Note that a polynomial of the form
(§) has
l + 2k + kp complex zeroes.
These data suggest that the maximum number of real roots for a
univariate polynomial of the form
(§) is bounded by 3k+c,
where c is some constant.
In fact, we have a construction of such a polynomial with
4k+2 (or 4k+1 depending on the
parity of l) real zeroes.
This experimentation is part of a research project we engaged in at the MSRI as
part of the program on Topological Aspects of Real Algebraic Geometry.
It will result in a publication:
"Polynomial systems with few real zeroes".
Such a polynomial is the univariate eliminant of a polynomial system whose
support is the near circuit which consists of the four integer points
(0,0,0), (1,0,0), (0,1,0), and (1,p,q)
in R3, and the segment
(0,0,0), (0,0,-1), ..., (0,0,-k).
When p and q are relatively prime, the first four vectors
are the vertices of an empty simplex.
The first four points and (0,0,-k) are in convex position
if q-pk-k>0.
We apply the affine transformation z |---> z + k(1-x-y), and then set l:=q-pk-k. When l>0, this point configuration lies in the positive octant. It is the column vectors of the matrix
|
The polytope when (k, p, l) = (3,2,5). |
Values for l | ||||||||||||||||||
k | p | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | p | k |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 1 | -- | -- | -- | -- | 7 | 8 | 7 | 8 | 7 | 8 | 7 | 8 | 7 | 8 | 7 | 1 | 2 |
2 | -- | -- | -- | -- | 9 | 8 | 9 | 8 | 9 | 10 | 9 | 10 | 9 | 10 | 9 | 2 | ||
3 | 7 | 6 | 7 | 8 | 7 | 8 | 7 | 8 | 7 | 8 | 9 | 8 | 9 | 8 | 9 | 3 | ||
4 | 7 | 6 | 7 | 8 | 9 | 8 | 9 | 8 | 9 | 8 | 9 | 8 | 9 | 8 | 9 | 4 | ||
5 | 7 | 6 | 7 | 8 | 7 | 8 | 7 | 8 | 7 | 8 | 7 | 8 | 7 | 8 | 7 | 5 | ||
6 | 9 | 6 | 7 | 8 | 9 | 8 | 9 | 8 | 9 | 8 | 9 | 8 | 9 | 8 | 9 | 6 | ||
3 | 1 | -- | -- | -- | -- | 10 | 11 | 10 | 11 | 10 | 11 | 10 | 11 | 10 | 11 | 10 | 1 | 3 |
2 | -- | -- | 11 | 12 | 11 | 12 | 11 | 12 | 11 | 12 | 11 | 12 | 11 | 12 | 11 | 2 | ||
3 | 8 | 9 | 10 | 9 | 10 | 9 | 10 | 9 | 10 | 9 | 10 | 9 | 8 | 9 | 8 | 3 | ||
4 | 9 | 10 | 11 | 12 | 11 | 12 | 11 | 12 | 11 | 12 | 11 | 12 | 4 | |||||
5 | 8 | 11 | 10 | 11 | 10 | 11 | 10 | 11 | 10 | 11 | 10 | 5 | ||||||
4 | 1 | -- | -- | -- | -- | 13 | 14 | 13 | 14 | 13 | 14 | 13 | 14 | 13 | 14 | 13 | 1 | 4 |
2 | 13 | 14 | 13 | 14 | 13 | 14 | 15 | 14 | 15 | 14 | 15 | 14 | 13 | 14 | 13 | 2 | ||
3 | 13 | 14 | 11 | 10 | 11 | 10 | 11 | 10 | 11 | 10 | 11 | 10 | 11 | 3 | ||||
4 | 13 | 14 | 15 | 14 | 13 | 14 | 13 | 14 | 13 | 14 | 15 | 4 | ||||||
5 | 1 | -- | -- | -- | -- | 16 | 17 | 16 | 17 | 16 | 17 | 16 | 17 | 16 | 17 | 16 | 1 | 5 |
2 | 17 | 16 | 15 | 14 | 15 | 14 | 15 | 14 | 15 | 14 | 15 | 14 | 2 | |||||
3 | 14 | 13 | 12 | 13 | 12 | 13 | 12 | 13 | 12 | 11 | 12 | 3 | ||||||
6 | 1 | -- | -- | -- | -- | 19 | 20 | 19 | 20 | 19 | 20 | 19 | 20 | 19 | 20 | 19 | 1 | 6 |
2 | 17 | 16 | 17 | 16 | 17 | 16 | 17 | 16 | 17 | 16 | 19 | 18 | 2 | |||||
3 | 15 | 14 | 13 | 12 | 13 | 12 | 13 | 12 | 13 | 12 | 13 | 3 | ||||||
k | p | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | p | k |
Values for l |