Frobenius elements for = 6 on G(4,9).

We tried to compute 1 million Frobenius elements for each of the primes 1009, 5003, 10007, and 30011
for the enriched Schubert problem = 6 on G(4,9).
For each cycle type and prime, we record the number observed (frequency), the fraction, normalised to 72,
and an empirical fraction, where we divide the frequency by number of times the identity was observed.
The first table compares the observed fraction at the different primes, and later tables are for the computations at each prime.
Fractions found at different primes
Cycle Type 1009 5003 10007 30011
(6) 12.065612.007511.9929 12.0146
(3,3) 4.0223 3.9935 4.0162 3.9713
(2,4) 18.047517.981318.0396 17.9603
(2,2,2) 6.0154 6.0132 6.0103 6.0280
(1,2,3) 11.958712.032111.9848 11.9977
(1,1,2,2) 8.9961 8.9630 8.9815 8.9924
(1,1,1,3) 3.9460 4.0101 4.0062 4.0059
(1,1,1,1,2) 5.9637 5.9916 5.9783 6.0218
(1,1,1,1,1,1)0.9847 1.0077 0.9901 1.0079
Cycles found in 990177 samples Prime 1009
Cycle TypeFrequencyFractionEmpirical
(6)16593212.065612.25
(3,3)553164.02234.08
(2,4)24819818.047518.33
(2,2,2)827276.01546.11
(1,2,3)16446211.958712.14
(1,1,2,2)1237188.99619.14
(1,1,1,3)542673.94604.01
(1,1,1,1,2)820155.96376.06
(1,1,1,1,1,1)135420.98471.00
Cycles found in 998075 samples Prime 5003
Cycle TypeFrequencyFractionEmpirical
(6)16645012.007511.92
(3,3)553583.99353.96
(2,4)24925917.981317.84
(2,2,2)833566.01325.97
(1,2,3)16679112.032111.94
(1,1,2,2)1242478.96308.89
(1,1,1,3)555894.01013.98
(1,1,1,1,2)830565.99165.95
(1,1,1,1,1,1)139691.00771.00
Cycles found in 998970 samples Prime 10007
Cycle TypeFrequencyFractionEmpirical
(6)16639711.992912.11
(3,3)557234.01624.06
(2,4)25029218.039618.22
(2,2,2)833906.01036.07
(1,2,3)16628411.984812.10
(1,1,2,2)1246158.98159.07
(1,1,1,3)555854.00624.05
(1,1,1,1,2)829475.97836.04
(1,1,1,1,1,1)137370.99011.00
Cycles found in 999695 samples Prime 30011
Cycle TypeFrequencyFractionEmpirical
(6)16681912.014611.92
(3,3)551403.97133.94
(2,4)24937217.960317.82
(2,2,2)836976.02805.98
(1,2,3)16658411.997711.90
(1,1,2,2)1248578.99248.92
(1,1,1,3)556214.00593.97
(1,1,1,1,2)836106.02185.97
(1,1,1,1,1,1)139951.00791.00

Last modified: Fri Oct 19 17:12:23 CDT 2018