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1. INTRODUCTION

In geometric modeling of curves and surfaces, the overall shape
of an individual patch is intuitively governed by the placement of
control points, and a rational patch may be finely tuned by altering
the weights of the basis functions—large weights pull the patch
towards the corresponding control points. The control points also
have a global meaning as the patch lies within the convex hull of
the control points, for any choice of weights.

This convex hull may be indicated by drawing some edges
between the control points. The rational bicubic tensor product
patches in Figure 1 have the same weights but different control
points, and the sanfex 3 grid of edges drawn between the control
points. Unlike the control points or their convex hulls, there is no

Fig. 1. Two rational bicubic patches.

canonical choice of these edges. We paraphrase a question posed to
us by Carl de Boor and Ron Goldman: What is the significance for
modeling of such control structures (control points plus edges)?

We provide an answer to this question. These control structures,
the triangles, quadrilaterals, and other shapes implied by these
edges, encode limiting positions of the patch when the weights
assume extreme values. Our main results are that the only possi-
ble limiting positions of a patch are the control structures arising
from regular decompositior(see Section 4) of the points indexing
its basis functions and control points, and any soeyular con-
trol structureis the limiting position of some sequence of patches.
Figure 2 shows rational bicubic patches with the control points of
Figure 1 and extreme weights. Each is very close to a composite
of nine bilinear tensor product patches—corresponding to the nine
quadrilaterals in their control structures. The control points of each
limiting bilinear patch are the corners of the corresponding quadri-
lateral. These limiting bilinear patches are all planar on the left,
while only the corner quadrilaterals are planar on the right.

The control structure in these examples, which is superimposed
on the patch, is a regular decomposition ofthe3 grid underlying
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Fig. 2. Two rational bicubic patches with extreme weights.

a bicubic patch. It is regular as it is induced from the upper convex
hull of the graph of a function on the 16 grid points. Such a function
could be 0 at the four corners, 2 at the four interior points and 1 at ) ) ) o ) )
the remaining eight edge points. Figure 3 shows this decomposition ~We first recall basics of rational &ier triangles and rational

on the left together with an irregular decomposition on the right. (If tensor product patches and their control nets. Next, we present
Krasauskas’ toric Bzier patches and introduce the crucial notion
of a regular polyhedral decomposition. In the last section we define
the main object in this paper, a regular control surface, which is a
union of toric Bezier patches governed by a regular decomposition.
We also state our main theorems, Theorem 1, that regular control
surfaces are limits of toric &ier patches, and Theorem 2, that if a
patch is sufficiently close to a control surface, then that control sur-
face must be regular. Proofs appear in the appendix, where we work
in the generality of toric patches in arbitrary dimension. Our main
tools are results of [Kapranov et al. 1991; 1992] which identify all
Fig. 3. Regular and irregular decompositions. possible toric degenerations of a projective toric variety.

Fig. 4. Degenerate biguadratic patch containing a pillow.

the second decomposition were the upper convex hull of the graphz BEZIER PATCHES AND CONTROL NETS
of a function on the grid points, and we assume—as we may—that ~

the central square is flat, then the value of the function at a vertex is We define rational Bzier curves and surfaces and tensor product
lower than the values at a clockwise neighbor, which is impossible patches in a form that is convenient for our discussion, and then
outside of Escher woodcuts.) describe their control nets. Our definition differs from the standard
Such control structures and limiting patches were considered formulation [Farin 1997] in that different domains are used for dif-
in [Craciun et al. 2010], but were restricted to triangulations—this ferent degrees. WritR.. for the nonnegative real numbers daRd
restricted the scope of the results. Our results hold in complete gen-for the positive real numbers.
erality and like those of [Craciun et al. 2010], rely upon a construc-  Let d be a positive integer. For each= 0, ...,d define the
tion in computational algebraic geometry called a toric degenera- Bernstein polynomiaB;.(x),
tion [Gelfand et al. 1994, Ch. 8.3.1].
While our primary interest is to explain the meaning of control Bia(z) = g;i(d _ m)d*i .
nets for the classical rational tensor product patches and rational
Bézier triangles, we work in the generality of Krasauskas’ toric (supstitutingr = dy and multiplying by(?)d* for normalization,

Bézier patches [Krasauskas 2002; 2006]. This is because any poly-thjs becomes the usual Bernstein polynomial. We omit the binomial
gon may arise in a regular decomposition of the points underlying coefficients, for it is these unadorned Bernstein polynomials which
a classical patch. Figure 4 shows a regular decomposition of thethe toric basis functions of Section 3 generalize.) Given weights
points in the2 x 2 grid underlying a biquadratic patch and onthe ., 4, € R. and control pointdy, ..., by € R™ (n = 2, 3),
right is a degenerate patch, which consists of four triangles and \ye have the parameterizeational Bzier curve

Krasauskas’s double pillow. The pillow corresponds to the central

quadrilateral in the x 2 grid, with the ‘free’ internal control point Z(; wibiBsa(x)
corresponding to the center point of the grid. F(z) = szo"—l“d 0 [0,d] — R™.
Our definitions and arguments make sense in any dimension. The > o WiBia(x)
body of this paper treats surface patches, but the proofs in the ap- o o )
pendix will be given for patches of any dimension. Our domain i§0, d] rather thar{0, 1], for this is the convention for

We do not address the variation diminishing property, which is toric patches. _ _

another fundamental global aspect of the control polygon of a ra- __ The control polygonof the curve is the union of segments
tional Bézier curve. This states that the number of points inwhicha bg, b1, ..., bs_1,by. Figure 5 shows two rational cubicégier
Bézier curve meets a line is bounded by number of points in which planar curves with their control polygons. There are two standard
its control polygon meets the same line. Generalizing this to sur- ways to extend this to surfaces. The most straightforward gives
faces is important and interesting, but we currently do not know rational tensor product patches. Let be positive integers and
how to formulate variation diminishing for general surface patches. for eachi = 0,...,candj = 0,...,d letw( ;) € R and

We remark that this is similar to the open problem of finding a sat- b(; ;; € R* be a weight and a control point. The associated ra-
isfactory multivariate generalization of Descartes’ rule of signs. tional tensor product patch of bidegrée d) is the image of the
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Fig. 5. Rational cubic Bzier planar curves with their control polygons.
map(0, ¢] x [0,d] — R3,

>0 im0 Wiy (i) Bise () Bra(y)
S0 o Wi Bire () Bjia(y)

Triangular Bezier patches are another extension. Set

Fz,y) =

d\ = {(z,y) eR?* |0 < z,yandz +y < d}

and setd := d\ N 72, the points with integer coordinates (lattice

points) in the triangleih. For (i,7) € A, we have the bivariate
Bernstein polynomial

d—i—j

Bagyalz,y) = a'y’(d -z —y)

Given weightsw = {w; jy | (4,7) € A} and control pointd3 =
{bg,j | (i,4) € A}, the associated triangular rationaBer patch
is the image of the ma@h — R3,

Flz,y) = 2 (1,)eA W) PG,g) Bigsa(2: y)
7 22 (5,)eA W) Bag)sa (@, )

The control points of a Bzier curve are connected in sequence
to give the control polygon, which is a piecewise linear caricature

of the curve. For a surface patch there are however many ways to
interpolate the control points by edges to form a control net. There

also may not be a way to fill in these edges with polygons to form

a control polytope. Even when this is possible, the significance of
this structure for the shape of the patch is not evident, except in
special cases. For example, Chang and Davis [Chang and Davis

1984] show for triangular Bzier patches that if the control points
are the graph of a convex function over the lattice poiats] this
induces a patrticular triangulation called thézger net then the
patch is convex.

3. TORIC PATCHES AND TORIC VARIETIES

Krasauskas’s toric patches [Krasauskas 2002] are a natural exten pose of this factorization is to clarify the role of the

sion of rational Bzier triangles and rational tensor product patches

to arbitrary polygons whose vertices have integer coordinates,

called/attice polygonsThey are based on toric varieties [Cox et al.
2011; Fulton 1993] from algebraic geometry which get their name
as they are natural compactifications of algebraic(toti)™, where

C* := C)\ {0}. They are naturally associated to lattice polygons

(and in higher dimensions, lattice polytopes), and the positive real

part [Fulton 1993, Ch. 4] [Sottile 2003] of a toric variety is canon-
ically identified with the corresponding polygon/polytope.

We simplify our notation, writing: = (1, ) for points ofR2.
Toric patches begin with a finite set C Z2? of (integer) lattice
points. The convex hull ofl is the set of all convex combinations

Zpaa 1= Zpa

acA acA

where  p, >0 and

Toric degenerations of Bézier patches . 3

of points of A, which is a lattice polygon and is writtef 4. To
each edge of Ay, there is a valid inequalityt. (z) > 0 on A4,
whereh.(z) is a linear polynomial with relatively prime integer

coefficients that vanishes on the edg&or example, ifA = d\n
72 andA 4 = dh, then the inequalities are

1 >0, x>0, and d—x1—1o > 0,

and the central quadrilateral of Figure 4 has inequalities
$1+(E2—17 1+$1—(L'2, 3—1}1—1'2, 1+CL‘2—(L‘1 2 0.

Let E be the set of edges of the polygdvy. To each lattice point
a € A, define thetoric basis functiomB, 1: A4 — R to be

Ba,a(z) = Hhe(a:)"e(a)_

ecE

This is strictly positive in the interior of 4. If a lies on an edge
e of Ay, theng, 4 is strictly positive on the relative interior ef
and ifa is a vertex, ther, 4(a) > 0. In particular the toric basis
functions have no common zeroesA,.

Observe that the toric basis functions $ér= [0, c] x [0, d] N Z?
and A = d\n 72 are equal to the Bernstein polynomials
Bise(x1)Bja(x2) and B jy;q(x1, 22) underlying the tensor prod-
uct and triangular Bzier patches.

Toric patches also requineeightsand control points. Le#.A
be the number of points inl. Let R4 be R¥* with coordinates
(za € Rs | a € A) indexed by elements ofl. A toric Bézier
patch of shapel is given by a collection of positive weights =
(wa | @ € A) € RZ and control point83 = {b, | a € A} C R3.
These are used to define a map — R3,
2aca Wabafa a(x)

> aca WaPa(z)
Since the toric basis functions are nonnegative\opand have no
common zeroes, this denominator is strictly positive’on Write
Y4, 5 for the image ofA 4 under the mag 4., g, Which is atoric

Bézier patchof shapeA.
We will show that the magy ., 5: A4 — R3 factors as

Ay 2 Y T RS

FA.,’w,B(-/L) =

@)

)

where & C R4 is the standard simplex of dimensigh4d—1,
which we identify with the non-negative orthant mod®g,, the
map 54 is induced by the toric basis functiomg 4, the mapw-
is induced by coordinatewise multiplication by the weighitsand
the mapr is a projection given by the control poing The pur-
weights in a

toric patch by isolating their effect. The imaga (A1) C A
is a standard toric varietX 4. Acting on this by the map- gives
a translated toric variety 4 ,,, which we call alift of the patch
Y.»,5 @s its image under the projectiaig is Y ., 5. We use re-
sults on the limiting position of the translatés, ., as the weights
are allowed to vary, which are called toric degenerations.

We make this precise. L& be R*4 with coordinategz,
R. | a € A) indexed by elements od. The standard simplex

O = (2R Yasza=1}

FA,w,B :

is the convex hull of the standard basisRr, and so has natural
barycentric coordinates. It is also the quotient of the nonnegative
orthant under multiplication by positive scalars, which gives it nat-
ural homogeneous coordinates, in which we iderftify | a € A]
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with [t - za | a € A] whenz, > 0 andt > 0. These homogeneous
coordinates correspond to barycentric coordinates as follows

[2a |a € A] <= (2alacA). 3)

1
Zae.A Za
Geometrically[z, | a € A] € L5 is the unigue point where the
rayR- - (za | a € A) meets the simpleXV"".

Let B4: Ay — IV be the mapa(z) = [Bau(z) | a € A
A vector of weightsw € R4 defines a map-: YAVANY. v ok

Fig. 6. Two upper hulls and decompositions for biquadraticipes.

W-[za|a€ A = [waza|ac Al functions for the pointsA underlying a biquadratic tensor product
) ) ) ) patch. More generally, polyhedral decompositioof A 4 is a col-
Given control pointd3, define the linear map;: R4 — R? by lection7” of polygons, line segments, and points4fwhose union
is A 4, where any edge, vertex, or endpoint of a segment also lies
ms5(2) = Zbaza' in 7, and any two elements df are either disjoint or their inter-
acd section is an element of . A decompositior/” is regularif it is

induced from a lifting function.

A decompositiors of the configuration4 of points is a collec-
tion S of subsets ofA calledfaces The convex hulls of these faces
are required to be the polygons, line segments, and vertices of a
polyhedral decompositiofi (S) of A 4. In particular, the intersec-
tion of any face with the convex hulk  of another faceF of S is

a = (a1,a3) +— Mz, either empty, a vertex ol », or the points ofF lying in some edge

) . . ) ) of Ar. AfaceF is afacet edge or vertexof S as its convex hull

which we will write as z*. The points of A define a map A is a polygon, line segment, or vertex. The decomposifids

The image of the simpIeA underry is the convex hull of the
control pointsB, and by these definitions, the magy ., 5 in (1)
defining the toric Bzier patch is the composition (2).

We callY, ,, 5 a toric patch because the imagig(A 4) is a toric
variety. Elementa of Z2 are exponents of monomials,

oi:R2 — O by regularif the polyhedral decompositiofi(S) is regular. We remark
o that not every point ofd need lie in some face of a decomposition.
pa(z) = [z* |ae Al Figure 7 shows two different lifting functions that induce the

same regular polyhedral decomposition of2he2 square underly-
ing a biquadratic patch, but different regular decompositiond.of
The center point o does not lie in any face of the decomposition

The closure iV of the image ofp 4 is thetoric variety X 4. We
have the following result of Krasauskas [Krasauskas 2002].

PrRoPOSITION 1. The image ofA 4 under the map3, is the
toric variety X 4.

Toric patches share with rationakBier patches the following
recursive structure. i is a vertex ofA 4, thenb, = F4 ., s(a)isa
point in the patch. It is the edge between two verticesAf;, then
the restrictionf 4 ., le Of F4,., 5 t0 e is the 1-dimensional toric
patch given by the points ofl lying on e and the corresponding
weights, which is a rational &ier curve. For example, the edges
of the patches in Figure 1 are all rational cubiezier curves.

4. REGULAR POLYHEDRAL DECOMPOSITIONS Fig. 7. Two different decompositions for biquadratic pathe

We recall the definitions of regular (or coherent) polyhedral sub-
divisions from geometric combinatorics, which were introduced
in [Gelfand et al. 1994§ 7.2]. Because subdivision has a differ-
ent meaning in modeling, we instead use the telenomposition
Let A C R? be a finite set and suppose that.4 — R is a func-
tion. We use to lift the points of A into R3. Let P be the convex
hull of the lifted points,

P, =conv{(a,\(a)) |ac A} C R

Each face ofP, has an outward pointing normal vector, and its 5. REGULAR CONTROL SURFACES
upper facetare those whose normal has positive last coordinate. If ="

we project these upper facets backR®, they cover the polygon Regular control surfaces are possible limiting positions of patches.

on the right as its lift does not lie on any upper facet.

Here is a one-dimensional example. Lettake the values
{0,1,2,0} on the points{0, 1,2,3} underlying rational cubic
Bézier curves. This induces a regular decompositiofiot, 2, 3}
with facets

{0,1,2} and {2,3}. 4

A4 and are the facets of thegular polyhedral decomposition, We first illustrate these notions on a rational cubic curve in the
of A4 induced by\. (Taking lower facets give®_ ,, soitis no loss plane. The curves of Figure 5 have weigfits4, 4, 1) at the points
of generality to work with upper facets.) 0,1, 2, 3, respectively. We use the lifting function inducing the

The edges and vertices @, are the images of the edges and decomposition (4) to define a family of weights - t°,4 - t*, 4 -
vertices lying on upper facets. Figure 6 shows the upper facets andt?, 1 - t%) = (1,4t,4t2,1) for t € R... Figure 8 shows the curves
the regular polyhedral decompositions given by two different lifting with ¢ = 5 and the control points of Figure 5.
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Toric degenerations of Bézier patches . 5

of these patches is theontrol surfacénduced by the decomposi-
tion S. As the domain of a patch of shapéis the convex hull
Az of F and faces of toric patches are again toric patches, the
control surface of a patch induced by a decomposition is naturally
a C? spline surface. A control surfacey ., 5(S) is regularif the
decompositiors is regular.

Figure 10 shows the control surfaces of the bicubic patches from
bob--omoeamo - bs Figure 1. These control surfaces are regular as they are induced

ba by

bodl oo b
Fig. 8. Rational cubic Bzier planar curves with= 5.

To consider the limit as — oo, write the Bernstein polynomials
in homogeneous form a8.; := u'v3  fori = 0,..., 3, for then
the cubic curve is the image of poirs, v) € (R-)2.

Limiting positions are given by restrictions to the facets of the
decomposition (4). Multiplying thg;.; by the weights and restrict-
ing to each facet, we get basis functions

{03, dtv?u, 4%vu?} and  {4t?vu? %},

These give rational &ier curves Fig. 10. Regular control surfaces.

v3by + 4tv>ub; + 4t2vu’b,y and 4t%vu’by + uPbg by the3 x 3 grid, which is a regular decomposition. We invite the
v3 + dtv?u + 4t2vu? 4t20u? +ud reader to compare them to the patches of Figure 2. Figure 11 shows

the irregular decomposition of the x 3 grid from Figure 3 and

a corresponding irregular control surface. The central quadalater

Dividing out the common factor af from the first and replacint
by u, and similarly dividing out:? from the second and replacing
vt? by v, we get

v2bg + 4vub; + 4u%b, 4uby + ubs
and _—
v2 + dovu + 4u? 4v+u

which are rational quadratic and lineaéBer curves. Figure 9
shows these curves with the control points of Figure 8. These are

b bo

bo

Fig. 11. Irregular decomposition and an irregular controfesze.

Ain the decomposition corresponds to the bilinear patch at the top,

boo--ooooooo s bs bod-----o-o-- b the triangleB in the decomposition corresponds to the indicated
_ flat triangle, and the triangl€ with pointso, p, ¢,  along one edge
Fig. 9. Regular control curves. corresponds to the singular ruled cubic in the surface. The polygo-

nal frame formed by the corresponding control points on the right
is the control polygon for this edge 6f, which is a rational cubic
Bézier curve.

We show that regular control surfaces are exactly the possible
limits of toric patches when the control poirtfisare fixed but the
weightsw are allowed to vary. In particular, the irregular control

regular control curves induced by the decomposition (4).

This restriction to facets followed by a monomial reparametriza-
tion allowed the determination of the limiting position of the curve
ast — co. While a sequence of such restrictions and reparametriza-
tions leads to general control curves, these operations are not suf‘fl-Surface Figure 11 cannot be the limit of toriéBer patches.

cient for surfaces. Let \: A — R be a lifting function. We use this and a given set
We describe the possible limiting positions of toric surface of weightsw = {w, € R | a € A} to get a set of weights which
patches. Letd C Z? be a finite setw € ]R;‘ be a vector of weights depends upon a parameter, (¢) := {t*®w, | a € A}. These

a][‘dr? = ez{lba | a € A} be control points for a toric patchiy, ., 5 weights are used to definearic degeneratioof the patch,
of shapeA.
Suppose that we have a decompositfoof .A. We may use the » ) e > aca '@ wabaBa(x)

weightsw and control pointd3 indexed by elements of a facét o (w5t) = > aea @ waBa()

as weights and control points for a toric patch of sh&pevritten ae )

Y7 w5, In fact, this can be done for any face®f The union Let S, be the regular decomposition @finduced byA. We show

that the regular control surfadé, ., 5(S») induced bysS, is the

Yaws(S) = U Y ol By » limit of the patches’4 ., 5,1 (t) parameterized byy ., 5, (x; t) as

Fos t — oo. We distinguish between the parametrization,, s » (z; t)
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L. Garcia-Puente et al.

Fig. 12. Toric degeneration of a rational tensor produatipaf bidegred3, 3).

and its image the patdiy ., 5, (t)—not only because they are dis-

tinct objects, but because there is no limiting parametrization, de-

spite there being a well-defined limiting position of patches.

This limit is with respect to the Hausdorff distance between two
subsets ofR3. Two subsetsX andY of R? are within Hausdorff
distancec if for every pointz of X there is some poiny of Y
within a distance of x, and vice versa. With this notion of distance,
we have the following result.

THEOREM 1. thm YA,w,B,A(t) = YA,w,B(SA)-
—00

That is, for everye > 0 there is a numbeM such that if
t > M, then the patclt, ,, 5, (¢) and the regular control surface
Y4,w,8(Sy) are within Hausdorff distance

We illustrate Theorem 1. On the left below are the weights of a
bicubic patch, in the center are the values of a lifting function, and
the corresponding regular decomposition is on the right.

1 3 3 1 0 2 2 O
3 9 9 3 1 1 1 1 < ]
3 9 9 3 1 2 2 1
1 3 3 1 0 1 1 05

The two lighter points(1,2) and(2,2), lie in no face of the de-
composition. Figure 12 shows the toric degeneration of this bicubic
patch at values = 1 andt = 6, and the regular control surface, all
with the indicated control points.

We will prove Theorem 1 in Appendix A. The key idea is the fac-
torization (2) of the maf#4 ., 5, (z; t) through the simpIeA.
This factorization allows us to study the limit in Theorem 1 by con-
sidering the effect of the family of weights, (¢) on the toric va-
riety X 4 in YA/ Using equations foX 4, we can show that the
limit ast — oo of the translated toric variet¥ 4 ., (+) iS a regular
control surface ilR* whose projection t®? is the regular control
surfaceY s ,, 5(Sy).

Figure 13 shows a toric degeneration of a rational cul@zi&

curve, together with the corresponding degeneration of the curve

X in the simplex A Here, the weights arev, (t)
(1,3t2,3t2,1). That is, the control pointb, andb; have weight
1, while the internal control poinfis; andb, have weightst2.

By Theorem 1, every regular control surface is the limit of the

3
\ \><\ \ \X\ \ \X\
1 t=3 t=9

t =

B B

Fig. 13. Toric degenerations of a rational cubiezier curve.

THEOREM 2. Let. A C Z? be a finite set an® = {b, | a €
A} C R3 a set of control points. [ C R? is a set for which there
is a sequencey’, w?, ... of weights so that

_limYAwiB =Y.
1—00 U

then there is a lifting functiolh: .4 — R and a weightw € R4
such thaty” = Y ., 5(S\), a regular control surface.

To prove Theorem 2, we consider the sequence of translated toric

varieties X 4 ,,i C AN, We show how [Kapranov et al. 1991;
1992] implies that the set of all translated toric varieties is natu-

rally compactified by the set of all regular control surfacedS”.
Thus some subsequence{df , ,,: } converges to a regular control

surface iA, whose image must coincide with, implying that

Y is a regular control surface. This method of proof does not give
a simple way to recover a lifting functiok or the weightw from

the sequence of weights', w?, . . ..

We prove Theorem 1 in Appendix A and Theorem 2 in Ap-
pendix B. While both require more algebraic geometry than we
have assumed so far, Appendix A is more elementary and Ap-
pendix B is significantly more sophisticated.

APPENDIX

A. PROOF OF THEOREM 1

corresponding patch under a toric degeneration. Our second mainLet d, n be positive integers. The definitions and results of Sec-

result is a converse: If a spadéis the limit of patches of shape
A with control pointsB, but differing weights, they” is a regular
control surface of shapd and control pointés.

tions 3, 4, and 5, as well as the statements of Theorems 1 and 2
make sense if we replacé C Z> by A ¢ Z¢ andB C R3 by

B c R™. We work here in this generality. This requires straightfor-
ward modifications such as replacing polygon by polytope and in
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{0,1,2}, {2,3}

{0,1},{1,2},{2,3}

{0,1}, {1,2,3} {0,1}, {1,3}

Fig. 14. Geometric realizations for four decompositions.

general removing restrictions on dimension. We invite the reader to Conversely, it ¢ Yavas

consult [Craciun et al. 2010] for a more complete treatment.
If the control pointsB are the verticede, | a € A} C RA

of the simpIeA, then the toric patchy, ., 5 is the (translated)
toric variety X 4 ,,. Given a decompositio8 of A, write X 4 ,,(S)
for the control surface induced ky when the control points are

the vertices oV, This is the union of patcheX ., over all
facesF of S, and each patci(s ., lies in the face/V” of AVl

consisting of points whose coordinates, vanish fora ¢ F.
Then, given any control poin#8 C R™, we have

TFB(XA’w(S)) = YA,w,B(S)-

Because of this universality of 4 .,, X 4,.,(S), and the maprs,
it suffices to prove Theorem 1 for limits of the toric varieXy .
Given a functionx: A — R and a weightw € R4, define the
family of weightsw, (t) = {t*®w, |a € A} fort € R..

WB(XA,w) = Y_A’w’g and

THEOREM 3. Let A\: A — R be a lifting function andS, the
regular decomposition aofl induced by\. Then, for any choice of
weightsw € RZ,

}LIECXA,M)\(t) = X4w(Sy).

We prove Theorem 3 in two parts. We first show that any accu-
mulation points of X 4 ., 1) | t > 1} ast — oo are contained in

the union of the face€Y” of the simpIeA for each faceF
of Sx. Then we show thak r . is the set of accumulation points

contained in the facf, and in fact each accumulation point is
a limit point. This will complete the proof of Theorem 3 as

XA,w(S)\) = U X]-_,w\f'
Fes§

We use homogeneous equations 10y ,,. Let1 € R4 be the
weight with every coordinaté. Equations fotX 4 ; were described
in [Craciun et al. 2010, Prop. B.3] as follows. For every linear rela-
tion among the points ofl with nonnegative integer coefficients

Zaaa = Z/Baa Zaa = Zﬂav (5)

acA acA acA acA

where

with a,, Ba € N, we have the valid equation for pointse X 4 1,

ISR I ESE (6)

acA acA

satisfies equation (6) for every relation (5),
thenz € X4 ;. This follows from the description of toric ideals
in [Sturmfels 1996, Ch. 4].

Since the toric varietyX 4 ,, is obtained fromX 4 ; through co-
ordinatewise multiplication byy = (w, | a € A), we have the
following description of its equations.

PROPOSITION 2. A pointz € & lies in X 4 ,, if and only if
[T Twi = TTa TTwse.
acA acA acA acA
for every relation(5) among the points ofl.
REMARK 4. As every component of a point € [N and
weightw is nonnegative, we may take arbitrary (positive) roots of
the equations in Proposition 2. It follows that we may relax the re-

quirement that the coefficients, and 3, in (5) are integers and
allow them to be any nonnegative numbers such that

Zaaa = Zﬂaa where Zaa Zﬁa

acA acA acA acA

L (™

Thatis,> aaa = Y Baa is a point in the convex hull oft with
more than one representation as a convex combination of points of
A. SinceA C Z?, we may assume that,, 3, are rational.

Among all relations (7) are those which arise when two subsets
of A have intersecting convex hulls.

PROPOSITION 3. LetF, G C A be disjoint subsets whose con-
vex hulls meet,

convF Nnconvg # 0.
Then we have a relation of the form

Z aza = Z Baa

acF acg

with a,, B2 > 0. Thus

Hz§a~Hw§a = Hzﬁa-ng‘a,

acF acg ac@ acF

where

Zaa = Zﬁa =1,

acF aeg

8)

holds onX 4 ,,.

Given a subseF C A, the convex hull of the point§es | £ €
F}is the simplef, which is a face oA. Under the tau-
tological projectionr 4 of VAVART Ay, the simplef maps to
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the convex hullAx of F. The geometric realizatiofiS| of a de-
compositionS of A is the union of the simplice€Y” for each
face 7 € S of the decompositiorS. We call a simple JAVAPY
faceof the geometric realizatio&|. The images of the faces of the
geometric realizationS| under the tautological projection, form
the faces of the polyhedral decompositidiiS). Figure 14 illus-
trates this geometric realization for four regular decompositions of
A = {0,1,2,3}. For this, &N is the 3-dimensional simplex. For
each decompositio§ of A, we show the corresponding polyhedral
decomposition ofA 4 = [0, 3] and its facets.

Suppose that a point € 5" lies in the geometric realization

|S| of a decompositiorS of A. Thenz € AN for some face
F of S, so that itssupport{a € A | zo, # 0} is a subset of

F. Conversely, any point € V" whose support is a subset of

some faceF of S lies in |S|. We conclude thaiS| ¢ &V is the
vanishing locus of the monomials

{za -2 | {a,b} ¢ any faceF of S}
U {zc | c ¢ anyfaceF of S}. (9)

A point z € [N is an accumulation poinbf a sequence

(X1, Xs,...} of subsets ofN" if, for every ¢ > 0 and ev-
ery M, there is somen > M such that distande, X,,,) < e.
Similarly, a pointz is an accumulation point of a familyX (¢) |

t € R.} if foreverye > 0 and M > 0, there is some
t > M such that distande, X (¢)) < ¢, andz is alimit point
if lim,_,., distancéz, X (¢)) = 0.

LEMMA 5. Letw € R4 be a weight and\: A — R be a lift-
ing function andw, (¢) the corresponding family of weights. Every
accumulation point of X 4w, +) | t € R} lies in the geometric
realization|S,|.

PrRoOF We will show that a poiny < /N which does not
lie in |Sx| cannot be an accumulation point oK 4 .., » }- If ¥ €
N buty ¢ |S,|, then by (9) either there are poinisb € A
with y.yp # 0 where{a, b} do not lie in a common face &,
or a single point € A with y. # 0 andc does not participate in
the decompositios,. Sete := min{ya, yp} (in the first case) or
€ := y. (in the second case). We will show thatifs sufficiently
large andz € X 4 ., (1), thenmin{z,, z1,} < €/2 (in the first case)
or z. < €¢/2 (in the second case), which will complete the proof.

Suppose that we are in the first case. Then the interior of the
segment, b meets some facA r of 7(S,). If F is the minimal
such face, then the interiors afb and A » meet in a poinp, and
so we have the valid relation oXi4 .,

zfi‘zg~Hw?f wg‘w,‘;-Hzfaf,
feF fer
by Proposition 3, where
Z asf and p+v
feF

and the coefficientg., v, ar are positive. ForX 4 ., ) the rela-
tion (10) becomes

v 1 Seer aA(f) | ag
zh 2y - tefeF We
feF

Since the lift(a, A(a)), (b, A\(b)) of a, b does not lie on an up-
per facet ofPy, but the lift of A does lie on an upper facet, the

(10

pa+vb = =

:§Oéf,

fer

p =

= HZ?f AEARFVA®) g

feF

point p which is common ta, b and A« is lifted lower on the lift
of a, b than on the lift ofA . We thus have the inequality

uA(a) Z asA(f
feF

Let§ > 0 be the difference of the two sides of (11). Then points
z € X 4,uw(r) Satisfy

2hzy =t 6H

feF

+vA(b (11)

14
wk wb ~whwyg

er]—' Hf‘e]—‘ af ,

as each component efe s positive and at most 1.

This inequality implies that if is sufficiently large, then at least
one of the components,, z, is less thare/2, and thusy is not
an accumulation point of the sequence. A similar argument in the
second case af ¢ S, completes the proof. O

< t9.

We complete the proof of Theorem 3 by showing that the set of

accumulation points of ., (1) in &7 for F a facet ofSy is
equal toXr ., ., as this proves that

lim Xy = |J Xruisr-
FeSy
LEMMA 6. Let F be a face ofSy. ThenXr ., is the set of
accumulation points of X 4., (1) | ¢ € R} that lie in &7”, and
each point ofX'z . is a limit point.

PROOF We have thaf r,,,, is the set of points € 277 such

that
Hz?f~waf = Hz?f-Hw?f, (12)
feF feF feF feF

whenevery, 8 € R satisfy

> apf =) Bef where > ar = > e = m. (13)

feFr
The equation (12) also holds 64,,,, and onX 4 ., (1), it becomes

T T 50000 - T T

feF feF feFr fer

feF feF fer

g arA(f) ,

(14)
Observe that

%Z/Bi"f

fer

1
E;aff

is a point in the convex hull of. SinceF is a face of the decom-
position induced by, the function) is affine-linear onF and so

SarA()) = 3 Be A(E)

feF fer

Let this common value bé&. As dividing (14) byt® gives (12), we
see that (12) is also a valid relation on every member of the family
{X4wyt) | t € RS}, whenever(ag, ¢ | £ € F) satisfy (13). It
follows that this set of equations (12) holds on every accumulation
point of the family{X 4 .,, 1) | t € R+ }, which implies that those

accumulation points lying iV are a subset (o} R
To show the other inclusion, for each fageof S, let X5 iy

consist of those points € Xz |, with z¢ # 0 for f € F. Evi-
dently we have
H X7 swlF o

FeSy

XAw S/\
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and so it suffices to prove that every point}é;’wv is a limit point
of the family { X 4w, 1) | t € R> 1.

SinceF is a face ofS,, there is a vectox € R? such that the
function A — R,

ar— v-a+\(a)

is maximized orF with maximum valué. Thatis, ifv-a+\(a) >
dwitha € A, thena € F andv -a+ A(a) = 4.
Consider the action df€ R-. onz € RZ where

(txx); == tVix;.
Letz € X3 . Thenz = o, (z) for somez € RZ, and so
PAw(t*T)a = wa -tV 22,

Thus, under the actioft.z), = t*® z, of Ry, onRZ, we have

Loaw(t*T)a = Wa - tvati(a)pa

Then the line through.¢ 4 ., (¢ * z) is equal to the line through
to (t.apA,w(t * Jc)) ,
whosea-coordinate is

Wa - tv-a+>\(a)75ma .

Sincev - a + A(a) — 6 < 0 with equality only whera € F, we
see that the limit of the pointsy 4 ., (t * ) of A4 ast — cois the
pointyr ., (z) = z, which completes the proof.0)

B. PROOF OF THEOREM 2

Theorem 3 shows that a limit of translates &fy ,, by a one-
parameter subgroup & (a toric degeneration oX 4 ,,) is a reg-

Toric degenerations of Bézier patches . 9

(C*)4 are equivalent to homomorphisms of abelian grofigs—
Z and thus to functiona: A — Z, which explains our notatioi.

The translatesX 4., (C) for w € (C*)“ give a family of sub-
varieties of P4, each with the same dimension and degree, and
each equipped with an action éf. A main result of [Kapranov
et al. 1991; 1992] identifies all suitable limits of these translates
X 4,4 (C) with the points of a complex projective toric variety
C4(C). The points ofC4(C) in turn are in one-to-one correspon-
dence with all possible complex toric degenerationXqf,, (C) as
w ranges ovefC*)*. For a toric degeneratioX of a translate of
X 4,1(C), we write[X] for the corresponding point & 4(C). We
will use this result to prove Theorem 2 as follows.

PROOF OFTHEOREM?2. Fix control pointsB = {b, | a €
A} C R™ and suppose thdtw!, w?, ... } is a sequence of weights
in R4 such that the sequence of toric patcH&$, i 5 | i =
1,2,...} converges to a séf in R™ in the Hausdorff topology.

Consider the corresponding sequent&, ,:(C) | i =
1,2,...} of torus translates ofX 4(C). This gives a sequence
[X 4..,i(C)] of points in the projective toric variet§ 4, (C). Since
C4(C) is compact, this sequence of points has a convergent subse-
quence whose limit point is a toric degeneration

lim X0, 0(C) = Xaw(S)(C) = | Xru(C)
FeSy

of X 4,,(C) for somew € (C*)* and lifting function\: Z* — Z.
Replacing the original weight&w®} by this subsequence, we may
assume that, as points 6% (C), we have

(X4 i (€)] = [X40(8:)(C)

= lim [Xawy @ (C)]- (15)

ular control surface. This is a special and real-number case of more "€ Points[.X, ,,: (C)] of C4(C) are translates of the base point
general results of [Kapranov et al. 1991; 1992] concerning aH pos [X4(C)] by elements ofR4 < (C*)#, and so they lie in the

sible toric degenerations of the complexified toric varigty(C)
that we will use to prove Theorem 2.

Suppose thad C Z¢ is a finite set. We will assume that is
primitive in that differences of elements df spanz®:

7% = Z{a—a'|a,a € A),

that is, A affinely spansZ? (if not, then simply replac&? by the
affine span ofd). Let PA be the complex projective space with
homogeneous coordinatgs, | a € A indexed by elements of
A. (These are extensions to all Bf* of the homogeneous coor-
dinates (3), which were valid for the nonnegative parPdf) The
complex torus? := (C*)4 naturally acts ofP* with weights given
by the setd: t € H sends the point with homogeneous coordi-
nates[z, | a € AJ to the pointt.z := [t®z, | a € A]. Note that
X 4,1(C) is the closure of the orbit dff through the point := [1 :
... 1]. Forw € (C*)*, the translatev. X 4 1 (C) =: X 4,,(C) is
also the closure of the orbit df through the pointv (considered
as a point irP4). Note thatdV" is the nonnegative real part [Ful-
ton 1993, Ch. 4] of?4, and whenw € R4 C (C*)*, thenX 4 ,, is
the nonnegative real part &f 4 ., (C).

A toric degenerationf X 41 (C) is any translateX 4 ,,(C), or
any limit of translates

Hm A(2).X 4,.,(C)
t—0
where\: C* — (C*)“ is a one-parameter subgroup. This is the

same limit as in Section A, its ideal is the limit of the ideals of
A(t).X 4.4, (C) ast — 0. The data of a one-parameter subgroup of

nonnegative real part of the toric variety,(C), and therefore so
does their limit point. But by (15) this limit point is a translate of
X 4(S,)(C), and thus it is a translate by a real weight. This shows
that we may take the weight in (15) to be real.

Theorem 2 will follow from this and the claim that if a sequence
{[Xi] | © € N} € C4(C) converges tdX] € C4(C) in the ana-
lytic topology, then the sequence of subvarie{ids } converges to
X in the Hausdorff metric on subsetsBf. Given this claim, (15)
implies that in the Hausdorff topology on subset®df

lim X4, (C) = lim X, 1)(€) = Xaw(S3)(C).

1—00
We may restrict this to their real points to conclude that the limit of
patchesX , .. in &9,

lim XA’wi = zliﬁnychA’w’\(t) = XA,,H(SA),

1—00
is a regular control surface. Sin&g i 5 = m5(X 4 1), the limit
lim; o0 Yy .00 5 €QUalS

}LH;WB(XA,wi) = WB(}LH;XA,IM)
75(Xa,w(Sy)) = Yauws(Sy),

which is a regular control surface. This will complete the proof of
Theorem 2, once we have proven the clainl

PROOF OF cLAIM. As shown in [Kapranov et al. 1991; 1992],
the projective toric variety” 4(C) is the Chow quotient oP by
the groupH = (C*)? acting via the weights afl. We explain this
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construction. LetD = d! - volumg A 4), which is the degree of
the projective toric varietyX 4(C), as well as any of its translates.

Basic algebraic geometry (see [Harris 1992, Lect. 21]) gives a com-

plex projective variety” (D, d, A), called theChow varietywhose
points are in one-to-one correspondence wiiimensional cycles
in PA of degreeD. These are formal linear combinations

i=1

where each coefficienD; is a nonnegative integer, eadhy is a
reduced and irreducible subvarietylbt of dimensiond, and

(16)

D =Y D;-degre¢z;).

Jj=1

In particular all translates( 4 ,,(C) are represented by points of
C(D,d,A).

The torus(C*)# acts onP# and thus ornC/(D, d, A), with the
points representing the translat¥s ., forming a single orbit. The
Chow quotientC 4(C) is the closure of this orbit i”'(D, d, A).

An explicit description of” 4, (C) may be found in [Kapranov et al.
1991, 1992]. We do not need this description to prove Theorem 2,
although such a description could be used to help identify the limit
control surface whose existence is only asserted by Theorem 2.

The points ofC 4(C) correspond to toric degenerations of trans-
lates X 4 .,(C). We describe this, associating a cycle of degiee
and dimensionl to any toric degeneration. L&, be a regular de-
composition ofA induced by a liting function\: Z* — Z. Let
F c Abe afacet ofS,. Setdr to be the index irZZ¢ of the lattice

Z(f —f | £,£ € F)

spanned by differences of elements ®f Then X» ,.(C) is a
subvariety ofP” of dimensiond and degree

d!-volumgAyx)/dr .
The toric degeneration

U

r afacet ofs,

lim Xy (C) = X7,ulr(C)

(this is a set-theoretic limit) corresponds to the cycle
Z 6]-'X]-',w\}- (C) )
r afacet ofs,

which has degre® = d! - volumg A 4).
We now prove the claim. Following [Lawson 1989, Sect. 2],

We use this to show théitm;_,., X; = X, in the Hausdorff metric.

Given a pointz € X and a humbee > 0, letw be a2d-form
with [, w # 0 which vanishes outside the ba(z, ¢) of radiuse
aroundz. Then (17) implies that there is a numher such that if
1> M, theani w # 0, and thusX; N B(z,¢€) # (. SinceX is
compact, there is some numhef such that ifi > M, then every
point of X is within a distance of a point of X;.

To complete the proof of the claim, we show that for every num-
bere > 0, there is a numbelM such that ifi > M, then every
point of X; lies within a distance of X. If not, then there is an
¢ > 0 such that for even), there is someé > M such thatX;
has a pointe; with dist(z;, X) > e. Replacing{X;} by a subse-
quence, we may assume that eachhas such a point; . It is no
loss to assume that the points are smooth. By the compactness
of P4 and of the Grassmannian @fdimensional linear subspaces
of P4, we may replacé X;} by a subsequence and assume that the
pointsz; converge to a point, and that the tangent spacgs X
also converge to a linear spateletw be a smootld-form which
vanishes outside aB(x, ¢/2) with [, w # 0. Then,

lim
1—00

w # 0.
X
But then (17) implies thaf, w # 0, and soX N B(z,€/2) # 0,
which contradicts our assumption thitis the limit of theX;. O
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