ENRICHED SCHUBERT PROBLEMS IN THE GRASSMANNIAN OF LAGRANGIAN SUBSPACES IN 8-SPACE

F. SOTTILE

Abstract. We describe the three enriched Schubert problems on the Lagrangian Grassmannian $LG(4)$ of isotropic 4-planes in 8-space, and use that to determine their Galois groups. (This is in progress.)

1. Preliminary calculations

Using the Frobenius algorithm, we determined that three of the 44 essential Schubert problems on $LG(4)$ are enriched. For one, with 384 solutions, we are still computing Frobenius elements. We have yet to be able to compute an eliminant for a problem with 768 solutions.

Using strict partitions to represent Schubert conditions, these three problems are

$$
\mathbf{a} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^2 \cdot \mathbf{a} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^2 \cdot \mathbf{a} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \cdot \mathbf{a} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^3 \cdot \mathbf{a} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}.
$$

Let $V \simeq \mathbb{C}^8$ be a vector space equipped with a nondegenerate alternating form $\langle \bullet, \bullet \rangle$. We call $(V, \langle \bullet, \bullet \rangle)$ a symplectic vector space. The annihilator of a linear space H of V is $H^{\angle} := \{v \in V \mid \langle u, v \rangle = 0 \,\forall u \in H\}.$ As $\langle \bullet, \bullet \rangle$ is nondegenerate, dim $H + \dim H^{\angle} = \dim V$. A subspace $H \subset V$ is *isotropic* if $H \subset H^{\angle}$. Then the dimension of an isotropic subspace H is at most $\frac{1}{2}$ dim V, and it is Lagrangian (maximal isotropic) if dim $H = \frac{1}{2}$ $\frac{1}{2}$ dim V. Write $LG(V)$ or $LG(4)$ for the space of Lagrangian subspaces of V. This is a ten-dimensional smooth subvariety of $Gr(4, V)$, the Grassmannian of 4-planes in V. We will assume that the reader is familiar with our terminology, as well as the basics of Schubert calculus on $LG(V)$.

Let $L, M \in LG(V)$ be two general Lagrangian subspaces. In particular $L \cap M = \{0\}$ so that the map $L \oplus M \to V$ defined by $u \oplus v \mapsto u + v$ is an isomorphism. For $0 \neq v \in M$ consider the linear function $\Lambda_v : L \to \mathbb{C}$ defined by $\Lambda_v(u) = \langle u, v \rangle$. As L is Lagrangian and $L \cap M = \{0\}$, this linear form is nonzero on L. In particular, $v \mapsto \Lambda_v$ identifies M with the linear dual $L^* := \text{Hom}(L, \mathbb{C})$ of L.

Suppose that $N \in LG(V)$ is a third Lagrangian subspace in general position with respect to both L and M. Then the projections π_L and π_M of N to the summands in $L \oplus M \simeq V$ are isomorphisms. This identifies N as the graph of a linear isomorphism

$$
\varphi_N \ := \ \pi_M \circ \pi_L^{-1} \ :\ L \ \stackrel{\sim}{\longrightarrow} \ M \, .
$$

Key words and phrases. Lagrangian Grassmannian, Galois groups, Schubert problem.

Research of Sottile supported in part by NSF grant DMS-2201005.

2 F. SOTTILE

This linear isomorphism $\varphi_N: L \to M \simeq L^*$ induces a nondegenerate bilinear form $(\bullet, \bullet)_N$ on L which is defined for $u, u \in L$ by $(u, u')_N := \langle u, \varphi_N(u') \rangle$.

The bilinear form $(\bullet, \bullet)_N$ is symmetric. Indeed, as N is isotropic, we have that for $u, u' \in L$, $u + \varphi_N(u)$ and $u' + \varphi_N(u')$ lie in N so that

$$
0 = \langle u + \varphi_N(u), u' + \varphi_N(u') \rangle
$$

= $\langle u, u' \rangle + \langle u, \varphi_N(u') \rangle + \langle \varphi_N(u), u' \rangle + \langle \varphi_N(u), \varphi_N(u') \rangle.$

As $u, u' \in L$ and $\varphi_N(u), \varphi_N(u') \in M$, we see that $0 = \langle u, \varphi_N(u') \rangle + \langle \varphi_N(u), u' \rangle$, so that $\langle u, \varphi_N(u') \rangle = \langle u', \varphi_N(u) \rangle$, as $\langle \bullet, \bullet \rangle$ is alternating. Thus $(u, u')_N = (u', u)_N$ is symmetric.

Define $\overline{\Box}(L) := \{H \in LG(V) \mid \dim H \cap L \geq 2\}$, which is a Schubert subvariety of codimension three in $LG(V)$. It is the intersection of $LG(V)$ with the Schubert subvariety $\Omega_{\mathbb{H}}(L)$ of the Grassmannian $Gr(4, V)$. Set $X(L, M) := \mathbb{H}(L) \cap \mathbb{H}(M)$, a Richardson variety. If $H \in X(L, M)$, then $H \cap L \in Gr(2, L)$ and $H \cap M \in Gr(2, M)$. If we set $h := H \cap L$ and $h' := H \cap M$, then $H = h \oplus h'$. As H is isotropic, $\langle h, h' \rangle \equiv 0$, which implies that h' is the annihilator h^{\perp} of h in $M = L^*$.

Following work on the Pieri formula in isotropic Schubert calculus [2] (see also [1]), it is useful to define the union, $Z(L, M)$, of the linear spaces in $X(L, M)$,

$$
Z(L,M) := \bigcup \{ H \mid H \in X(L,M) \},
$$

which we consider to be a subvariety of the projective space $\mathbb{P}(V)$. More formally and working projectively, let

 $C(1,4;V) := \{ (\ell, H) \mid H \in LG(V) \text{ and } \ell \in \mathbb{P}(H) \}$

be the symplectic flag variety of isotropic lines lying on Lagrangian subspaces in V . This has projections to projective space $\mathbb{P}(V)$ and to the Lagrangian Grsassmannian.

Each realizes $C(1,4;V)$ as a fibre bundle, with $\pi^{-1}(H) = \mathbb{P}(H) \simeq \mathbb{P}^3$ and $pr^{-1}(\ell) =$ $LG(3,\ell^2/\ell)$. Then $Z(L,M) := pr \circ \pi^{-1}(X(L,M))$. Define

 $Y(L, M) := \pi^{-1}(X(L, M)) \subset C(1, 4; V).$

For $0 \neq u \in L$, let $u^{\perp} \subset M$ be its annihilator, which is 3-dimensional. Similarly, for $0 \neq v \in M$, let $v^{\perp} \subset L$ be its annihilator.

Lemma 1.1. In the coordinates $\{(u, v) \mid u \in L \text{ and } v \in M\}$ for $\mathbb{P}(V)$, the variety $Z(L, M)$ is the quadratic hypersurface with equation $\langle u, v \rangle = 0$. The map pr: $Y(L, M) \rightarrow Z(L, M)$ has fibre over a point $(u, v) \in Z(L, M)$ identified with $\mathbb{P}(v^{\perp}/u)$. When u and v are nonzero, this is isomorphic to \mathbb{P}^1 ; otherwise it is isomorphic to \mathbb{P}^2 .

Let $(u, v) \in Z(L, M)$ with u and v both nonzero. If we restrict the maps π , pr to $Y(L, M)$, then the set

(1)
$$
\bigcup \{ H \in X(L, M) \mid (u, v) \in H \} = pr \circ \pi^{-1} \circ \pi \circ pr^{-1}(u, v),
$$

ENRICHED SCHUBERT PROBLEMS IN THE GRASSMANNIANOF LAGRANGIAN SUBSPACES IN 8-SPACE3

is the quadric hypersurface $Z(L, M, u, v) := Z(L, M) \cap \mathbb{P}(v^{\perp} \oplus u^{\perp})$ in $\mathbb{P}(v^{\perp} \oplus u^{\perp}) \simeq \mathbb{P}^{5}$, and the map between $\pi \circ pr^{-1}(u, v) \subset LG(V)$ and $Z(L, M, u, v)$ is birational away from the exceptional divisor $\mathbb{P}(u + v^{\perp}) \cup \mathbb{P}(u^{\perp} + v)$.

Proof. A Lagrangian subspace $H \in X(L, M)$ has the form $h \oplus h^{\perp}$ for $h \in Gr(2, L)$. Thus if $(u, v) \in H$, then $u \in h$ and $v \in h^{\perp}$, so that $\langle u, v \rangle = 0$, and we have that $u \in h \subset v^{\perp}$. A point $(u, v) \in V$ with $\langle u, v \rangle = 0$ has $u \in v^{\perp} \subset L$. Given any $h \in Gr(2, L)$ with $u \in H \subset v^{\perp}$, we have $v \in h^{\perp}$ so that $(u, v) \in h \oplus h^{\perp} \in X(L, M)$. This shows that $Z(L, M)$ equals the quadratic hypersurface and that the fibre $pr^{-1}(u, v) = \mathbb{P}(v^{\perp}/u)$. Since at most one of u or v may be zero, this is ispmorphic to \mathbb{P}^2 if one is zero and \mathbb{P}^1 if neither is zero.

For the last statement, note that the set (1) is contained in $Z(L, M) \cap \mathbb{P}(v^{\perp} \oplus u^{\perp})$. Indeed, suppose that $(u, v) \in H$ and $H \in X(L, M)$. Then $H = h \oplus h^{\perp}$ and $u \in h \subset v^{\perp}$ and $v \in h^{\perp} \subset u^{\perp}$. If $(a, b) \in H$, then $a \in v^{\perp}$ and $b \in u^{\perp}$, and $\langle a, b \rangle = 0$.

Let $(a, b) \in Z(L, M) \cap \mathbb{P}(v^{\perp} \oplus u^{\perp})$. Suppose that a is linearly independent of u and b is linearly indepedent of v. As $u, a \in L$, $v, b \in M$, $a \in v^{\perp}$ and $b \in u^{\perp}$, span $\{a, u\}$ annihilates span $\{b, v\}$, so that span $\{a, b, u, v\}$ is the unique Lagrangian subspace containing these four \Box points. \Box

The quadric $Z(L, M, u, v)$ is singular; it is the cone over a quadric isomorphic to $\mathbb{P}(v^{\perp}/u) \times$ $\mathbb{P}(u^{\perp}/v)$ in a \mathbb{P}^3 with vertex $\mathbb{P}(u+v)$, a \mathbb{P}^1 .

1.1. The Galois group of $\mathbb{H}^2 \cdot \mathbb{H} \cdot \mathbb{H} = 4$ is D_4 . Let L, M, and N be general Lagrangian subspaces in V as before, and let m be an isotropic 2-plane, also in general position. Observe that

(2)
$$
\mathbb{H}(L) \cap \mathbb{H}(M) \cap \mathbb{H}(m) = \pi \big(pr^{-1}(m \cap Z(L, M)) \big) .
$$

By Lemma 1.1, $Z(L, M)$ is a quadric. Thus it meets m in two points (u, v) and (u', v') , showing that the intersection (2) has two components.

Let W be the component of (2) coming from (u, v) . By Lemma 1.1 again, if we restrict π to $Y(L,M)$, then $pr(\pi^{-1}(W)) = Z(L,M) \cap \mathbb{P}(u^{\perp} \oplus v^{\perp}) = Z(L,M,u,v)$ is a quadric hypersurface in the $\mathbb{P}^5 \simeq \mathbb{P}(u^{\perp} \oplus v^{\perp})$. Each of the two points of intersection of N with $Z(L, M, u, v)$ gives a solution to the Schubert problem

(3)
$$
\mathbb{H}(L) \cap \mathbb{H}(M) \cap \mathbb{H}(m) \cap \mathbb{H}(N).
$$

With the other point (u', v') of $m \cap Z(L, M)$, this gives four solutions to the Schubert problem (3). Note that N is spanned by its intersections with $Z(L, M, u, v)$ and $Z(L, M, u', v')$ As its Galois group must preserve the partition coming from the two points (u, v) and (u', v') , it is a subgroup of D_4 . We have computed Frobenius elements which show that the Galois group is D_4 .

For an alternative proof, note that it is possible to find a the monodromy loop that fixes L, M, m (and hence the points (u, v) and (u', v')), as well as the two points N ∩ $Z(L, M, u, v)$, but interchanges the other two points $N \cap Z(L, M, u', v')$. Indeed, let $\{x, y\} =$ $N \cap Z(L, M, u, v)$. Then the set of Lagrangian planes containing $h := \text{span} x, y$ is identified with $LG(h^2/h)$, and any two points in $\mathbb{P}(x^2) \cap \mathbb{P}(y^2)$ that are independent. Fix this. It is important to make these kinds of arguments.

4 F. SOTTILE

1.2. The Galois group of $\mathbb{H}^2 \cdot \mathbb{H} = 4$ is $\mathbb{Z}_2 \times \mathbb{Z}_2$. Let L, M, N be as before, and consider a Lagrangian subspace $H \in \mathbb{H}(L) \cap \mathbb{H}(M) \cap \mathbb{H}(N)$. As $H \in \mathbb{H}(L) \cap \mathbb{H}(M)$, it has the form $h \oplus \tilde{h}^{\perp}$ for $h \in Gr(2, L)$, and it is not hard to see that $h^{\perp} = \varphi_N(h)$. These together imply that $(h, h)_N \equiv 0$, so that h is an isotropic 2-plane in the linear space $L \simeq \mathbb{C}^4$ equipped with the nondegenerate symmetric form $(\bullet, \bullet)_N$. Let us work in $\mathbb{P}(L)$. Then h lies in one of the two families of lines that rule the quadric surface $Q_N := \{u \in \mathbb{P}(L) \mid (u, u)_N = 0\}$ in $\mathbb{P}(L)$. Now let $\ell \subset L$ be an isotropic 2-plane in L, which is a line in $\mathbb{P}(L)$. This will meet Q in two points, and through each point there will be two lines—one in each ruling. These four solutions h give the four solutions $h \oplus h^{\perp}$ to the Schubert problem.

The partition of the four solutions by the corresponding points of intersection $\ell \cap Q$ show that the Galois group is a subgroup of D_4 . To analyze this further, let p and q be the two points in $\ell \cap Q_N$, and let the four lines on Q_N meeting these points be h_p^1 $_{p}^{1}, h_{p}^{2}$ $_p^2$, h_q^1 q^1 , and h_q^2 $_q^2,$ with the upper index representing the ruling of Q_N the line lies in and the lower indicating the point of $\ell \cap Q_N$ it meets. However, there are two solution lines h in each ruling and the Galois group must preserve their intersections. Consequently, the Galois group is the Klein 4-group, isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$.

1.3. The Galois group of $\mathbb{H}^3 \cdot \mathbb{d} = 8$ is not yet determined.

REFERENCES

- 1. Changzheng Li, Vijay Ravikumar, Frank Sottile, and Mingzhi Yang, A geometric proof of an equivariant Pieri rule for flag manifolds, Forum Mathematicum 31 (2019), 779–783.
- 2. F. Sottile, Pieri-type formulas for maximal isotropic Grassmannians via triple intersections, Colloquium Mathematicum 82 (1999), 49–63.

Frank Sottile, Department of Mathematics, Texas A&M University, College Station, Texas 77843, USA

Email address: sottile@math.tamu.edu URL: http://www.math.tamu.edu/~sottile