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Gale duality

Gale duality for complete intersections asserts that systems of n polynomial
equations in m+n variables are equivalent to certain systems of [ rational functions
in [+m variables. This allows us to conclude that

(22 —3y)°(dz+y—7)° _ (2z-3y)a—-Ty—2)°
(14+x—3y)?(x — Ty — 2) (14+x—3y)34dxc+y—T7)

has 17 solutions where (4x +vy — 7)(z — 7y — 2)(1 + x — 3y) (22 — 3y) # 0.

I\
L 2 Q.
This is because the pentagon at .
right (whose vertices annihilate the ex-
: . < ® =
ponents in the equations) has area 17/2.
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Master Functions

Let H be an essential arrangement of hyperplanes in C'*™ defined by affine

functions p1(y), - -, PDitmin(y)-
A weight for ‘H is a vector 3 = (by,...,bitmin) € ZT™F™ of integers. This
defines the master function for ‘'H with weight 3

p(y)” = p1(y)" - p2(¥)*2 - - Promn (y) i

which is a rational function defined on the complement My, of the arrangement.

A master function complete intersection with weights B = ((1,...,/3;) is a
subscheme of My of dimension m which may be defined by a system of master
functions

py) = py)? = - = py)* = 1.

NB: The weights BB are necessarily linearly independent.
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Sparse polynomials

Let A={0,a1,...,01min} C Z™T™ be integer vectors which are exponents
for Laurent monomials in x1,...,2m1n. A sparse polynomial f with support A is
a polynomial whose monomials are 1, x%t,..., z%+m+n. Because the exponents can

be negative, f is a function on the algebraic torus, (C*)™*™.

A complete intersection with support A is a subscheme of (C*)™*" of dimension
m which may be defined by a system of polynomials,

fl(xla---yxm—l—n) — f2(3317--°733m—|—n) - = fn(xly-“axm—l—n) — 07

here each polynomial f; has support A.

These are well-studied algebraic sets, but are in fact no different than master
function complete intersections.
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The geometry of master functions

The affine functions p1(y), ..., Pirman(y) define an injective map
Wy, ciHm ., cltmtn (set L := wp((CHm))

and the hyperplane complement My is ¢ 1 ((C*)!Hm+m),
The weights B = (81, . .., 3;) define a subtorus of (C*)i+m+n

T — {ZE (@X)l—l—m—Fn ‘ Zﬁl :Zﬂ?:...:zﬁl :1}’

which is connected if and only if B is saturated (ZB = QB N Z!T™m+n).
In this way, the system of master functions

p(y)t = py)? = - = py)? = 1.

equals ' (T), which is isomorphic to TN L.
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The geometry of sparse polynomials

The map @ 4: (CX)™T" 5 +—— (2%, ..., 2% min) € (CX)HF™+" pylls an
affine function A := co + >_. ¢;z; on C™F" back to a sparse polynomial

l+m-+n
©A(A) = co+ Z c;x™
i=1

with support A.

In this way, a system of sparse polynomials f; = --- = f,, is the pullback of
a system of affine functions A; = --- = A,, on C*™*"  These define an affine
subspace L of C!*™*™ of dimension [+m and the system equals ¢ " (L).

When ZA = Z™*™ (A is primitive), @4 is injective. Set T := @ 4(C*)™*",
Then the system o, (L) is isomorphic to T N L.
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Gale duality

The master function complete intersection with exponents B is isomorphic to
the complete intersection with support A when

(Master function) TNL = TnL (Sparse polynomial).

Unpacking the definitions, we get

Theorem. Suppose that A is primitive, B is saturated, A1, ..., A, define the sparse
polynomial system, and p1(y), ..., Pitman(y) define H. If
e Ay =--- = A, defines the linear subspace L = 1),(C"*™), and
o A-B =0, where the matrix A has column vectors «;
and B has column vectors (3,

then the master function complete intersection is isomorphic to the complete
intersection with support A.
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An Example

2?(1—z—y)° _ v (l—z—y)
E—r+y) (B +a-3y)° oG -2ty ({0 +a-3y)

=1,

defines a O-dimensional set
in the complement of the
lines defined by the linear
factors.

(We drew the curves.)
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Example Continued

If we order the affine functions,

L, Y, (1_:C_y)7 (%_x+y)7 %(1-|—£C—3y),

our master functions

2°(1 -2 —y)’ 3 (1 —x — )
2 and 1 3 /10
23—z +y) (131 +2z—3y)) r(3 — 2 +y)? (171 + 2z — 3y))
have exponents (2, —2,3,—1,—2) and (—1,3,1,-3,—1).
Observe that
(u2v)2 : (uv2w)_2 - (02w3)3 - (’UQw)_l : (uvw3)_2 = 1, and
(u20>_1 : (uv2w)3 - (vw?) - (viw) . (uvw3)_1 = 1.
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Example completed
Because we have
(w20)” - () (o)’ (P0) " (@) = 1, and
(w2) - (w?w)” - (o) - (%) () =1

if we substitute w?v for x, uv?w for y, and the corresponding affine functions for
the last three monomials, we get the system

2 2

v'ww = l—z—y = 1—u"v—uv'w
viw = %—ccqty = %—uvarquw
wow® = P(1+z-3y) = 21+ u’v— 3w’

whose solutions are isomorphic to the solutions to the system of master functions.
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