Frobenius elements for = 10 on G(4,9).

We computed about 30 million Frobenius elements for the enriched Schubert problem = 10 on G(4,9).
Of these, 14356122 were at the prime 1009, and 15530943 were at the prime 8191.
For each cycle type, we record the number observed (frequency), the fraction, normalised to 28800,
and an empirical fraction, where we divide the frequency by number of times the identity was observed.
Cycles found in 14356122 samples Prime 1009
Cycle TypeFrequencyFractionEmpirical
(5,5)283827569.388976606.47
(4,6)12041892415.7389582573.05
(2,8)18005273612.0602493847.28
(2,4,4)9002551806.0130721923.62
(2,3,5)474863952.6287391014.66
(2,2,6)11997802406.8940072563.63
(2,2,3,3)196909395.021664420.75
(2,2,2,4)5998781203.4229301281.79
(2,2,2,2,2)59855120.075881127.90
(10)14421192893.0533753081.45
(1,4,5)7154311435.2352821528.70
(1,2,3,4)5942031192.0382401269.66
(1,2,2,5)355932714.039739760.54
(1,2,2,2,3)297485596.788464635.65
(1,1,4,4)448929900.602210959.25
(1,1,3,5)477439957.7964861020.17
(1,1,2,3,3)397476797.381688849.31
(1,1,2,2,4)447889898.515853957.03
(1,1,2,2,2,2)111074222.826972237.34
(1,1,1,3,4)5969871197.6232581275.61
(1,1,1,2,5)239697480.859218512.17
(1,1,1,2,2,3)496897996.8314281061.75
(1,1,1,1,3,3)199453400.125215426.18
(1,1,1,1,2,4)299352600.533877639.64
(1,1,1,1,2,2,2)149131299.173607318.66
(1,1,1,1,1,5)2380647.75752150.87
(1,1,1,1,1,2,3)218120437.573322466.07
(1,1,1,1,1,1,4)3000660.19542064.12
(1,1,1,1,1,1,2,2)64142128.676087137.06
(1,1,1,1,1,1,1,3)2001640.15435442.77
(1,1,1,1,1,1,1,1,2)998720.03504821.34
(1,1,1,1,1,1,1,1,1,1)4680.9388611.00
 
Cycles found in 15530943 samples Prime 8191
Cycle TypeFrequencyFractionEmpirical
(5,5)311249577.168508622.50
(4,6)12951282401.6369392590.26
(2,8)19415443600.3266003883.09
(2,4,4)9713741801.2796261942.75
(2,3,5)516303957.4129791032.61
(2,2,6)12940162399.5748872588.03
(2,2,3,3)215665399.921112431.33
(2,2,2,4)6470671199.8968511294.13
(2,2,2,2,2)64985120.505754129.97
(10)15537252881.1695463107.45
(1,4,5)7757251438.4754361551.45
(1,2,3,4)6468131199.4258431293.63
(1,2,2,5)388911721.182017777.82
(1,2,2,2,3)324169601.126873648.34
(1,1,4,4)485365900.042708970.73
(1,1,3,5)517060958.8167311034.12
(1,1,2,3,3)432140801.344258864.28
(1,1,2,2,4)484765898.930091969.53
(1,1,2,2,2,2)121461225.232737242.92
(1,1,1,3,4)6460821198.0703041292.16
(1,1,1,2,5)259511481.227495519.02
(1,1,1,2,2,3)5395661000.5510161079.13
(1,1,1,1,3,3)216277401.055982432.55
(1,1,1,1,2,4)323301599.517286646.60
(1,1,1,1,2,2,2)162224300.822120324.45
(1,1,1,1,1,5)2567247.60519751.34
(1,1,1,1,1,2,3)236628438.794116473.26
(1,1,1,1,1,1,4)3227059.84028164.54
(1,1,1,1,1,1,2,2)69785129.406695139.57
(1,1,1,1,1,1,1,3)2122039.34957542.44
(1,1,1,1,1,1,1,1,2)1044219.36325420.88
(1,1,1,1,1,1,1,1,1,1)5000.9271811.00

Last modified: Wed Sep 26 15:38:42 EDT 2018