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1. INTRODUCTION

In geometric modeling of curves and surfaces, the overall shape
of an individual patch is intuitively governed by the placement of
control points, and a rational patch may be finely tuned by altering
the weights of the basis functions—large weights pull the patch
towards the corresponding control points. The control points also
have a global meaning as the patch lies within the convex hull of
the control points, for any choice of weights.

This convex hull may be indicated by drawing some edges
between the control points. The rational bicubic tensor product
patches in Figure 1 have the same weights but different control
points, and the same3× 3 grid of edges drawn between the control
points. Unlike the control points or their convex hulls, there is no

Fig. 1. Two rational bicubic patches.

canonical choice of these edges. We paraphrase a question posed to
us by Carl de Boor and Ron Goldman: What is the significance for
modeling of such control structures (control points plus edges)?

We provide an answer to this question. These control structures,
the triangles, quadrilaterals, and other shapes implied by these
edges, encode limiting positions of the patch when the weights
assume extreme values. Our main results are that the only possi-
ble limiting positions of a patch are the control structures arising
from regular decompositions(see Section 4) of the points indexing
its basis functions and control points, and any suchregular con-
trol structureis the limiting position of some sequence of patches.
Figure 2 shows rational bicubic patches with the control points of
Figure 1 and extreme weights. Each is very close to a composite
of nine bilinear tensor product patches—corresponding to the nine
quadrilaterals in their control structures. The control points of each
limiting bilinear patch are the corners of the corresponding quadri-
lateral. These limiting bilinear patches are all planar on the left,
while only the corner quadrilaterals are planar on the right.

The control structure in these examples, which is superimposed
on the patch, is a regular decomposition of the3×3 grid underlying
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Fig. 2. Two rational bicubic patches with extreme weights.

a bicubic patch. It is regular as it is induced from the upper convex
hull of the graph of a function on the 16 grid points. Such a function
could be 0 at the four corners, 2 at the four interior points and 1 at
the remaining eight edge points. Figure 3 shows this decomposition
on the left together with an irregular decomposition on the right. (If

Fig. 3. Regular and irregular decompositions.

the second decomposition were the upper convex hull of the graph
of a function on the grid points, and we assume—as we may—that
the central square is flat, then the value of the function at a vertex is
lower than the values at a clockwise neighbor, which is impossible
outside of Escher woodcuts.)

Such control structures and limiting patches were considered
in [Craciun et al. 2010], but were restricted to triangulations—this
restricted the scope of the results. Our results hold in complete gen-
erality and like those of [Craciun et al. 2010], rely upon a construc-
tion in computational algebraic geometry called a toric degenera-
tion [Gel′fand et al. 1994, Ch. 8.3.1].

While our primary interest is to explain the meaning of control
nets for the classical rational tensor product patches and rational
Bézier triangles, we work in the generality of Krasauskas’ toric
Bézier patches [Krasauskas 2002; 2006]. This is because any poly-
gon may arise in a regular decomposition of the points underlying
a classical patch. Figure 4 shows a regular decomposition of the
points in the2 × 2 grid underlying a biquadratic patch and on the
right is a degenerate patch, which consists of four triangles and
Krasauskas’s double pillow. The pillow corresponds to the central
quadrilateral in the2× 2 grid, with the ‘free’ internal control point
corresponding to the center point of the grid.

Our definitions and arguments make sense in any dimension. The
body of this paper treats surface patches, but the proofs in the ap-
pendix will be given for patches of any dimension.

We do not address the variation diminishing property, which is
another fundamental global aspect of the control polygon of a ra-
tional Bézier curve. This states that the number of points in which a
Bézier curve meets a line is bounded by number of points in which
its control polygon meets the same line. Generalizing this to sur-
faces is important and interesting, but we currently do not know
how to formulate variation diminishing for general surface patches.
We remark that this is similar to the open problem of finding a sat-
isfactory multivariate generalization of Descartes’ rule of signs.

Fig. 4. Degenerate biquadratic patch containing a pillow.

We first recall basics of rational B́ezier triangles and rational
tensor product patches and their control nets. Next, we present
Krasauskas’ toric B́ezier patches and introduce the crucial notion
of a regular polyhedral decomposition. In the last section we define
the main object in this paper, a regular control surface, which is a
union of toric B́ezier patches governed by a regular decomposition.
We also state our main theorems, Theorem 1, that regular control
surfaces are limits of toric B́ezier patches, and Theorem 2, that if a
patch is sufficiently close to a control surface, then that control sur-
face must be regular. Proofs appear in the appendix, where we work
in the generality of toric patches in arbitrary dimension. Our main
tools are results of [Kapranov et al. 1991; 1992] which identify all
possible toric degenerations of a projective toric variety.

2. BÉZIER PATCHES AND CONTROL NETS

We define rational B́ezier curves and surfaces and tensor product
patches in a form that is convenient for our discussion, and then
describe their control nets. Our definition differs from the standard
formulation [Farin 1997] in that different domains are used for dif-
ferent degrees. WriteR≥ for the nonnegative real numbers andR>

for the positive real numbers.
Let d be a positive integer. For eachi = 0, . . . , d define the

Bernstein polynomialβi;d(x),

βi;d(x) := xi(d− x)d−i .

(Substitutingx = dy and multiplying by
(

d

i

)

d−d for normalization,
this becomes the usual Bernstein polynomial. We omit the binomial
coefficients, for it is these unadorned Bernstein polynomials which
the toric basis functions of Section 3 generalize.) Given weights
w0, . . . , wd ∈ R> and control pointsb0, . . . ,bd ∈ R

n (n = 2, 3),
we have the parameterizedrational B́ezier curve

F (x) :=

∑d

i=0 wibiβi;d(x)
∑d

i=0 wiβi;d(x)
: [0, d] −→ R

n .

Our domain is[0, d] rather than[0, 1], for this is the convention for
toric patches.

The control polygonof the curve is the union of segments
b0,b1, . . . ,bd−1,bd. Figure 5 shows two rational cubic Bézier
planar curves with their control polygons. There are two standard
ways to extend this to surfaces. The most straightforward gives
rational tensor product patches. Letc, d be positive integers and
for eachi = 0, . . . , c and j = 0, . . . , d let w(i,j) ∈ R> and
b(i,j) ∈ R

3 be a weight and a control point. The associated ra-
tional tensor product patch of bidegree(c, d) is the image of the
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Fig. 5. Rational cubic B́ezier planar curves with their control polygons.

map[0, c]× [0, d]→ R
3,

F (x, y) :=

∑c

i=0

∑d

j=0 w(i,j)b(i,j)βi;c(x)βj;d(y)
∑c

i=0

∑d

j=0 w(i,j)βi;c(x)βj;d(y)
.

Triangular B́ezier patches are another extension. Set

d := {(x, y) ∈ R
2 | 0 ≤ x, y andx+ y ≤ d}

and setA := d ∩Z2, the points with integer coordinates (lattice
points) in the triangled . For (i, j) ∈ A, we have the bivariate
Bernstein polynomial

β(i,j);d(x, y) := xiyj(d− x− y)d−i−j .

Given weightsw = {w(i,j) | (i, j) ∈ A} and control pointsB =
{b(i,j) | (i, j) ∈ A}, the associated triangular rational Bézier patch

is the image of the mapd → R
3,

F (x, y) :=:

∑

(i,j)∈A w(i,j)b(i,j)β(i,j);d(x, y)
∑

(i,j)∈A w(i,j)β(i,j);d(x, y)
.

The control points of a B́ezier curve are connected in sequence
to give the control polygon, which is a piecewise linear caricature
of the curve. For a surface patch there are however many ways to
interpolate the control points by edges to form a control net. There
also may not be a way to fill in these edges with polygons to form
a control polytope. Even when this is possible, the significance of
this structure for the shape of the patch is not evident, except in
special cases. For example, Chang and Davis [Chang and Davis
1984] show for triangular B́ezier patches that if the control points
are the graph of a convex function over the lattice points,and this
induces a particular triangulation called the Bézier net, then the
patch is convex.

3. TORIC PATCHES AND TORIC VARIETIES

Krasauskas’s toric patches [Krasauskas 2002] are a natural exten-
sion of rational B́ezier triangles and rational tensor product patches
to arbitrary polygons whose vertices have integer coordinates,
calledlattice polygons. They are based on toric varieties [Cox et al.
2011; Fulton 1993] from algebraic geometry which get their name
as they are natural compactifications of algebraic tori(C∗)n, where
C
∗ := C \ {0}. They are naturally associated to lattice polygons

(and in higher dimensions, lattice polytopes), and the positive real
part [Fulton 1993, Ch. 4] [Sottile 2003] of a toric variety is canon-
ically identified with the corresponding polygon/polytope.

We simplify our notation, writingx = (x1, x2) for points ofR2.
Toric patches begin with a finite setA ⊂ Z

2 of (integer) lattice
points. The convex hull ofA is the set of all convex combinations

∑

a∈A

paa where pa ≥ 0 and 1 =
∑

a∈A

pa

of points ofA, which is a lattice polygon and is written∆A. To
each edgee of ∆A, there is a valid inequalityhe(x) ≥ 0 on ∆A,
wherehe(x) is a linear polynomial with relatively prime integer
coefficients that vanishes on the edgee. For example, ifA = d ∩

Z
2 and∆A = d , then the inequalities are

x1 ≥ 0, x2 ≥ 0, and d−x1−x2 ≥ 0 ,

and the central quadrilateral of Figure 4 has inequalities

x1+x2−1, 1+x1−x2, 3−x1−x2, 1+x2−x1 ≥ 0.

LetE be the set of edges of the polygon∆A. To each lattice point
a ∈ A, define thetoric basis functionβa,A : ∆A → R to be

βa,A(x) :=
∏

e∈E

he(x)
he(a).

This is strictly positive in the interior of∆A. If a lies on an edge
e of ∆A, thenβa,A is strictly positive on the relative interior ofe,
and ifa is a vertex, thenβa,A(a) > 0. In particular the toric basis
functions have no common zeroes in∆A.

Observe that the toric basis functions forA = [0, c]× [0, d]∩Z2

and A = d ∩ Z
2 are equal to the Bernstein polynomials

βi;c(x1)βj;d(x2) andβ(i,j);d(x1, x2) underlying the tensor prod-
uct and triangular B́ezier patches.

Toric patches also requireweightsand control points. Let#A
be the number of points inA. Let RA> beR

#A
> with coordinates

(za ∈ R> | a ∈ A) indexed by elements ofA. A toric Bézier
patch of shapeA is given by a collection of positive weightsw =
(wa | a ∈ A) ∈ R

A
> and control pointsB = {ba | a ∈ A} ⊂ R

3.
These are used to define a map∆A → R

3,

FA,w,B(x) :=

∑

a∈A wabaβa,A(x)
∑

a∈A waβa,A(x)
. (1)

Since the toric basis functions are nonnegative on∆A and have no
common zeroes, this denominator is strictly positive on∆A. Write
YA,w,B for the image of∆A under the mapFA,w,B, which is atoric
Bézier patchof shapeA.

We will show that the mapFA,w,B : ∆A → R
3 factors as

FA,w,B : ∆A
βA−−→

A w·
−−→

A πB−−→ R
3 , (2)

where
A
⊂ R

A is the standard simplex of dimension#A−1,
which we identify with the non-negative orthant moduloR>, the
mapβA is induced by the toric basis functionsβa,A, the mapw·
is induced by coordinatewise multiplication by the weightsw, and
the mapπB is a projection given by the control pointsB. The pur-
pose of this factorization is to clarify the role of the weights in a

toric patch by isolating their effect. The imageβA(∆A) ⊂
A

is a standard toric varietyXA. Acting on this by the mapw· gives
a translated toric varietyXA,w, which we call alift of the patch
YA,w,B as its image under the projectionπB is YA,w,B. We use re-
sults on the limiting position of the translatesXA,w as the weights
are allowed to vary, which are called toric degenerations.

We make this precise. LetRA≥ beR
#A
≥ with coordinates(za ∈

R≥ | a ∈ A) indexed by elements ofA. The standard simplex

A
:= {z ∈ R

A
≥ |

∑

a∈A za = 1}

is the convex hull of the standard basis inRA, and so has natural
barycentric coordinates. It is also the quotient of the nonnegative
orthant under multiplication by positive scalars, which gives it nat-
ural homogeneous coordinates, in which we identify[za | a ∈ A]
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with [t · za | a ∈ A] whenza ≥ 0 andt > 0. These homogeneous
coordinates correspond to barycentric coordinates as follows

[za | a ∈ A] ⇐⇒
1

∑

a∈A za
(za | a ∈ A) . (3)

Geometrically,[za | a ∈ A] ∈
A

is the unique point where the

rayR> · (za | a ∈ A) meets the simplex
A

.

Let βA : ∆A →
A

be the mapβA(x) = [βa,A(x) | a ∈ A].

A vector of weightsw ∈ R
A
> defines a mapw· :

A
→

A
,

w · [za | a ∈ A] = [waza | a ∈ A] .

Given control pointsB, define the linear mapπB : RA → R
3 by

πB(z) :=
∑

a∈A

baza .

The image of the simplex
A

underπB is the convex hull of the
control pointsB, and by these definitions, the mapFA,w,B in (1)
defining the toric B́ezier patch is the composition (2).

We callYA,w,B a toric patch because the imageβA(∆A) is a toric
variety. Elementsa of Z2 are exponents of monomials,

a = (a1, a2) ←→ xa1

1 xa2

2 ,

which we will write as xa. The points ofA define a map

ϕA : R
2
> →

A
by

ϕA(x) := [xa | a ∈ A] .

The closure in
A

of the image ofϕA is thetoric varietyXA. We
have the following result of Krasauskas [Krasauskas 2002].

PROPOSITION 1. The image of∆A under the mapβA is the
toric varietyXA.

Toric patches share with rational Bézier patches the following
recursive structure. Ifa is a vertex of∆A, thenba = FA,w,B(a) is a
point in the patch. Ife is the edge between two vertices of∆A, then
the restrictionFA,w,B|e of FA,w,B to e is the 1-dimensional toric
patch given by the points ofA lying on e and the corresponding
weights, which is a rational B́ezier curve. For example, the edges
of the patches in Figure 1 are all rational cubic Bézier curves.

4. REGULAR POLYHEDRAL DECOMPOSITIONS

We recall the definitions of regular (or coherent) polyhedral sub-
divisions from geometric combinatorics, which were introduced
in [Gel′fand et al. 1994,§ 7.2]. Because subdivision has a differ-
ent meaning in modeling, we instead use the termdecomposition.
LetA ⊂ R

2 be a finite set and suppose thatλ : A → R is a func-
tion. We useλ to lift the points ofA intoR

3. LetPλ be the convex
hull of the lifted points,

Pλ = conv{(a, λ(a)) | a ∈ A} ⊂ R
3.

Each face ofPλ has an outward pointing normal vector, and its
upper facetsare those whose normal has positive last coordinate. If
we project these upper facets back toR

2, they cover the polygon
∆A and are the facets of theregular polyhedral decompositionTλ
of ∆A induced byλ. (Taking lower facets givesT−λ, so it is no loss
of generality to work with upper facets.)

The edges and vertices ofTλ are the images of the edges and
vertices lying on upper facets. Figure 6 shows the upper facets and
the regular polyhedral decompositions given by two different lifting

Fig. 6. Two upper hulls and decompositions for biquadratic patches.

functions for the pointsA underlying a biquadratic tensor product
patch. More generally, apolyhedral decompositionof ∆A is a col-
lectionT of polygons, line segments, and points ofA, whose union
is ∆A, where any edge, vertex, or endpoint of a segment also lies
in T , and any two elements ofT are either disjoint or their inter-
section is an element ofT . A decompositionT is regularif it is
induced from a lifting function.

A decompositionS of the configurationA of points is a collec-
tion S of subsets ofA calledfaces. The convex hulls of these faces
are required to be the polygons, line segments, and vertices of a
polyhedral decompositionT (S) of ∆A. In particular, the intersec-
tion of any face with the convex hull∆F of another faceF of S is
either empty, a vertex of∆F , or the points ofF lying in some edge
of ∆F . A faceF is a facet, edge, or vertexof S as its convex hull
∆F is a polygon, line segment, or vertex. The decompositionS is
regularif the polyhedral decompositionT (S) is regular. We remark
that not every point ofA need lie in some face of a decomposition.

Figure 7 shows two different lifting functions that induce the
same regular polyhedral decomposition of the2×2 square underly-
ing a biquadratic patch, but different regular decompositions ofA.
The center point ofA does not lie in any face of the decomposition

Fig. 7. Two different decompositions for biquadratic patches.

on the right as its lift does not lie on any upper facet.
Here is a one-dimensional example. Letλ take the values

{0, 1, 2, 0} on the points{0, 1, 2, 3} underlying rational cubic
Bézier curves. This induces a regular decomposition of{0, 1, 2, 3}
with facets

{0, 1, 2} and {2, 3} . (4)

5. REGULAR CONTROL SURFACES

Regular control surfaces are possible limiting positions of patches.
We first illustrate these notions on a rational cubic curve in the
plane. The curves of Figure 5 have weights(1, 4, 4, 1) at the points
0 , 1 , 2 , 3, respectively. We use the lifting function inducing the
decomposition (4) to define a family of weights(1 · t0, 4 · t1, 4 ·
t2, 1 · t0) = (1, 4t, 4t2, 1) for t ∈ R>. Figure 8 shows the curves
with t = 5 and the control points of Figure 5.
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Fig. 8. Rational cubic B́ezier planar curves witht = 5.

To consider the limit ast→∞, write the Bernstein polynomials
in homogeneous form asβi;3 := uiv3−i for i = 0, . . . , 3, for then
the cubic curve is the image of points(u, v) ∈ (R>)

2.
Limiting positions are given by restrictions to the facets of the

decomposition (4). Multiplying theβi;3 by the weights and restrict-
ing to each facet, we get basis functions

{v3, 4tv2u, 4t2vu2} , and {4t2vu2, u3} .

These give rational B́ezier curves

v3b0 + 4tv2ub1 + 4t2vu2
b2

v3 + 4tv2u+ 4t2vu2
and

4t2vu2
b2 + u3

b3

4t2vu2 + u3
.

Dividing out the common factor ofv from the first and replacingtu
by u, and similarly dividing outu2 from the second and replacing
vt2 by v, we get

v2b0 + 4vub1 + 4u2
b2

v2 + 4vu+ 4u2
and

4vb2 + ub3

4v + u
,

which are rational quadratic and linear Bézier curves. Figure 9
shows these curves with the control points of Figure 8. These are

b2

b1

b0 b3

b1

b2

b0 b3

Fig. 9. Regular control curves.

regular control curves induced by the decomposition (4).
This restriction to facets followed by a monomial reparametriza-

tion allowed the determination of the limiting position of the curve
ast→∞. While a sequence of such restrictions and reparametriza-
tions leads to general control curves, these operations are not suffi-
cient for surfaces.

We describe the possible limiting positions of toric surface
patches. LetA ⊂ Z

2 be a finite set,w ∈ R
A
> be a vector of weights

andB = {ba | a ∈ A} be control points for a toric patchYA,w,B

of shapeA.
Suppose that we have a decompositionS of A. We may use the

weightsw and control pointsB indexed by elements of a facetF
as weights and control points for a toric patch of shapeF , written
YF,w|F ,B|F . In fact, this can be done for any face ofS. The union

YA,w,B(S) :=
⋃

F∈S

YF,w|F ,B|F ,

of these patches is thecontrol surfaceinduced by the decomposi-
tion S. As the domain of a patch of shapeF is the convex hull
∆F of F and faces of toric patches are again toric patches, the
control surface of a patch induced by a decomposition is naturally
aC0 spline surface. A control surfaceYA,w,B(S) is regularif the
decompositionS is regular.

Figure 10 shows the control surfaces of the bicubic patches from
Figure 1. These control surfaces are regular as they are induced

Fig. 10. Regular control surfaces.

by the3 × 3 grid, which is a regular decomposition. We invite the
reader to compare them to the patches of Figure 2. Figure 11 shows
the irregular decomposition of the3 × 3 grid from Figure 3 and
a corresponding irregular control surface. The central quadrilateral

A

CB -

o p q r

A

B HHHHj

C
�
��

6

6

6

o p q r

Fig. 11. Irregular decomposition and an irregular control surface.

A in the decomposition corresponds to the bilinear patch at the top,
the triangleB in the decomposition corresponds to the indicated
flat triangle, and the triangleC with pointso, p, q, r along one edge
corresponds to the singular ruled cubic in the surface. The polygo-
nal frame formed by the corresponding control points on the right
is the control polygon for this edge ofC, which is a rational cubic
Bézier curve.

We show that regular control surfaces are exactly the possible
limits of toric patches when the control pointsB are fixed but the
weightsw are allowed to vary. In particular, the irregular control
surface Figure 11 cannot be the limit of toric Bézier patches.

Let λ : A → R be a lifting function. We use this and a given set
of weightsw = {wa ∈ R> | a ∈ A} to get a set of weights which
depends upon a parameter,wλ(t) := {tλ(a)wa | a ∈ A}. These
weights are used to define atoric degenerationof the patch,

FA,w,B,λ(x; t) :=

∑

a∈A t
λ(a)wabaβa(x)

∑

a∈A t
λ(a)waβa(x)

.

Let Sλ be the regular decomposition ofA induced byλ. We show
that the regular control surfaceYA,w,B(Sλ) induced bySλ is the
limit of the patchesYA,w,B,λ(t) parameterized byFA,w,B,λ(x; t) as
t→∞. We distinguish between the parametrizationFA,w,B,λ(x; t)
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Fig. 12. Toric degeneration of a rational tensor product patch of bidegree(3, 3).

and its image the patchYA,w,B,λ(t)—not only because they are dis-
tinct objects, but because there is no limiting parametrization, de-
spite there being a well-defined limiting position of patches.

This limit is with respect to the Hausdorff distance between two
subsets ofR3. Two subsetsX andY of R3 arewithin Hausdorff
distanceǫ if for every pointx of X there is some pointy of Y
within a distanceǫ of x, and vice versa. With this notion of distance,
we have the following result.

THEOREM 1. lim
t→∞

YA,w,B,λ(t) = YA,w,B(Sλ).

That is, for everyǫ > 0 there is a numberM such that if
t ≥ M , then the patchYA,w,B,λ(t) and the regular control surface
YA,w,B(Sλ) are within Hausdorff distanceǫ.

We illustrate Theorem 1. On the left below are the weights of a
bicubic patch, in the center are the values of a lifting function, and
the corresponding regular decomposition is on the right.

1 3 3 1

3 9 9 3

3 9 9 3

1 3 3 1

0 2 2 0

1 1 1 1

1 2 2 1

0 1 1 0.5

The two lighter points,(1, 2) and(2, 2), lie in no face of the de-
composition. Figure 12 shows the toric degeneration of this bicubic
patch at valuest = 1 andt = 6, and the regular control surface, all
with the indicated control points.

We will prove Theorem 1 in Appendix A. The key idea is the fac-

torization (2) of the mapFA,w,B,λ(x; t) through the simplex
A

.
This factorization allows us to study the limit in Theorem 1 by con-
sidering the effect of the family of weightswλ(t) on the toric va-

riety XA in
A

. Using equations forXA, we can show that the
limit as t→∞ of the translated toric varietyXA,wλ(t) is a regular
control surface inRA whose projection toR3 is the regular control
surfaceYA,w,B(Sλ).

Figure 13 shows a toric degeneration of a rational cubic Bézier
curve, together with the corresponding degeneration of the curve

XA,w in the simplex
A

. Here, the weights arewλ(t) =
(1, 3t2, 3t2, 1). That is, the control pointsb0 andb3 have weight
1, while the internal control pointsb1 andb2 have weights3t2.

By Theorem 1, every regular control surface is the limit of the
corresponding patch under a toric degeneration. Our second main
result is a converse: If a spaceY is the limit of patches of shape
A with control pointsB, but differing weights, thenY is a regular
control surface of shapeA and control pointsB.

t = 1

πB

?

t = 3

πB

?

t = 9

πB

?

Fig. 13. Toric degenerations of a rational cubic Bézier curve.

THEOREM 2. LetA ⊂ Z
2 be a finite set andB = {ba | a ∈

A} ⊂ R
3 a set of control points. IfY ⊂ R

3 is a set for which there
is a sequencew1, w2, . . . of weights so that

lim
i→∞

YA,wi,B = Y .

then there is a lifting functionλ : A → R and a weightw ∈ R
A
>

such thatY = YA,w,B(Sλ), a regular control surface.

To prove Theorem 2, we consider the sequence of translated toric

varietiesXA,wi ⊂
A

. We show how [Kapranov et al. 1991;
1992] implies that the set of all translated toric varieties is natu-

rally compactified by the set of all regular control surfaces in
A

.
Thus some subsequence of{XA,wi} converges to a regular control

surface in
A

, whose image must coincide withY , implying that
Y is a regular control surface. This method of proof does not give
a simple way to recover a lifting functionλ or the weightw from
the sequence of weightsw1, w2, . . . .

We prove Theorem 1 in Appendix A and Theorem 2 in Ap-
pendix B. While both require more algebraic geometry than we
have assumed so far, Appendix A is more elementary and Ap-
pendix B is significantly more sophisticated.

APPENDIX

A. PROOF OF THEOREM 1

Let d, n be positive integers. The definitions and results of Sec-
tions 3, 4, and 5, as well as the statements of Theorems 1 and 2
make sense if we replaceA ⊂ Z

2 by A ⊂ Z
d andB ⊂ R

3 by
B ⊂ R

n. We work here in this generality. This requires straightfor-
ward modifications such as replacing polygon by polytope and in
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{0, 1, 2}, {2, 3} {0, 1}, {1, 2}, {2, 3} {0, 1}, {1, 2, 3} {0, 1}, {1, 3}

Fig. 14. Geometric realizations for four decompositions.

general removing restrictions on dimension. We invite the reader to
consult [Craciun et al. 2010] for a more complete treatment.

If the control pointsB are the vertices{ea | a ∈ A} ⊂ R
A

of the simplex
A

, then the toric patchYA,w,B is the (translated)
toric varietyXA,w. Given a decompositionS ofA, writeXA,w(S)
for the control surface induced byS when the control points are

the vertices of
A

. This is the union of patchesXF,w|F over all

facesF of S, and each patchXF,w|F lies in the face
F

of
A

consisting of pointsz whose coordinatesza vanish fora 6∈ F .
Then, given any control pointsB ⊂ R

n, we have

πB(XA,w) = YA,w,B and πB(XA,w(S)) = YA,w,B(S) .

Because of this universality ofXA,w, XA,w(S), and the mapπB,
it suffices to prove Theorem 1 for limits of the toric varietyXA,w.
Given a functionλ : A → R and a weightw ∈ R

A
>, define the

family of weightswλ(t) = {t
λ(a)wa | a ∈ A} for t ∈ R>.

THEOREM 3. Let λ : A → R be a lifting function andSλ the
regular decomposition ofA induced byλ. Then, for any choice of
weightsw ∈ R

A
>,

lim
t→∞

XA,wλ(t) = XA,w(Sλ) .

We prove Theorem 3 in two parts. We first show that any accu-
mulation points of{XA,wλ(t) | t ≥ 1} ast → ∞ are contained in

the union of the faces
F

of the simplex
A

for each faceF
of Sλ. Then we show thatXF,w|F is the set of accumulation points

contained in the face
F

, and in fact each accumulation point is
a limit point. This will complete the proof of Theorem 3 as

XA,w(Sλ) =
⋃

F∈S

XF,w|F .

We use homogeneous equations forXA,w. Let 1 ∈ R
A
> be the

weight with every coordinate1. Equations forXA,1 were described
in [Craciun et al. 2010, Prop. B.3] as follows. For every linear rela-
tion among the points ofA with nonnegative integer coefficients

∑

a∈A

αaa =
∑

a∈A

βaa where
∑

a∈A

αa =
∑

a∈A

βa , (5)

with αa, βa ∈ N, we have the valid equation for pointsz ∈ XA,1,
∏

a∈A

zαa

a
=

∏

a∈A

zβa

a
. (6)

Conversely, ifz ∈
A

satisfies equation (6) for every relation (5),
thenz ∈ XA,1. This follows from the description of toric ideals
in [Sturmfels 1996, Ch. 4].

Since the toric varietyXA,w is obtained fromXA,1 through co-
ordinatewise multiplication byw = (wa | a ∈ A), we have the
following description of its equations.

PROPOSITION 2. A pointz ∈
A

lies inXA,w if and only if
∏

a∈A

zαa

a
·
∏

a∈A

wβa

a
=

∏

a∈A

zβa

a
·
∏

a∈A

wαa

a
,

for every relation(5) among the points ofA.

REMARK 4. As every component of a pointz ∈
A

and
weightw is nonnegative, we may take arbitrary (positive) roots of
the equations in Proposition 2. It follows that we may relax the re-
quirement that the coefficientsαa andβa in (5) are integers and
allow them to be any nonnegative numbers such that
∑

a∈A

αaa =
∑

a∈A

βaa where
∑

a∈A

αa =
∑

a∈A

βa = 1 , (7)

That is,
∑

αaa =
∑

βaa is a point in the convex hull ofA with
more than one representation as a convex combination of points of
A. SinceA ⊂ Z

d, we may assume thatαa, βa are rational.

Among all relations (7) are those which arise when two subsets
of A have intersecting convex hulls.

PROPOSITION 3. LetF ,G ⊂ A be disjoint subsets whose con-
vex hulls meet,

convF ∩ convG 6= ∅ .

Then we have a relation of the form
∑

a∈F

αaa =
∑

a∈G

βaa where
∑

a∈F

αa =
∑

a∈G

βa = 1 ,

withαa, βa ≥ 0. Thus
∏

a∈F

zαa

a
·
∏

a∈G

wβa

a
=

∏

a∈G

zβa

a
·
∏

a∈F

wαa

a
, (8)

holds onXA,w.

Given a subsetF ⊂ A, the convex hull of the points{ef | f ∈

F} is the simplex
F

, which is a face of
A

. Under the tau-

tological projectionπA of
A

to ∆A, the simplex
F

maps to
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8 • L. Garcı́a-Puente et al.

the convex hull∆F of F . The geometric realization|S| of a de-

compositionS of A is the union of the simplices
F

for each

faceF ∈ S of the decompositionS. We call a simplex
F

a
faceof the geometric realization|S|. The images of the faces of the
geometric realization|S| under the tautological projectionπA form
the faces of the polyhedral decompositionT (S). Figure 14 illus-
trates this geometric realization for four regular decompositions of

A = {0, 1, 2, 3}. For this,
A

is the 3-dimensional simplex. For
each decompositionS ofA, we show the corresponding polyhedral
decomposition of∆A = [0, 3] and its facets.

Suppose that a pointz ∈
A

lies in the geometric realization

|S| of a decompositionS of A. Thenz ∈
F

for some face
F of S, so that itssupport{a ∈ A | za 6= 0} is a subset of

F . Conversely, any pointz ∈
A

whose support is a subset of

some faceF of S lies in |S|. We conclude that|S| ⊂
A

is the
vanishing locus of the monomials

{za · zb | {a,b} 6⊂ any faceF of S}

∪ {zc | c 6∈ any faceF of S} . (9)

A point z ∈
A

is an accumulation pointof a sequence

{X1,X2, . . . } of subsets of
A

if, for every ǫ > 0 and ev-
ery M , there is somem ≥ M such that distance(z, Xm) < ǫ.
Similarly, a pointz is an accumulation point of a family{X(t) |
t ∈ R>} if for every ǫ > 0 and M > 0, there is some
t > M such that distance(z, X(t)) < ǫ, andz is a limit point
if limt→∞ distance(z, X(t)) = 0.

LEMMA 5. Letw ∈ R
A
> be a weight andλ : A → R be a lift-

ing function andwλ(t) the corresponding family of weights. Every
accumulation point of{XA,wλ(t) | t ∈ R>} lies in the geometric
realization|Sλ|.

PROOF. We will show that a pointy ∈
A

which does not
lie in |Sλ| cannot be an accumulation point of{XA,wλ(t)}. If y ∈

A
but y 6∈ |Sλ|, then by (9) either there are pointsa,b ∈ A

with yayb 6= 0 where{a,b} do not lie in a common face ofSλ,
or a single pointc ∈ A with yc 6= 0 andc does not participate in
the decompositionSλ. Setǫ := min{ya, yb} (in the first case) or
ǫ := yc (in the second case). We will show that ift is sufficiently
large andz ∈ XA,wλ(t), thenmin{za, zb} < ǫ/2 (in the first case)
or zc < ǫ/2 (in the second case), which will complete the proof.

Suppose that we are in the first case. Then the interior of the
segmenta,b meets some face∆F of T (Sλ). If F is the minimal
such face, then the interiors ofa,b and∆F meet in a pointp, and
so we have the valid relation onXA,w,

zµ
a
zν
b
·
∏

f∈F

w
αf

f
= wµ

a
wν

b
·
∏

f∈F

z
αf

f
, (10)

by Proposition 3, where

p := µa+ νb =
∑

f∈F

αf f and µ+ ν = 1 =
∑

f∈F

αf ,

and the coefficientsµ, ν, αf are positive. ForXA,wλ(t) the rela-
tion (10) becomes

zµ
a
zν
b
· t

∑
f∈F αfλ(f) ·

∏

f∈F

w
αf

f
=

∏

f∈F

z
αf

f
· tµλ(a)+νλ(b) · wµ

a
wν

b
.

Since the lift(a, λ(a)), (b, λ(b)) of a,b does not lie on an up-
per facet ofPλ, but the lift of∆F does lie on an upper facet, the

pointp which is common toa,b and∆F is lifted lower on the lift
of a,b than on the lift of∆F . We thus have the inequality

µλ(a) + νλ(b) <
∑

f∈F

αfλ(f) . (11)

Let δ > 0 be the difference of the two sides of (11). Then points
z ∈ XA,w(t) satisfy

zµ
a
zν
b

= t−δ
∏

f∈F

zαf

f
·

wµ
a
wν

b
∏

f∈F w
αf

f

< t−δ ·
wµ

a
wν

b
∏

f∈F w
αf

f

,

as each component ofz ∈
A

is positive and at most 1.
This inequality implies that ift is sufficiently large, then at least

one of the componentsza, zb is less thanǫ/2, and thusy is not
an accumulation point of the sequence. A similar argument in the
second case ofc 6∈ Sλ completes the proof.

We complete the proof of Theorem 3 by showing that the set of

accumulation points ofXA,wλ(t) in
F

for F a facet ofSλ is
equal toXF,w|F , as this proves that

lim
t→∞

XA,wλ(t) =
⋃

F∈Sλ

XF,w|F .

LEMMA 6. Let F be a face ofSλ. ThenXF,w|F is the set of

accumulation points of{XA,wλ(t) | t ∈ R>} that lie in
F

, and
each point ofXF,w|F is a limit point.

PROOF. We have thatXF,w|F is the set of pointsz ∈
F

such
that

∏

f∈F

z
αf

f
·
∏

f∈F

w
βf

f
=

∏

f∈F

z
βf

f
·
∏

f∈F

w
αf

f
, (12)

wheneverα, β ∈ R
F
≥ satisfy

∑

f∈F

αf ·f =
∑

f∈F

βf ·f where
∑

f∈F

αf =
∑

f∈F

βf =: m. (13)

The equation (12) also holds onXA,w, and onXA,wλ(t), it becomes
∏

f∈F

zαf

f
·
∏

f∈F

wβf

f
· t

∑
f βf ·λ(f) =

∏

f∈F

zβf

f
·
∏

f∈F

wαf

f
· t

∑
f αf ·λ(f) ,

(14)
Observe that

1

m

∑

f∈F

αf · f =
1

m

∑

f∈F

βf · f

is a point in the convex hull ofF . SinceF is a face of the decom-
position induced byλ, the functionλ is affine-linear onF and so

∑

f∈F

αf · λ(f) =
∑

f∈F

βf · λ(f) .

Let this common value beδ. As dividing (14) bytδ gives (12), we
see that (12) is also a valid relation on every member of the family
{XA,wλ(t) | t ∈ R>}, whenever(αf , βf | f ∈ F) satisfy (13). It
follows that this set of equations (12) holds on every accumulation
point of the family{XA,wλ(t) | t ∈ R>}, which implies that those

accumulation points lying in
F

are a subset ofXF,w|F .
To show the other inclusion, for each faceF of Sλ, letX◦F,w|F

consist of those pointsz ∈ XF,w|F with zf 6= 0 for f ∈ F . Evi-
dently we have

XA,w(Sλ) =
∐

F∈Sλ

X◦F,w|F ,
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Toric degenerations of Bézier patches • 9

and so it suffices to prove that every point ofX◦F,w|F is a limit point
of the family{XA,wλ(t) | t ∈ R>}.

SinceF is a face ofSλ, there is a vectorv ∈ R
d such that the

functionA → R,

a 7−→ v · a+ λ(a)

is maximized onF with maximum valueδ. That is, ifv·a+λ(a) ≥
δ with a ∈ A, thena ∈ F andv · a+ λ(a) = δ.

Consider the action oft ∈ R> onx ∈ R
d
> where

(t ∗ x)i := tvixi .

Let z ∈ X◦F,w|F . Thenz = ϕF,w(x) for somex ∈ R
d
>, and so

ϕA,w(t ∗ x)a = wa · t
v·axa .

Thus, under the action(t.z)a = tλ(a)za of R> onR
A
>, we have

t.ϕA,w(t ∗ x)a = wa · t
v·a+λ(a)xa .

Then the line throught.ϕA,w(t ∗ x) is equal to the line through

t−δ
(

t.ϕA,w(t ∗ x)
)

,

whosea-coordinate is

wa · t
v·a+λ(a)−δxa .

Sincev · a + λ(a) − δ ≤ 0 with equality only whena ∈ F , we
see that the limit of the pointst.ϕA,w(t ∗x) of ∆A ast→∞ is the
pointϕF,w|F (x) = z, which completes the proof.

B. PROOF OF THEOREM 2

Theorem 3 shows that a limit of translates ofXA,w by a one-
parameter subgroup ofRA> (a toric degeneration ofXA,w) is a reg-
ular control surface. This is a special and real-number case of more
general results of [Kapranov et al. 1991; 1992] concerning all pos-
sible toric degenerations of the complexified toric varietyXA(C)
that we will use to prove Theorem 2.

Suppose thatA ⊂ Z
d is a finite set. We will assume thatA is

primitive in that differences of elements ofA spanZd:

Z
d = Z〈a− a

′ | a,a′ ∈ A〉 ,

that is,A affinely spansZd (if not, then simply replaceZd by the
affine span ofA). Let PA be the complex projective space with
homogeneous coordinates[za | a ∈ A] indexed by elements of
A. (These are extensions to all ofPA of the homogeneous coor-
dinates (3), which were valid for the nonnegative part ofP

A.) The
complex torusH := (C∗)d naturally acts onPA with weights given
by the setA: t ∈ H sends the pointz with homogeneous coordi-
nates[za | a ∈ A] to the pointt.z := [taza | a ∈ A]. Note that
XA,1(C) is the closure of the orbit ofH through the point1 := [1 :
. . . : 1]. Forw ∈ (C∗)A, the translatew.XA,1(C) =: XA,w(C) is
also the closure of the orbit ofH through the pointw (considered

as a point inPA). Note that
A

is the nonnegative real part [Ful-
ton 1993, Ch. 4] ofPA, and whenw ∈ R

A
> ⊂ (C∗)A, thenXA,w is

the nonnegative real part ofXA,w(C).
A toric degenerationof XA,1(C) is any translateXA,w(C), or

any limit of translates

lim
t→0

λ(t).XA,w(C)

whereλ : C∗ → (C∗)A is a one-parameter subgroup. This is the
same limit as in Section A, its ideal is the limit of the ideals of
λ(t).XA,w(C) ast → 0. The data of a one-parameter subgroup of

(C∗)A are equivalent to homomorphisms of abelian groupsZ
A →

Z and thus to functionsλ : A → Z, which explains our notationλ.
The translatesXA,w(C) for w ∈ (C∗)A give a family of sub-

varieties ofPA, each with the same dimension and degree, and
each equipped with an action ofH. A main result of [Kapranov
et al. 1991; 1992] identifies all suitable limits of these translates
XA,w(C) with the points of a complex projective toric variety
CA(C). The points ofCA(C) in turn are in one-to-one correspon-
dence with all possible complex toric degenerations ofXA,w(C) as
w ranges over(C∗)A. For a toric degenerationX of a translate of
XA,1(C), we write[X] for the corresponding point ofCA(C). We
will use this result to prove Theorem 2 as follows.

PROOF OFTHEOREM2. Fix control pointsB = {ba | a ∈
A} ⊂ R

n and suppose that{w1, w2, . . . } is a sequence of weights
in R

A
> such that the sequence of toric patches{YA,wi,B | i =

1, 2, . . . } converges to a setY in R
n in the Hausdorff topology.

Consider the corresponding sequence{XA,wi(C) | i =
1, 2, . . . } of torus translates ofXA(C). This gives a sequence
[XA,wi(C)] of points in the projective toric varietyCA(C). Since
CA(C) is compact, this sequence of points has a convergent subse-
quence whose limit point is a toric degeneration

lim
t→∞

XA,wλ(t)(C) = XA,w(Sλ)(C) =
⋃

F∈Sλ

XF,w|F (C)

of XA,w(C) for somew ∈ (C∗)A and lifting functionλ : ZA → Z.
Replacing the original weights{wi} by this subsequence, we may
assume that, as points ofCA(C), we have

lim
i→∞

[XA,wi(C)] = [XA,w(Sλ)(C)]

= lim
t→∞

[XA,wλ(t)(C)] . (15)

The points[XA,wi(C)] of CA(C) are translates of the base point
[XA(C)] by elements ofRA> ⊂ (C∗)A, and so they lie in the
nonnegative real part of the toric varietyCA(C), and therefore so
does their limit point. But by (15) this limit point is a translate of
XA(Sλ)(C), and thus it is a translate by a real weight. This shows
that we may take the weightw in (15) to be real.

Theorem 2 will follow from this and the claim that if a sequence
{[Xi] | i ∈ N} ⊂ CA(C) converges to[X] ∈ CA(C) in the ana-
lytic topology, then the sequence of subvarieties{Xi} converges to
X in the Hausdorff metric on subsets ofP

A. Given this claim, (15)
implies that in the Hausdorff topology on subsets ofP

A,

lim
i→∞

XA,wi(C) = lim
t→∞

XA,wλ(t)(C) = XA,w(Sλ)(C) .

We may restrict this to their real points to conclude that the limit of

patchesXA,wi in
A

,

lim
i→∞

XA,wi = lim
t→∞

XA,wλ(t) = XA,w(Sλ) ,

is a regular control surface. SinceYA,wi,B = πB(XA,wi), the limit
limi→∞ YA,wi,B equals

lim
i→∞

πB(XA,wi) = πB
(

lim
i→∞

XA,wi

)

= πB
(

XA,w(Sλ)
)

= YA,w,B(Sλ) ,

which is a regular control surface. This will complete the proof of
Theorem 2, once we have proven the claim.

PROOF OF CLAIM. As shown in [Kapranov et al. 1991; 1992],
the projective toric varietyCA(C) is the Chow quotient ofPA by
the groupH = (C∗)d acting via the weights ofA. We explain this
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10 • L. Garcı́a-Puente et al.

construction. LetD = d! · volume(∆A), which is the degree of
the projective toric varietyXA(C), as well as any of its translates.
Basic algebraic geometry (see [Harris 1992, Lect. 21]) gives a com-
plex projective varietyC(D, d,A), called theChow variety, whose
points are in one-to-one correspondence withd-dimensional cycles
in P

A of degreeD. These are formal linear combinations

Z :=
m
∑

i=1

DjZj (16)

where each coefficientDj is a nonnegative integer, eachZj is a
reduced and irreducible subvariety ofP

A of dimensiond, and

D =

m
∑

j=1

Dj · degree(Zj) .

In particular all translatesXA,w(C) are represented by points of
C(D, d,A).

The torus(C∗)A acts onPA and thus onC(D, d,A), with the
points representing the translatesXA,w forming a single orbit. The
Chow quotientCA(C) is the closure of this orbit inC(D, d,A).
An explicit description ofCA(C) may be found in [Kapranov et al.
1991; 1992]. We do not need this description to prove Theorem 2,
although such a description could be used to help identify the limit
control surface whose existence is only asserted by Theorem 2.

The points ofCA(C) correspond to toric degenerations of trans-
latesXA,w(C). We describe this, associating a cycle of degreeD
and dimensiond to any toric degeneration. LetSλ be a regular de-
composition ofA induced by a lifting functionλ : ZA → Z. Let
F ⊂ A be a facet ofSλ. SetδF to be the index inZd of the lattice

Z〈f − f
′ | f , f ′ ∈ F〉

spanned by differences of elements ofF . ThenXF,w|F (C) is a
subvariety ofPF of dimensiond and degree

d! · volume(∆F )/δF .

The toric degeneration

lim
t→∞

XA,wλ(t)(C) =
⋃

F a facet ofSλ

XF,w|F (C)

(this is a set-theoretic limit) corresponds to the cycle
∑

F a facet ofSλ

δFXF,w|F (C) ,

which has degreeD = d! · volume(∆A).
We now prove the claim. Following [Lawson 1989, Sect. 2],

[Kapranov et al. 1991, Sect. 1] associate to a cycle (16) a current on
P
A—the linear functional

∫

Z
of integrating a smooth2d-form over

the cycleZ. The analytic topology on the Chow variety is equiv-
alent to the weak topology on currents. (The weak topology is the
topology of pointwise convergence: A sequence{ψi | i ∈ N} of
currents converges to a currentψ if and only if for every2d-form
ω onP

A we havelimi→∞ ψi(ω) = ψ(ω), as complex numbers.)
Suppose that{[Xi]} ⊂ CA(C) converges to[X] in the usual

analytic topology onCA(C),

lim
i→∞

[Xi] = [X] .

Then the associated currents converge. That is, for every smooth
2d-form ω, we have

lim
i→∞

∫

Xi

ω =

∫

X

ω . (17)

We use this to show thatlimi→∞Xi = X, in the Hausdorff metric.
Given a pointx ∈ X and a numberǫ > 0, let ω be a2d-form

with
∫

X
ω 6= 0 which vanishes outside the ballB(x, ǫ) of radiusǫ

aroundx. Then (17) implies that there is a numberM such that if
i > M , then

∫

Xi
ω 6= 0, and thusXi ∩ B(x, ǫ) 6= ∅. SinceX is

compact, there is some numberM such that ifi > M , then every
point ofX is within a distanceǫ of a point ofXi.

To complete the proof of the claim, we show that for every num-
ber ǫ > 0, there is a numberM such that ifi > M , then every
point ofXi lies within a distanceǫ of X. If not, then there is an
ǫ > 0 such that for everyM , there is somei > M such thatXi

has a pointxi with dist(xi,X) > ǫ. Replacing{Xi} by a subse-
quence, we may assume that eachXi has such a pointxi . It is no
loss to assume that the pointsxi are smooth. By the compactness
of PA and of the Grassmannian ofd-dimensional linear subspaces
of PA, we may replace{Xi} by a subsequence and assume that the
pointsxi converge to a pointx, and that the tangent spacesTxi

Xi

also converge to a linear spaceL. Letω be a smooth2d-form which
vanishes outside ofB(x, ǫ/2) with

∫

L
ω 6= 0. Then,

lim
i→∞

∫

Xi

ω 6= 0 .

But then (17) implies that
∫

X
ω 6= 0, and soX ∩ B(x, ǫ/2) 6= ∅,

which contradicts our assumption thatX is the limit of theXi.
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CRACIUN, G., GARCÍA -PUENTE, L., AND SOTTILE, F. 2010. Some ge-
ometrical aspects of control points for toric patches. InMathematical
Methods for Curves and Surfaces. Lecture Notes in Computer Science,
vol. 5862. Springer, Berlin, Heidelberg, New York, 111–135.

FARIN , G. 1997. Curves and surfaces for computer-aided geometric de-
sign. Computer Science and Scientific Computing. Academic Press Inc.,
San Diego, CA.

FULTON, W. 1993. Introduction to toric varieties. Annals of Mathematics
Studies, vol. 131. Princeton University Press, Princeton,NJ.

GEL′FAND, I. M., KAPRANOV, M. M., AND ZELEVINSKY, A. V.
1994. Discriminants, resultants, and multidimensional determinants.
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