proof of Theorem 4.14. By (4.21) and Lemma 4.22,

(4.23)

#V∆(f1, . . . , fl) ≤ 1
2

(∑l
j=1

(
n+l+1

j

)
nl−j2(l−j

2 )
)

+ 2(
l

2)nl

≤ 2(l

2)nl ·
(
1 + 1

2

∑l
j=1

2j−1

j!

)

< 2(l

2)nl ·
(
1 + 1

2

∑∞
j=1

2j−1

j!

)

= 2(
l

2)nl ·
(
1 + e2−1

4

)
= e2+3

4
2(l

2)nl .
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4.3. Lower bound for χ(n, l). We establish the lower bound for χ(n, l) of Theorem 4.5,
which is based on Bihan’s construction of a system of n polynomials in n variables with
n + 2 distinct monomials that has n+1 positive solutions.

Theorem 4.24 ([6]). For any positive integers n, l with n > l, there exists a system of n

polynomials in n variables involving n+l+1 distinct monomials and having
⌊

n+l
l

⌋l
nonde-

generate positive solutions.

Proof. We will construct such a system when n = lm, a multiple of l, from which we may
deduce the general case as follows. Suppose that n = lm + k with 1 ≤ k < l and we
have a system of ml equations in ml variables involving ml+l+1 monomials with (m+1)l

nondegenerate positive solutions. We add k new variables x1, . . . , xk and k new equations
x1 = 1, . . . , xk = 1. Since the polynomials in the original system may be assumed to
have constant terms, this gives a system with n polynomials in n variables having n+l+1

monomials and (m+1)l =
⌊

n+l
l

⌋l
nondegenerate positive solutions. So let us fix positive

integers l,m and set n := lm.

Bihan [5] showed there exists a system of m polynomials in m variables

f1(y1, . . . , ym) = · · · = fm(y1, . . . , ym) = 0

having m+1 positive solutions, and where each polynomial has the same m+2 monomials,
one of which we may take to be a constant.

For each k = 1, . . . , l, let yk,1, . . . , yk,m be m new variables and consider the system

f1(yk,1, . . . , yk,m) = · · · = fm(yk,1, . . . , yk,m) = 0 ,

which has m+1 positive solutions in (yk,1, . . . , yk,m). As the sets of variables are disjoint, the
combined system consisting of all lm polynomials in all lm variables has (m+1)l positive
solutions. Each subsystem has m+2 monomials, one of which is a constant. Thus the
combined system has 1 + l(m+1) = lm+l+1 = n+l+1 monomials. ¤

4.4. Open Questions. We close this section with three questions.

(1) In the bound χ(n, l) ≤ e2+3
4

2(l

2)nl, the term 2(
l

2) is perhaps unnecessarily large. Can
this be lowered, or perhaps replaced by ln?

(2) We suggested the term ln, as there are constructions with O(ln) solutions. Is it
possible to construct a system of fewnomials with more than ln solutions?

(3) Can these new fewnomial methods be used to get better bounds on the topology of
fewnomial systems, perhaps along the lines of Basu’s chapter?

Exercises on Fewnomials.

(1) Compute the number of non-zero complex solutions to the system

10x106 + 11y53 − 11y = 10y106 + 11x53 − 11x = 0 .

How many of them are real?
(2) Give a system involving the monomials 1, x, y, xyz8, z, z2, z3 that has 9 or more

real solutions. Can you find a system with more real solutions?
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(3) Exhibit a system of two polynomials in the variables x, y involving a total of 4
different monomials that has three positive real solutions.

(4) Exhibit a system of three polynomials in the variables x, y, z involving a total of 5
different monomials that has four positive real solutions.

(5) Find a system Gale dual to each system of functions below. For each, also compute
the number of complex solutions (non-zero, and off the hyperplanes), the number of
real solutions, and the number of positive solutions.

(a)

{
1 + 3x3y − 6x2y2 + 5y3 = 0

4 + 5x3y − yx2y2 − 9y3 = 0

(b)





2 − 3xy3 + 4x2z + x2y2 − 6y3 + 11xy2z5 = 0

6 + 2xy3 − x2z + 2x2y2 + 7y3 − 6xy2z5 = 0

−1 − xy3 + 3x2z − 3x2y2 + 2y3 + 3xy2z5 = 0

(c)

{
x−1(x + y − 1)y−1(x + 2y − 6)2(y + 2z − 6) = 1

x(x + y − 1)−3y2(x + 2y − 6)(y + 2z − 6)−2 = 1

(d)

{
x2(x + y − 1)3y(x + 2y − 6)2(y + 2z − 6) = 1

x−4(x + y − 1)3y(x + 2y − 6)−2(y + 2z − 6)−3 = 1

(e)

{
x(x + y − 1)7y(x + 2y − 6)5(y + 2z − 6)3 = 1

x−6(x + y − 1)−4y2(x + 2y − 6)−3(y + 2z − 6)−6 = 1

(6) Challenge project: Construct a system of two polynomials in two variables, having a
total of 5 monomials that has six or more real positive solutions. That is, show that
χ(2, 2) ≥ 5.
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5. Khovanskii-Rolle Continuation

The method of numerical homotopy continuation was presented in Section 3. This finds
all complex solutions to a system of polynomial equations. The need to avoid singularities
forces homotopy to be an intrincically complex-number algorithm. If only real solutions
are desired, as is often the case in applications, this may be rather inefficient, especially
for fewnomial solutions which may have only a handful of real solutions among their many
complex solutions. The many-body problem in celestial mechanics gives problems of this
nature. In [16], the polyhedral homotopy method as implemented in HOM4PS-2.0 [15] was
used to classify isolated stable central configurations of five equal masses. The Bernstein
number for this problem is 439, 690, 761, which was the number of paths followed. However,
only 258 led to positive real (hence physically meaningful) solutions.

There are, however, numerical algorithms which only find real solutions to systems of
equations and for which the computation is largely to entirely real. One such class are
subdivision algorithms, which recursively subdivide a domain searching for real solutions.
We discuss these briefly below. A completely different type of algorithm was developed
by Lasserre, Laurent, and Rostalski [14] to compute the real radical of an ideal. This is
described in Laurent’s chapter. A third algorithm is Khovanskii-Rolle continuation [1] to
which we devote this section.

A subdivision algorithm is based on an exclusion test, which is a certificate that a system
of polynomials has no common solutions in a given region. For example, the positivestellen-
satz can give a certificate that a list of polynomials has no solutions in a given semialgebraic
set. The elementary step in an exclusion algorithm involves trying to generate a certificate
for a system of polynomials to have no solutions on a domain ∆. If the algorithm succeeds
in generating a certificate, it stops; otherwise, it subdivides ∆ into smaller domains and
calls itself on each subdomain.

In this way, a tree is generated whose leaves represent the smallest subdomains yet com-
puted which may contain common zeroes. When a threshold in their size is reached, the
algorithm terminates and outputs these smallest domains as approximate solutions, perhaps
calling another algorithm to certify that these domains contain solutions.

Subdivision algorithms are only as good as their exclusion tests. One very attractive
class of tests are based on the Bernstein basis from geometric modeling as explained in
Roy’s chapter on certificates of positivity. Such a subdivision algorithm was proposed and
implemented by Mourrain and Pavone [17].

In all three of these algorithms, as well as in the polyhedral homotopy algorithm, we
see how theoretical advances lead to good numerical algorithms. For Khovanskii-Rolle
continuation, the theoretical advance is the Khovanskii-Rolle Theorem 4.16, which gives
an inductive step to find solutions to a system f1 = · · · = fl = 0 using curve-tracing and
solutions to the system f1 = · · · = fl = J = 0, where J is the Jacobian of the first system.
The Khovanskii-Rolle algorithm solves a fewnomial system by first converting it into a Gale
dual system, which is solved using this inductive step organized globally as in the proof of
the fewnomial bound in Subsection 4.2. Here, we first describe curve-tracing, then give the
inductive step based on the Khovanskii-Rolle Theorem before presenting the full algorithm
for solving Gale systems, and we close with a carefully worked example.
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5.1. Curve-tracing. The fundamental computation in numerical homotopy continuation is
tracking a directed, implicitly-defined path in R2n×[0, 1] from t = 0 to t = 1 using perdictor-
corrector methods. For Khovanskii-Rolle continuation, the fundamental computation is
tracing an undirected curve using predictor-corrector methods. While similar, a difference
is that in path-tracking, as employed in homotopy methods, there are several safeguards to
help ensure that the algorithm correctly tracks the paths.

We may trace a curve C that is implicitly defined in a domain ∆ ⊂ Rl by l− 1 functions,

C = V∆(f1, . . . , fl−1) ,

starting from a point c0 ∈ C. For this, we also need a steplength δ and a vector v0 encoding
the approximate direction of motion along C. Using a tangent predictor, we first compute a
unit length tangent vector τ to the curve C at c0—this generates the kernel of the Jacobian
at c0,

∂(f1, . . . , fl−1)

∂(x1, . . . , xl)
(c0) .

There are two such unit tangents and we choose the one pointing in the direction of v0, in
that v0 · τ > 0. Then we set cp := c0 + δτ .

δ

v0
τ

cp = c0 + δτ

c1
c0

L = 0

C

The point cp is near the curve C. To improve this approximation, choose an affine equation
L(x) = 0 that vanishes at cp and is transverse to the tangent direction τ , for example

L(x) := τ · (x − cp) .

Adding L to the functions f1, . . . , fl−1 gives a square system F with cp close to a solution
of F (x) = 0. Newton iterations beginning with cp yield a nearby point c1 on C. Then
the point c1 and the direction τ may be used as input for a subsequent predictor step to
continue tracing C in the same direction. As with path-tracking, adaptive steplength may
be employed to improve the efficiency of curve-tracing.

In this way, given a point c on a curve C and tangent direction at c, we may trace
the component of C containing c in the given direction until some stopping criterion is
attained, such as leaving the domain ∆ or returning to c, or finding a solution on C to
another equation.

5.2. Continuation step. Recall the inequality in the Khovanskii-Rolle Theorem,

(4.17) #V∆(f1, . . . , fl) ≤ ubc∆(C) + #V∆(f1, . . . , fl−1, J) ,

where f1, . . . , fl are functions defined in a domain ∆ ⊂ Rn with Jacobian J and where
C is the curve cut out by f1, . . . , fl−1. We used this inequality to derive the fewnomial
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bound. The main idea in Khovanskii-Rolle continuation comes from the proof of the in-
equality (4.17), which implies that, given the points V∆(f1, . . . , fl−1, J) and the points
where C meets the boundary of ∆, we may use curve-tracing along C to find all points in
V∆(f1, . . . , fl).

Algorithm 5.1 (Continuation Algorithm).
Let ∆ ⊂ Rl be a bounded domain with piecewise smooth boundary. Suppose that

f1, . . . , fl−1 are differentiable functions defined on ∆ that define a smooth curve C which
meets the boundary of ∆ in finitely many points, and that g is another differentiable func-
tion defined on ∆ with finitely many zeroes on C. Let J be the Jacobian determinant of
the functions f1, . . . , fl−1, g.

Input: Solutions S of f1 = · · · = fl−1 = J = 0 in the interior of ∆ and the set T of points
where C meets the boundary of ∆.
Output: All solutions U to f1 = · · · = fl−1 = g = 0 in the interior of ∆.

— For each s in S, follow C in both directions from s until one of the following occurs:

(5.2)
(1) A solution u ∈ U to g = 0 is found,
(2) A solution s′ ∈ S to J = 0 is found, or
(3) A point t ∈ T where C meets the boundary of ∆ is found.

— For each t in T , follow C in the direction of the interior of ∆ until one of the stopping
criteria (5.2) occurs.

Each point u ∈ U is found twice.

Remark 5.3. The stopping criteria (5.2) may be dected by monitoring the signs of g, J ,
and the functions defining the boundary of ∆.

Proof of correctness. Singular solutions to g(s) = 0 on C are also solutions to J = 0, and
these may be detected by monitoring the signs of g and J—one of which will change sign at
a zero of either. By the Khovanskii-Rolle Theorem, if we remove all points from C where
J = 0 to obtain a curve C◦, then no two solutions of g = 0 will lie in the same connected
component of C◦. No solution can lie in a compact component (oval) of C◦, as this is also
an oval of C, and the number of solutions g = 0 on an oval is necessarily even, so the
Khovanskii-Rolle Theorem would imply that J = 0 has a solution on this component.

Thus the solutions of g = 0 lie in different connected components of C◦ and the boundary
of each such component consists of solutions to J = 0 on C and/or points where C meets
the boundary of ∆. This shows that the algorithm finds all solutions g = 0 on C, and that
it will find each twice, once for each end of the component of C◦ on which it lies. ¤

Each unbounded component of C has two ends that meet the boundary of ∆. Writ-
ing V(f1, . . . , fl−1, g) for the common zeroes in ∆ to f1, . . . , fl−1, g, and ubc(C) for the
unbounded components of C, we obtain the inequality

(5.4) 2#V(f1, . . . , fl−1, g) ≤ #paths followed = 2#ubc(C) + 2#V(f1, . . . , fl−1, J) ,

as each solution is obtained twice. This gave the bound in the Khovanskii-Rolle Theorem
on the number of common zeroes of f1, . . . , fl−1, g in ∆ and it will be used to estimate the
number of paths followed in the Khovanskii-Rolle algorithm.
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5.3. Khovanskii-Rolle algorithm. The Khovanskii-Rolle continuation algorithm finds all
the non-degenerate positive solutions to a system

f1(x1, . . . , xn) = f2(x1, . . . , xn) = · · · = fn(x1, . . . , xn) = 0

of polynomial equations, without also computing any complex solutions, or any non-positive
real solutions. It does this by first converting this polynomial system into a Gale dual system.
In fact, Khovanskii-Rolle continuation is essentially an algorithm to compute all solutions
to a system of equations of the form

(5.5) 1 =
(
p(y1, y2, . . . , yl)

)b(j)
j = 1, . . . , l ,

in the polyhedron

(5.6) ∆ := {y ∈ Rl | pi(y) > 0, i = 0, . . . , n+l} ,

which we assume is bounded. Here, the affine polynomials p0(y), . . . , pn+l(y) and vectors
b(1), . . . , b(l) ∈ Rn+l are general in the sense of Subsection 4.2.2. (The affine polynomial p0

comes from the hyperplane at infinity, as we may have applied a projective transformation
to ensure the polyhedron ∆ is bounded.)

We first make some observations and definitions. In ∆, we may take logarithms of the
functions in (5.5) to obtain the equivalent system

ψj(y) := log
(
p(y1, y2, . . . , yl)

)b(j)
=

l+n∑

i=0

b
(j)
i log pi(y) = 0 for j = 1, . . . , l .

The Khovanskii-Rolle algorithm will find solutions to these equations by iteratively applying

Algorithm 5.1. For j = l, l−1, . . . , 2, 1 define the function J̃j to be the Jacobian determinant

of (ψ1, . . . , ψj; J̃j+1, . . . , J̃l). Also, let f1(y), . . . , fj(y) be the polynomials defined in (4.18).
In the domain ∆, ψi(y) = 1 is equivalent to fj(y) = 0.

Algorithm 5.7 (Khovanskii-Rolle Continuation).

Suppose that ψj and J̃j for j = 1, . . . , l are as above. For each j = 0, . . . , l, let Sj be the
solutions in ∆ to

ψ1 = · · · = ψj = J̃j+1 = · · · = J̃l = 0 ,

and for each j = 1, . . . , l, let Tj be the set of solutions to

(5.8) f1 = · · · = fj−1 = 0 and J̃j+1 = · · · = J̃l = 0

in the boundary of ∆.

Input: Solutions S0 of J̃1 = · · · = J̃l = 0 in ∆, and sets T1, . . . , Tl.
Output: Solution sets S1, . . . , Sl.

For each j = 1, . . . , l, apply the Continuation Algorithm 5.1 with

(f1, . . . , fl−1) = (ψ1, . . . , ψj−1 , J̃j+1, . . . , J̃l)

and g = ψj. The inputs for this are the sets Sj−1 and Tj, and the output is the set Sj.

The last set computed, Sl, is the set of solutions to the system of master functions (5.5)
in ∆. We illustrate the algorithm in Subsection 5.4.
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Proof of correctness. Note that for each j = 1, . . . , l, the jth step finds the solution set Sj,
and therefore preforms as claimed by the correctness of the Continuation Algorithm 5.1.
The correctness for the Khovanskii-Rolle algorithm follows by induction on j. ¤

The Khovanskii-Rolle algorithm requires the precomputation of the sets S0 and T1, . . . , Tl.
The feasibility of this task follows from the proof of the fewnomial bound in Subsection 4.2.
By our assumptions on the generality of the polynomials pi, a face of ∆ of codimension k
is the intersection of ∆ with k of the hyperplanes pi(y) = 0. We collect some consequences
of the lemmas of Subsetion 4.2.3.

Proposition 5.9. Let pi, i = 0, . . . , l+n, ψj, J̃j, j = 1, . . . , l, and ∆ be as above.

(1) The solutions Tj to (5.8) in the boundary of ∆ are among the solutions to

J̃j+1 = · · · = J̃l = 0

in the codimension-j faces of ∆.

(2) J̃j ·
l+n∏

i=0

pi(y)2l−j

is a polynomial of degree 2l−jn.

Thus solving the system (5.8) in the boundary of ∆ is equivalent to solving (at most)(
l+n+1

j

)
systems of the form

(5.10) pi1 = · · · = pij = J̃j+1 = · · · = J̃l = 0

and then discarding the solutions y for which pi(y) < 0 for some i. Replacing each Jacobian

J̃j by the polynomial Jj := J̃j ·
∏l+n

i=0 pi(y)2l−j

, and using the affine equations pi1(y) = · · · =
pij = 0 to eliminate j variables, we see that (5.10) is a polynomial system with Bézout
number

n · 2n · 4n · · · 2l−j−1n = 2(
l−j

2 )nl−j

in l − j variables. Thus the number of solutions Tj to the system (5.8) in the boundary of

∆ is at most 2(
l−j

2 )nl−j
(

l+n+1
j

)
.

Likewise S0 consists of solutions in ∆ to the system (5.10) when j = 0 and so has at most

the Bézout number 2(
l

2)nl solutions. Thus the inputs to the Khovanskii-Rolle Algorithm are
solutions to polynomial systems in l or fewer variables.

Theorem 5.11. The Khovanskii-Rolle Continuation Algorithm finds all solutions to the

system (5.5) in the bounded polyhedron ∆ (5.6), when the affine polynomials pi(y) and expo-

nents b
(j)
i are general as in Subsection 4.2.2. It accomplishes this by solving auxiliary poly-

nomial systems (5.10) and following implicit curves. For each j = 0, . . . , l−1, it will solve

at most
(

l+n+1
j

)
polynomial systems in l−j variables, each having Bézout number 2(l−j

2 )nl−j.

The sum of the Bézout numbers of these systems is at most e2+1
2

2(l

2)nl. In all, it will trace

at most

(5.12) l 2(l

2)+1nl +
l∑

j=1

(l+1−j)2l−jnl−j
(

l+n+1
j

)
< l

e2 + 3

2
2(l

2)nl
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implicit curves in ∆.

Proof. The first statement is a restatement of the correctness of the Khovanskii-Rolle Con-
tinuation Algorithm. For the second statement, we enumerate the number of paths, follow-
ing the discussion after Proposition 5.9. Let sj, tj be the number of points in Sj and Tj,
respectively, and let rj be the number of paths followed in the jth step of the Khovanskii-
Rolle Continuation Algorithm.

By (5.4), rj = tj + 2sj−1 and sj ≤ 1
2
tj + sj−1. So rj ≤ tj + · · · + t1 + 2s0, and

r1 + · · · + rl ≤ 2s0 +
l∑

j=1

(l+1−j)tj .

Using the estimates

(5.13) s0 ≤ 2(l

2)nl and tj ≤ 2(l−j

2 )nl−j
(

l+n+1
j

)
,

we obtain the estimate on the left of (5.12). Since l+1−j ≤ l, we bound it by

2l
(
2(l

2)nl +
1

2

l∑

j=1

2l−jnl−j
(

l+n+1
j

))
,

which is bounded by l e2+3
2

2(l

2)nl, by the computation (4.23). ¤

Remark 5.14. The bound (5.12) on the number of paths to be followed is not sharp. First,
not every system of the affine polynomials

pi1(y) = pi2(y) = · · · = pij(y) = 0 ,

defines a face of ∆. Even when this defines a face F of ∆, only the solutions to (5.10) that
lie in F contribute to Tj, and hence to the number of paths followed. Thus any slack in
the estimates (5.13) reduces the number of paths to be followed. Since these estimates lead
to the fewnomial bound for sl, we see that the Khovanskii-Rolle Continuation Algorithm
naturally takes advantage of any lack of sharpness in the fewnomial bound.

This may further be improved if ∆ has m < l + n + 1 facets for then the binomial
coefficients in the exponents of 2 in (5.12) become

(
m
2

)
.

5.4. An Example. We explain how to use the Khovanskii-Rolle continuation algorithm
to find all positive solutions to the following system of Laurent polynomials (written in
diagonal form)

(5.15)

cd = 1
2
be2 + 2a−1b−1e − 1 cd−1e−1 = 1

2
(1 + 1

4
be2 − a−1b−1e)

bc−1e−2 = 1
4
(6 − 1

4
be2 − 3a−1b−1e) bc−2e = 1

2
(8 − 3

4
be2 − 2a−1b−1e)

ab−1 = 3 − 1
2
be2 + a−1b−1e .
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We first convert it into a dual Gale system as in Section 4.1. Its set of exponent vectors are
the columns of the matrix

A :=




−1 0 0 0 0 0 1
−1 0 1 0 1 1 −1

0 1 0 1 −1 −2 0
0 1 0 −1 0 0 0
1 0 2 −1 −2 1 0




.

Since

A
(

−1 1 −2 1 −2 2 −1
1 6 −3 6 −2 7 1

)T

=




0 0
0 0
0 0
0 0
0 0




,

we have the following identity among the monomials

(5.16)
(a−1b−1e)−1(cd)1(be2)−2(cd−1e−1)1(bc−1e−2)−2(bc−2e)2(ab−1)−1 = 1 ,

(a−1b−1e)1 (cd)6(be2)−3(cd−1e−1)6(bc−1e−2)−2(bc−2e)7(ab−1)1 = 1 .

A Gale system dual to (5.15) is obtained from the identity (5.16) by first substituting x
for the term 1

4
be2 and y for a−1b−1e in (5.15) to obtain

cd = 2x + 2y − 1 cd−1e−1 = 1
2
(1 + x − y)

bc−1e−2 = 1
4
(6 − x − 3y) bc−2e = 1

2
(8 − 3x − 2y)

ab−1 = 3 − 2x + y ,

Then, we substitute these affine linear polynomials for the monomials in (5.16) to obtain
the system of rational functions

(5.17)
y−1(2x+2y−1) (4x)−2

(
1+x−y

2

) (
6−x−3y

4

)−2(
8−3x−2y

2

)2

(3−2x+y)−1 = 1 ,

y(2x+2y−1)6(4x)−3
(

1+x−y
2

)6(
6−x−3y

4

)−2(
8−3x−2y

2

)7

(3−2x+y) = 1 .

If we solve these for 0, they become f = g = 0, where

(5.18)
f := (2x+2y−1)(1+x−y)(8−3x−2y)2 − 8yx2(6−x−3y)2(3−2x+y) ,

g := y(2x+2y−1)6(1+x−y)6(8−3x−2y)7(3−2x+y) − 32768x3(6−x−3y)2 .

Figure 3 shows the curves defined by f and g and the lines given by the affine linear
factors in f and g. The curve f = 0 has the three branches indicated and the other arcs
belong to g = 0. The central heptagon is the domain ∆ in which the affine polynomial
factors in (5.17) are all positive. The six solutions in ∆ to f = g = 0 correspond under
the Gale duality of Theorem 4.9 to the positive solutions of the original system of Laurent
polynomials (5.15).

We solve the system of Laurent monomials by solving the system (5.17) using the Khovanskii-
Rolle algorithm. For y ∈ ∆, we may take logarithms of the system (5.17) to obtain the
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Figure 3. Curves and lines

system ψ1(y) = ψ2(y) = 0, where

ψ1(y) = − log(y) + log(2x+2y−1) − 2 log(4x) + log
(

1+x−y
2

)

−2 log
(

6−x−3y
4

)
+ 2 log

(
8−3x−2y

2

)
− log(3−2x+y) .

ψ2(y) = log(y) + 6 log(2x+2y−1) − 3 log(4x) + 6 log
(

1+x−y
2

)

−2 log
(

6−x−3y
4

)
+ 7 log

(
8−3x−2y

2

)
+ log(3−2x+y) .

The polynomial forms J2, J1 of the Jacobians are (omitting the middle 60 terms from J1),

J2 = −168x5 − 1376x4y + 480x3y2 − 536x2y3 − 1096xy4 + 456y5 + 1666x4 + 2826x3y

+3098x2y2 + 6904xy3 − 1638y4 − 3485x3 − 3721x2y − 15318xy2 − 1836y3

+1854x2 + 8442xy + 9486y2 − 192x − 6540y + 720 .

J1 = 10080x10 − 168192x9y − 611328x8y2 − · · · + 27648x + 2825280y .

We now describe the Khovanskii-Rolle algorithm on this example.
Precomputation. We first find all solutions S0 to J1 = J2 = 0 in the heptagon ∆, and all
solutions J2 = 0 in its boundary. Below are the curves J2 = 0 and J1 = 0 and the heptagon.
The curve J2 = 0 consists of the four indicated arcs. The remaining arcs in this picture
belong to J1 = 0. On the right is an expanded view in a neighborhood of the lower right
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vertex, (3
2
, 0).

J2
-

J2
-

J2
¾@
@I

J1

J2

J2 (3
2
, 0)

A numerical computation finds 50 common solutions to J1 = J2 = 0 with 26 real. Only six
solutions lie in the interior of the heptagon with one on the boundary at the vertex (3/2, 0).
There are 31 points where the curve J2 = 0 meets the lines supporting the boundary of
the heptagon, but only eight lie in the boundary of the hexagon. This may be seen in the
pictures above.
First continuation step. Beginning at each of the six points in ∆ where J1 = J2 = 0,
the algorithm traces the curve in both directions, looking for a solution to ψ1 = J2 = 0.
Beginning at each of the eight points where the curve J2 = 0 meets the boundary, it follows
the curve into the interior of the heptagon, looking for a solution to ψ1 = J2 = 0. In tracing
each arc, it either finds a solution, a boundary point, or another point where J1 = J2 = 0.
We may see that in the picture below, which shows the curves ψ1 = 0 and J2 = 0, as well
as the points on the curve J2 = 0 where J1 also vanishes.

J2
-

J2
-

J2
¾@
@I

ψ1 -

ψ1

ψ1

ψ1¾

In this step, 2 · 6 + 8 = 20 arcs are traced. The three solutions of J2 = ψ1 = 0 will each be
found twice, and 14 of the tracings will terminate with a boundary point or a point where
J1 = 0.
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Second Continuation step. This step begins at each of the three points where ψ1 = J2 =
0 that were found in the last step, as well as at each of the six points where ψ1 = 0 meets
the boundary of the heptagon (necessarily in some vertices).

ψ1 -

ψ1

ψ1

ψ1¾

Curve tracing can be carried out even in the presence of singularities [1, §4.3], as in
the case of the curves initiating at vertices. In this case, this final round of curve-tracing
revealed all six solutions within the heptagon, as anticipated. Furthermore, each solution
was discovered twice, again, as anticipated.

By Theorem 5.11, the bound on the number of paths followed (using 7 = l + n in place
of l + n + 1 in the binomials as in Remark 5.14) is

2 · 2 · 2(2
2) · 52 + 2 · 2(1

2) · 51 ·
(
7
1

)
+ 1 · 2(0

2) · 50 ·
(
8
2

)
= 298 .

By Theorem 3.10 in [7], the fewnomial bound in this case is

2 · 52 + ⌊ (5+1)(5+3)
2

⌋ = 74 .

In contrast, we only traced 20+12 = 32 curves to find the six solutions in the heptagon. The
reason for this discrepancy is that this fewnomial bound is pessimistic and the Khovanskii-
Rolle Continuation Algorithm exploits any slack in it.

Exercises on Khovanskii-Rolle continuation.
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5. Frederic Bihan, Polynomial systems supported on circuits and dessins d’enfants, J. Lond. Math. Soc.

(2) 75 (2007), no. 1, 116–132.
6. Frédéric Bihan, J. Maurice Rojas, and Frank Sottile, On the sharpness of fewnomial bounds and the

number of components of fewnomial hypersurfaces, Algorithms in algebraic geometry, IMA Vol. Math.
Appl., vol. 146, Springer, New York, 2008, pp. 15–20.



34 FRANK SOTTILE

7. Frédéric Bihan and Frank Sottile, New fewnomial upper bounds from Gale dual polynomial systems,
Mosc. Math. J. 7 (2007), no. 3, 387–407, 573.

8. , Gale duality for complete intersections, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 3, 877–891.
9. , Fewnomial bounds for completely mixed polynomial systems, 2009.

10. R. Descartes, La géométrie, 1637.
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