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Abstract. We describe the three enriched Schubert problems on the Lagrangian Grass-
mannian LG(4) of isotropic 4-planes in 8-space, and use that to determine their Galois
groups. (This is in progress.)

1. Preliminary calculations

Using the Frobenius algorithm, we determined that three of the 44 essential Schubert
problems on LG(4) are enriched. For one, with 384 solutions, we are still computing Frobe-
nius elements. We have yet to be able to compute an eliminant for a problem with 768
solutions.
Using strict partitions to represent Schubert conditions, these three problems are

2

· = 4 ,
2

· · = 4 , and
3

· = 8 .

Let V ≃ C
8 be a vector space equipped with a nondegenerate alternating form 〈•, •〉.

We call (V, 〈•, •〉) a symplectic vector space. The annihilator of a linear space H of V is
H∠ := {v ∈ V | 〈u, v〉 = 0 ∀u ∈ H}. As 〈•, •〉 is nondegenerate, dimH + dimH∠ = dimV .
A subspace H ⊂ V is isotropic if H ⊂ H∠. Then the dimension of an isotropic subspace
H is at most 1

2
dimV , and it is Lagrangian (maximal isotropic) if dimH = 1

2
dimV . Write

LG(V ) or LG(4) for the space of Lagrangian subspaces of V . This is a ten-dimensional
smooth subvariety of Gr (4, V ), the Grassmannian of 4-planes in V . We will assume that
the reader is familiar with our terminology, as well as the basics of Schubert calculus on
LG(V ).
Let L,M ∈ LG(V ) be two general Lagrangian subspaces. In particular L ∩M = {0} so

that the map L ⊕ M → V defined by u ⊕ v 7→ u + v is an isomorphism. For 0 6= v ∈ M
consider the linear function Λv : L → C defined by Λv(u) = 〈u, v〉. As L is Lagrangian and
L∩M = {0}, this linear form is nonzero on L. In particular, v 7→ Λv identifies M with the
linear dual L∗ := Hom(L,C) of L.
Suppose that N ∈ LG(V ) is a third Lagrangian subspace in general position with respect

to both L and M . Then the projections πL and πM of N to the summands in L⊕M ≃ V
are isomorphisms. This identifies N as the graph of a linear isomorphism

ϕN := πM ◦ π−1

L : L
∼

−−→ M .
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This linear isomorphism ϕN : L → M ≃ L∗ induces a nondegenerate bilinear form (•, •)N
on L which is defined for u, u ∈ L by (u, u′)N := 〈u, ϕN(u

′)〉.
The bilinear form (•, •)N is symmetric. Indeed, asN is isotropic, we have that for u, u′ ∈ L,

u+ ϕN(u) and u′ + ϕN(u
′) lie in N so that

0 = 〈u+ ϕN(u) , u
′ + ϕN(u

′)〉

= 〈u , u′〉 + 〈u , ϕN(u
′)〉 + 〈ϕN(u) , u

′〉 + 〈ϕN(u) , ϕN(u
′)〉 .

As u, u′ ∈ L and ϕN(u), ϕN(u
′) ∈ M , we see that 0 = 〈u, ϕN(u

′)〉 + 〈ϕN(u), u
′〉, so that

〈u, ϕN(u
′)〉 = 〈u′, ϕN(u)〉, as 〈•, •〉 is alternating. Thus (u, u

′)N = (u′, u)N is symmetric.
Define (L) := {H ∈ LG(V ) | dimH ∩ L ≥ 2}, which is a Schubert subvariety of

codimension three in LG(V ). It is the intersection of LG(V ) with the Schubert subvariety
Ω (L) of the Grassmannian Gr (4, V ). SetX(L,M) := (L)∩ (M), a Richardson variety.
If H ∈ X(L,M), then H ∩L ∈ Gr (2, L) and H ∩M ∈ Gr (2,M). If we set h := H ∩L and
h′ := H ∩M , then H = h ⊕ h′. As H is isotropic, 〈h, h′〉 ≡ 0, which implies that h′ is the
annihilator h⊥ of h in M = L∗.
Following work on the Pieri formula in isotropic Schubert calculus [2] (see also [1]), it is

useful to define the union, Z(L,M), of the linear spaces in X(L,M),

Z(L,M) :=
⋃

{H | H ∈ X(L,M)} ,

which we consider to be a subvariety of the projective space P(V ). More formally and
working projectively, let

C(1, 4;V ) := {(ℓ,H) | H ∈ LG(V ) and ℓ ∈ P(H)}

be the symplectic flag variety of isotropic lines lying on Lagrangian subspaces in V . This
has projections to projective space P(V ) and to the Lagrangian Grsassmannian.

C(1, 4;V )
¡

¡
¡✠

❅
❅
❅❘

pr π

P(V ) LG(V )

Each realizes C(1, 4;V ) as a fibre bundle, with π−1(H) = P(H) ≃ P
3 and pr−1(ℓ) =

LG(3, ℓ∠/ℓ). Then Z(L,M) := pr ◦ π−1(X(L,M)). Define

Y (L,M) := π−1(X(L,M)) ⊂ C(1, 4;V ) .

For 0 6= u ∈ L, let u⊥ ⊂ M be its annihilator, which is 3-dimensional. Similarly, for
0 6= v ∈ M , let v⊥ ⊂ L be its annihilator.

Lemma 1.1. In the coordinates {(u, v) | u ∈ L and v ∈ M} for P(V ), the variety Z(L,M)
is the quadratic hypersurface with equation 〈u, v〉 = 0. The map pr : Y (L,M) → Z(L,M)
has fibre over a point (u, v) ∈ Z(L,M) identified with P(v⊥/u). When u and v are nonzero,

this is isomorphic to P
1; otherwise it is isomorphic to P

2.

Let (u, v) ∈ Z(L,M) with u and v both nonzero. If we restrict the maps π, pr to Y (L,M),
then the set

(1)
⋃

{H ∈ X(L,M) | (u, v) ∈ H} = pr ◦ π−1 ◦ π ◦ pr−1(u, v) ,
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is the quadric hypersurface Z(L,M, u, v) := Z(L,M) ∩ P(v⊥ ⊕ u⊥) in P(v⊥ ⊕ u⊥) ≃ P
5,

and the map between π ◦ pr−1(u, v) ⊂ LG(V ) and Z(L,M, u, v) is birational away from the

exceptional divisor P(u+ v⊥) ∪ P(u⊥ + v).

Proof. A Lagrangian subspace H ∈ X(L,M) has the form h ⊕ h⊥ for h ∈ Gr (2, L). Thus
if (u, v) ∈ H, then u ∈ h and v ∈ h⊥, so that 〈u, v〉 = 0, and we have that u ∈ h ⊂ v⊥. A
point (u, v) ∈ V with 〈u, v〉 = 0 has u ∈ v⊥ ⊂ L. Given any h ∈ Gr (2, L) with u ∈ H ⊂ v⊥,
we have v ∈ h⊥ so that (u, v) ∈ h ⊕ h⊥ ∈ X(L,M). This shows that Z(L,M) equals the
quadratic hypersurface and that the fibre pr−1(u, v) = P(v⊥/u). Since at most one of u or
v may be zero, this is ispmorphic to P

2 if one is zero and P
1 if neither is zero.

For the last statement, note that the set (1) is contained in Z(L,M) ∩ P(v⊥ ⊕ u⊥).
Indeed, suppose that (u, v) ∈ H and H ∈ X(L,M). Then H = h⊕ h⊥ and u ∈ h ⊂ v⊥ and
v ∈ h⊥ ⊂ u⊥. If (a, b) ∈ H, then a ∈ v⊥ and b ∈ u⊥, and 〈a, b〉 = 0.
Let (a, b) ∈ Z(L,M) ∩ P(v⊥ ⊕ u⊥). Suppose that a is linearly independent of u and b is

linearly indepedent of v. As u, a ∈ L, v, b ∈ M , a ∈ v⊥ and b ∈ u⊥, span{a, u} annihilates
span{b, v}, so that span{a, b, u, v} is the unique Lagrangian subspace containing these four
points. ¤

The quadric Z(L,M, u, v) is singular; it is the cone over a quadric isomorphic to P(v⊥/u)×
P(u⊥/v) in a P

3 with vertex P(u+ v), a P
1.

1.1. The Galois group of
2 · · = 4 is D4. Let L, M , and N be general Lagrangian

subspaces in V as before, and letm be an isotropic 2-plane, also in general position. Observe
that

(2) (L) ∩ (M) ∩ (m) = π
(

pr−1(m ∩ Z(L,M))
)

.

By Lemma 1.1, Z(L,M) is a quadric. Thus it meets m in two points (u, v) and (u′, v′),
showing that the intersection (2) has two components.
Let W be the component of (2) coming from (u, v). By Lemma 1.1 again, if we restrict

π to Y (L,M), then pr(π−1(W )) = Z(L,M) ∩ P(u⊥ ⊕ v⊥) = Z(L,M, u, v) is a quadric
hypersurface in the P

5 ≃ P(u⊥ ⊕ v⊥). Each of the two points of intersection of N with
Z(L,M, u, v) gives a solution to the Schubert problem

(3) (L) ∩ (M) ∩ (m) ∩ (N) .

With the other point (u′, v′) of m∩Z(L,M), this gives four solutions to the Schubert prob-
lem (3). Note that N is spanned by its intersections with Z(L,M, u, v) and Z(L,M, u′, v′)
As its Galois group must preserve the partition coming from the two points (u, v) and
(u′, v′), it is a subgroup of D4. We have computed Frobenius elements which show that the
Galois group is D4.
For an alternative proof, note that it is possible to find a the monodromy loop that

fixes L,M,m (and hence the points (u, v) and (u′, v′)), as well as the two points N ∩
Z(L,M, u, v), but interchanges the other two points N∩Z(L,M, u′, v′). Indeed, let {x, y} =
N ∩ Z(L,M, u, v). Then the set of Lagrangian planes containing h := spanx, y is identified
with LG(h∠/h), and any two points in P(x∠) ∩ P(y∠) that are independent. Fix this. It is
important to make these kinds of arguments.
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1.2. The Galois group of
2 · = 4 is Z2×Z2. Let L,M,N be as before, and consider

a Lagrangian subspace H ∈ (L)∩ (M)∩ (N). As H ∈ (L)∩ (M), it has the form
h⊕ h⊥ for h ∈ Gr (2, L), and it is not hard to see that h⊥ = ϕN(h). These together imply
that (h, h)N ≡ 0, so that h is an isotropic 2-plane in the linear space L ≃ C

4 equipped with
the nondegenerate symmetric form (•, •)N . Let us work in P(L). Then h lies in one of the
two families of lines that rule the quadric surface QN := {u ∈ P(L) | (u, u)N = 0} in P(L).
Now let ℓ ⊂ L be an isotropic 2-plane in L, which is a line in P(L). This will meet Q in
two points, and through each point there will be two lines—one in each ruling. These four
solutions h give the four solutions h⊕ h⊥ to the Schubert problem.
The partition of the four solutions by the corresponding points of intersection ℓ∩Q show

that the Galois group is a subgroup of D4. To analyze this further, let p and q be the two
points in ℓ ∩ QN , and let the four lines on QN meeting these points be h1

p, h
2

p, h
1

q, and h2

q,
with the upper index representing the ruling of QN the line lies in and the lower indicating
the point of ℓ∩QN it meets. However, there are two solution lines h in each ruling and the
Galois group must preserve their intersections. Consequently, the Galois group is the Klein
4-group, isomorphic to Z2 × Z2.

ℓ

QN

1.3. The Galois group of
3 · = 8 is not yet determined.
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