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INTRODUCTION

Extending work of Demazure [14] and of Bernstein, Gelfand, and Gelfand [7], Las-
coux and Schiitzenberger [28] defined remarkable polynomial representatives for Schubert
classes in the cohomology of a flag manifold, called Schubert polynomials. For each permu-
tation w in Sy, there is a Schubert polynomial &,, € Z[z1, 25, ...]. Schubert polynomials
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form an additive basis for this ring. Thus the identity
6, 6, = > 6,
w

defines integral structure constants c,, for the ring of polynomials with respect to its
Schubert basis. The c;;, are non-negative: They enumerate flags in a suitable triple
intersection of Schubert varieties. Evaluating a Schubert polynomial at certain Chern
classes gives a Schubert class in the cohomology of the flag manifold. This exhibits the
cohomology of the flag manifold [10] as:

Z[J}l,xz, .. ]/<6w | w ¢ Sn)

It remains an open problem to give a bijective formula for these constants. We expect
such a formula will have the form

R — (saturated) chains in the Bruhat order on S, from (1)
uv u to w satisfying some condition imposed by v |~

Since every Schur symmetric polynomial Sy(z1,...,z) is a Schubert polynomial, this
would generalize the Littlewood-Richardson rule [34] (c¢f. §6.1), as Young tableaux are
chains in Young’s lattice, a suborder of the Bruhat order. A new proof of Pieri’s formula
for Grassmannians [51] suggests a geometric rationale for such ‘chain-theoretic’ formulas.
Lastly, known formulas for the ¢?, are all of this form. This includes Monk’s formula [37],
Pieri formulas ([28, 12, 25, 39, 50, 55]), and other formulas of [50].

Here, we illuminate this relation between the Bruhat order and the ¢¥,, refining (1)
and proving many new identities among the c/,. This enables us to give a description of
the form (1) for some ¢¥,, to compute many more, and to obtain new results about the
enumeration of chains in the Bruhat order. Many of these identities have a companion
result about the Bruhat order which should imply the identity, were such a formula as (1)
known. In fact, they and the Pieri-type formula imply the identities [6]. Our combinatorial
analysis leads to a new partial order on S, which contains Young’s lattice. We also
compute the effect of many specializations of the variables in Schubert polynomials.

Algebraic structures in the cohomology of a flag manifold yield identities among the

w w — w Ixr1 w —_ wou — w 7 c—
cy, such as ¢y, = ¢, (commutativity) or ¢, = % , = c¥y, where W = wowwy,

(Poincaré duality). Similar identities for the Littlewood-Richardson coefficients have been
studied combinatorially [1, 2, 21, 22, 56]. We expect the identities established here will
lead to some beautiful combinatorics, once a combinatorial interpretation for the ¢/, is
known. These identities impose stringent conditions on the form of any combinatorial
interpretation and should be useful in finding such an interpretation.

This paper is organized as follows: Section 1 describes our results. Section 2 contains
necessary background. Section 3 contains most of our combinatorial analysis. In Section 4,
we study the effect on cohomology of certain maps between flag manifolds and compute
specializations of the variables in a Schubert polynomial. In Section 5, we prove the
identities when &, is a Schur polynomial. In Section 6, we use these identities to compute
many of the ¢, .

1. SUMMARY

1.1. Suborders of the Bruhat order and the ¢,. The identity
Sy Sa(zy,...,z5) = chv(&k) G (1.1.1)
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defines integer constants c&( AE) which share many properties with the Littlewood-Richardson
coefficients. They are related to chains in the k-Bruhat order, <j, a suborder of the Bruhat
order. Its covers coincide with the index of summation in Monk’s formula [37]:

Gy Bpsy = OGu-(@m+-+z) = D Guwp,

where the sum is over those ¢ < k < b with ¢(u(a,b)) = £(u) + 1. Young’s lattice of
partitions with at most k& parts is isomorphic to those permutations comparable to the
identity in the k-Bruhat order. These are the Grassmannian permutations with descent
k, whose Schubert polynomials are Schur polynomials in zq,...,25. If f} counts the
standard Young tableaux of shape A, then [36, 1.5, Example 2|,

(x1++$k)m = Zf/\s)\(xla"'axk)'
AFm
Considering the coefficient of &, in the product &, - (z1 + - - - + zx)™ and the definition
(1.1.1) of ¢y ), We obtain:

Proposition 1.1. The number of chains in the k-Bruhat order from u to w s
Z f)\cgjv()\,k)'
A

In particular, Cavirg) =0 unless u <, w. A chain-theoretic description of the constants
C:fv( ) should provide a bijective proof of Proposition 1.1. By this we mean a function 7
from the set of chains in [u, w]; to the set of standard Young tableaux 7" whose shape is a
partition X of £(w) — £(u) such that #7~1(T) = Cuuirk)- Schensted insertion [47] furnishes
a proof [53] for the Littlewood-Richardson coefficients (cf. §6.1), as does Schiitzenberger’s
jeu de taquin [49]. We show (Theorem 6.3.1) that if 7 is a function where #771(T) depends
only upon the shape of 7" and satisfies a condition of compatibility with the Pieri formula,
then #71(T') = ¢/, »-

In §3.1 we give a non-recursive description of the k-Bruhat order:

Theorem A. Let u,w € S. Then u <g w if and only if
I. a < k < b implies u(a) < w(a) and u(b) > w(b).
II. If a < b, u(a) < u(b), and w(a) > w(b), then a < k < b.

We generalize Proposition 1.1 and refine (1). Let P be a parabolic subgroup of Su, S0
P is generated by some adjacent transpositions, (i,i+1). Define the P-Bruhat order by
its covers. A cover u <p w in the P-Bruhat order is a cover in the Bruhat order where
u~'w ¢ P. When P is generated by all adjacent transpositions except (k,k+1), this is
the k-Bruhat order.

Let I C {1,2,...,n—1} index the adjacent transpositions not in P. A coloured chain in
the P-Bruhat order is a chain together with an element of I ({a,a+1,...,b—1} for each
cover u <p u(a,b) in the chain [30]. Iterating Monk’s rule, we obtain:

(Z G(m'+1)> = ), [p)e, (1.1.2)

i€l v:f(v)=m
where f”(P) counts the coloured chains in the P-Bruhat order from e to v. Necessarily,
fY(P) # 0, only if v is minimal in v P. More generally, let f*(P) count the coloured chains
in the P-Bruhat order from u to w. Multiplying (1.1.2) by &, and equating coefficients
of &, gives a generalization of Proposition 1.1:
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Theorem B. Let u,w € S and P C S, a parabolic subgroup. Then

fop)y = >, fi(P).

Hence if v is minimal in vP, then ¢, = 0 unless u <p w. This suggests a refinement
of (1): Let u,v,w € S, and let P be any parabolic subgroup such that v is minimal in
vP. Then, for every coloured chain v in the P-Bruhat order from e to v, we expect that

w coloured chains in the P-Bruhat order on S, from

Cuv = 7 {u to w which satisfy some condition imposed by ’y} ) (1.1.3)

Moreover, this rule should give a bijective proof of Theorem B.

This P-Bruhat order is defined for parabolic subgroups of any Coxeter group. Likewise,
the problem of determining the structure constants for a Schubert basis also generalizes.
For Weyl groups, this is the Schubert basis of cohomology for a generalized flag manifold
G/ B or the analogues of Schubert polynomials [8, 17, 20, 45]. For finite Coxeter groups,
this is the basis A,, in the coinvariant algebra [23]. Likewise, Theorem B and the expec-
tation (1.1.3) have analogues. Of the known formulas [11, 24, 40, 42, 43, 44, 52] (see also
the survey [41]), few [11, 24, 40, 52] have been expressed in a chain-theoretic manner.

1.2. Substitutions and the Schubert basis. In §§4.3 and 4.4, we study the ¢, when
w(p) = u(p) for some p. For w € 8,41 and 1 < p < n+1, let w/, € S, be defined by
deleting the pth row and w(p)th column from the permutation matrix of w. If y € S,
and 1 < ¢ < n+1, then ¢,,(y) € S,41 is the permutation such that ¢, ,(y)/, = v and
£p,4(Y)(p) = g. The index of summation in a particular case of the Pieri formula [4, 28, 50],

& (- mp) = Y 6.,
v—L 5w
defines the relation v—2sw. Let U, : Z[xy, T2, . ..| = Llz1, 29, ...] be
Z; ifj<p
\I’p(ﬂij) = 0 1fj =P .
Tj—1 lf] >p
Theorem C. Let u,w € Sy and p € N.
(i) Suppose w(p) = u(p) and l(w) — £(u) = l(w/,) — (u/p). Then

(a) Ep,u(p) - [t/ p, w/p] — [u, w].
(b) For every v € Sy,

w _ w/p
G = DLl
Y € Seo
C
v—Lsep.1(y)

(#) Forv € S,

Y € Seo
C:
U_L’Ep,l(y)
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We prove the first assertion (Lemma 4.1.1 (7)) using combinatorial arguments. The
second (in §4.4) and third (in §4.3) are proven by computing certain maps on cohomol-

ogy. Since ¢, = ¢y, = 2% ,, Theorem C (i)(b) gives a recursion for ¢}, when one of
1

wu~t, wv™t, or wouv~! has a fixed point and the condition on lengths is satisfied.
We compute other substitutions of the variables: Let P C N and list the elements of P
and N — P in order:

P:pi<py<--- N—-P : pi<p;<
Define ¥p : Zlz1, 29, ...] = Zly1, Yo, - - -, 21, 22, . . .] by:
Up(ry,) = yj and  Up(zy) = 2z

In Remark 4.6.1, we define an infinite set Ip of permutations with the following property:

Theorem D. For every w € Sy, there exists an integer N such that if m € Ip and

m & Sy, then
Z C(uxv y) Gu(2).
We prove this in §4.6. Theorem D gives infinitely many identities of the form cuxo)m _
" for 7,0 € Ip. Moreover, for these u, v, w with ci'a®™ # 0, we have |1, (uxv)-7] ~

le, u] X [e, v], which suggests a chain- theoretlc basis for these identities.

A combinatorial proof of Theorem D may provide insight into the problem of deter-
mining the ¢y . In particular, it would be interesting to find a proof using one of the
combinatorial constructions of Schubert polynomials [3, 4, 9, 18, 27, 54]. Theorem D
extends 1.5 of [29], which shows that U};;&,, is a non-negative sum of &,(y)&,(z). The
special case of Theorem D when P = [n], together with the formula ¢y, 4y, = iy - Chy
for u,v,w € S, and x,y, z € S, was established by Patras [38] using methods similar to
ours. Also, Lascoux and Schiitzenberger [29] give the special case when P = {1}.

We consider more general substitutions: Let E := (P, P1,...) be any partition of
N. Fori > 0, let z(® := :cg’),xg),... be variables in bijection with FP;. Define Up :
L[z, 72,-..] = Z[zV, 2@ .. ] b

0 if j € By
N, N = .
2 (3) { 2! if j is the Ith element of P;
Corollary 1.2. For every partition P of N and w € S,
q;P Z dulau27 (z(l))GUI (@(2)) SR
UL ,U25es
where each d¥*>(R) is an (e:cplz'cit) sum of products of the c;,

A ballot sequence A = (a1, as,...) is a sequence of non-negative integers where, for each

i,7 > 1,

#HE<jla=i > #k<jla=1i+1}
(Consider a; = 0 as a vote for ‘none of the above’.) Given a ballot sequence A, define
Uy Z[xy, 2o, . ..| > LT, 20, ...] Dy

0 le':O
n) = {0 ez
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Corollary 1.3. For every ballot sequence A and w € S,,, there exist non-negative integers
d¥ (A) for u,w € Sy such that

Va(Gu(2)) = Y di(4)Gu(a).

Moreover, each d,,(A) is an (explicit) sum of products of the c; .
Proof. If Py:={i|a; =0} and for j > 0
P; := {i|a;is the jth occurrence of some integer in A},

then ¥4 = Ao ¥(p p,,.y, where A(xy)) =Zj. F

1.3. Identities when &, is a Schur polynomial. If )\, 4, and v are partitions with at
most k parts, then the Littlewood-Richardson coefficients ¢, are defined by the identity

Su(x1, .. xk) - Sa(@y, ... x,) = ZCZ)\S,,(.’L‘l,...,a?k).

They depend only on A and the skew partition v/u. That is, if k and p are partitions
with k/p = v/, then for all A,
C;VL)\ = C;)\a

and the coefficient of Si(z1,...,2;) in S,(z1,...,21) - Sx(w1,...,7) is ¢ . The order type
of the interval in Young’s lattice from p to v is determined by v/u. These facts hold also
for the Cuv(nk)-

If u <; w, let [u, w]; be the interval between u and w in the k-Bruhat order. Permuta-
tions ¢ and 7 are shape equivalent if there exist sets of integers P = {p; < --- < p,} and
Q ={q <--- < gn}, where ( (respectively ) acts as the identity on N — P (respectively
N - @), and

() =p; = @) = g

1

Theorem E. Suppose u <, w and x <; z where wu~' is shape equivalent to zx~'. Then

the following statements hold

(1) We have [u,w), ~ [z,z];. When wu™! = zz1

v vuT .
(i) For all partitions A, ¢y 1) = Cop(ry)-

, this isomorphism 1is given by

Part (i) follows from Theorems 3.1.3 and 3.2.3, which are proven using combinatorial

arguments. Part (7)) is proven in §5.1 using geometric arguments. By Theorem E, we
may define the skew coefficient cf\ for ( € S, and A a partition by cf\ = ciz(m) and also
define |(] := £(Cu) — £(u) for any u € Sy with u <j (u. This leads (in §3.2) to a partial
order < on S, graded by |(| with the defining property: Let [e, (]< be the interval in the
<-order from the identity to ¢. If u <j Cu, then the map [e, (]< — [u, (ul; defined by

n — nu
is an order isomorphism. Then Proposition 1.1 states that ), f’\cf\ counts the chains in
le, {]<. This order is studied further in [5].
We express some of the ¢ in terms of chains in the Bruhat order. If u < u(a,b) is a

cover in the k-Bruhat order, label that edge of the Hasse diagram with the integer u(b).
The word of a chain in the k-Bruhat order is its sequence of edge labels.
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Theorem F. Suppose u <, w and wu™" is shape equivalent to v(u,1)-v(v,1)~!, for some

[ and partitions u,v. Then, for all partitions A and standard Young tableaux T of shape
A,
w - { Chains in k-Bruhat order from u to w whose word }

Cuv(ik) = has recording tableau T for Schensted insertion

Theorem F gives a combinatorial proof of Proposition 1.1 for many u,w. It is proven
in §6.1.
If a skew partition § = p[] o is the union of incomparable skew partitions p and o,

then
pHa ~ pX0o

as graded posets. The skew Schur function Sy is defined [36, L.5] to be >, ¢ S\ and
Spl1e =S, - Ss [36, 1.5.7]. Thus

chcﬁ . (1.3.1)

Permutations ¢ and 7 are disjoint if ¢ and n have disjoint supports and |(n| = [C| + |n].
Theorem G. Let ( and n be disjoint permutations. Then

(i) The map (¢',n') — ('’ induces an isomorphism
le, (< x [e,nl< — [e, Cnl<.

(i) For every partition \, ¢§! = ch c, Cp-

The first statement is proven in §3.3 using combinatorics and the second in §5.2 using
geometry.

Our last identity has no analogy with the Littlewood-Richardson coefficients. The n-
cycle (12...n) cyclicly permutes [n].

Theorem H. Suppose ¢ € S, and n = (12", Then, for every partition \, cf\ =cl.

This is proven in §5.3 using geometry. Combined with Proposition 1.1, we obtain:

Corollary 1.4. If u <, w and v <j, z with wu™t, 227t € S, and (wu=')12~") = 2z~

then each of the two intervals [u, w] and [z, z]x have the same number of chains.

These intervals [u,w]; and [z, z] are typically non-isomorphic: For example, in Sy
let u = 1234, * = 2134, and v = 1324. If ( = (1243), n = (1423) = ¢(?*¥) and
¢ = (1342) = n(1%3%  then

u SZ Cua x SZ ne, and v SQ f’U.

Figure 1 shows the intervals [u, (uls, [z,nz]2, and [v, &v]s.

The theorems of this section, together with the ‘algebraic’ identities ¢}, = 07, = c¥y,
greatly reduce the number of distinct coefficients Co (k) from which all others may be de-
termined. We indicate this for some small symmetric groups in the table in Figure 1. The

first row counts the number of ¢/, ,» with uw <, w and [A| = £(w)—£(u) in S,, and the sec-

ond counts those cf\ from which all the ¢/, , ;) may be determined using the results of this
paper. For a discussion of this table, see http://www.math.yorku.ca/bergeron/coefficients.html
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2413 3412 3412

2314 1423 2413 3214 24|13
1324 23|14 3124 2314 1423
12|34 \2134/ \1324/

FiGcure 1. Effect of cyclic shift on intervals

84 55 86 87 88
ey | 208 | 3600 | 81669 | 2285414 | 79860923
#¢5, 5112 | 62 332 3267

TABLE 1. Distinct coefficients in different groups

2. PRELIMINARIES

2.1. Permutations. Let S, be the group of permutations of [n] := {1,2,...,n}. Let
(a,b) be the transposition interchanging a < b. The length {(w) of w € S, counts the
inversions, {i < j|w(i) > w(j)}, of w. The Bruhat order < on &, is the partial order
whose cover relation is w < w(a,b) if w(a) < w(b) and ¢(w) + 1 = l(w(a,b)). If u < w,
let [u,w] := {v|u < v < w} be the interval between v and w in S,, a poset graded by
£(v) — £(u). The longest element wy € S, is defined by we(j) = n+ 1 — 5. When it is
necessary to consider the longest elements in several symmetric groups, we write w, for
Wy € Sn

A permutation w € S, acts on [n+1], fixing n+1. Thus S, C S,41. Define S := |, Sn-
For P = {p; < ps < ---} C N, define ¢p : Syp — S by requiring that ¢p act as the
identity on N — P and ¢p(¢)(p;) = p¢s)- This injection does not preserve length unless
P={n+1,n+2,...}. For this P, set 1" x w := ¢p(w). If there exist permutations &, (,n
and sets of positive integers P, Q) such that ¢p(§) = ¢ and ¢g(§) = n, then ¢ and n are
shape equivalent.

2.2. Schubert polynomials. Lascoux and Schiitzenberger invented and then developed
the elementary theory of Schubert polynomials in a series of papers [28, 29, 30, 31, 32, 33].
For a self-contained exposition of some of this elegant theory see [35].

S, acts on polynomials in 1, ..., z, by permuting the variables. For a polynomial f,
f — (4,i+1) f is antisymmetric in z; and z;, 1, hence divisible by x; — z;41. Define the
divided difference operator

O = (w5 —xip1) (e — (i,i+1)).

If a1, ay,...,a4w) is a reduced word for w, then J, o---o aae(w) depends only upon w,
defining the operator d,. For w € &,, Lascoux and Schiitzenberger [28] defined the
Schubert polynomial &, by

. n—1,n-2
610 = 8w—lwo ($1 Zy "'xnfl) .
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The polynomial &,, is homogeneous of degree £(w) and it is independent of the choice of
n. The set of all Schubert polynomials {&,, | w € S} is an integral basis for Z[z1, z,, . . ].

A partition A is a decreasing sequence A\; > --- > X\ > 0 of integers. Young’s lattice
is the set of partitions ordered by C, where u C X if y; < )\; for all 5. Write m! for the
partition with [ parts, each of size m. If A\;y; = 0, the Schur polynomial Sy(x1,..., ) is

itk
det |$§_Z+’\’ -
S,\(arl,...,a:k) = ik = y
det ‘xj_’ o
4,j=1
which is symmetric and homogeneous of degree |A| := A\; + -+ + A.

A permutation w € Sy is Grassmannian of descent k if j # k = w(j) < w(j + 1).
Then w defines, and is defined by a partition A\ with \;y; = 0:

Nevij = w()—j  j=1,....k

(The condition w(k+1) < w(k+2) < --- determines the remaining values of w.) In
this case, write w = v(A, k). The raison d’etre for this definition is that G, =
Sx(z1,...,2). Thus the Schubert polynomials form a basis for Z[z,zs,...| which con-
tains all Schur symmetric polynomials Sy(z1, ..., z) for all A and k.

2.3. The flag manifold. Let V ~ C". A flag F, in V is a sequence
{0} = F()CF1CF2C"‘CFn_1CFn =V

of subspaces with dim¢ F; = i. Flags F and F' are opposite if F,,_; N Fj = {0} for all j.
The set of all flags is an (7})-dimensional complex manifold, F¢V (or F¢,), called the flag
manifold. There is a tautological flag & of bundles over F/V whose fibre at F, is F. Let
—x; be the first Chern class of the line bundle F;/F; ;. Borel [10] showed the cohomology
ring of F¢V is

Lz, ..., xn)/{ei(x1,. .., z0) |1 =1,...,n),
where e;(z1,...,%,) is the ith elementary symmetric polynomial in z1, ..., z,.

Let (S) be the linear span of S C V and U — W be the set-theoretic difference of sub-
spaces W C U. An ordered basis f1, fo, ..., fn for V determines a flag E, := {(f1,..., fa),
where E; = (f1,..., f;) for 1 <i < n. A fixed flag F gives a decomposition due to Ehres-
mann [16] of FAV into affine cells indexed by permutations w of S,,. The cell determined
by w is:

X;:;E = {E = <<f1" . afn» | fz € Fn—l—lfw(i) - anw(i)a 1< < n}

Its closure is the Schubert subvariety X, F, which has codimension £(w). Also, u <
w & XuF D XyF. The Schubert class &, is the cohomology class Poincaré dual to
the fundamental cycle of X, F,. These classes form a basis for cohomology. Schubert
polynomials were defined so that Sy (z1,...,z,) = G,.

If F, and F' are opposite flags, then X, F (| X, E' is an irreducible, generically transverse
intersection, a consequence of [15] (cf. [50, §5]). Thus its codimension is ¢(u) + £(v), and
the fundamental cycle of X, F, (| X,E' is Poincaré dual to &, - &,,. Since

Zxy,...,xn)] — Zlz1, ..., Tpim]/{€i(T1, .- s Tnim)),

is an isomorphism on Z{z{* - - - 2% | a; < m), identities of Schubert polynomials follow from

product formulas for Schubert classes. The Schubert basis is self-dual: If £(w)+£(v) = (3),
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then

Gup if v = wow

Su-G = { 0 otherwise (2.3.1)

Let GrassyV be the Grassmannian of k-dimensional subspaces of V', a k(n—k)-dimensional
manifold. A flag F, induces a cellular decomposition indexed by partitions A C (n—k)*.
The closure of the cell indexed by A is the Schubert variety €2, F,:

OE = {H € Grass,V | dimH (| Fpsjosy, > 4, j=1,...,k}.

The cohomology class Poincaré dual to the fundamental cycle of Q\F is Sy(z1, ..., zk),
where x4, ..., x; are negative Chern roots of the tautological k-plane bundle on Grass,V .
Write Sy, for Sy(zi,...,zx), if k£ is understood. These Schubert classes form a basis for
cohomology, 1 C A < Q,F D O\ F, and if F, F' are opposite flags, then
[QUE(UET = [QE] - [WET = Y a5,
AC(n—k)k

where the ¢}, are the Littlewood-Richardson coefficients [21].
This Schubert basis is self-dual: If A C (n — k)*, then let \¢, the complement of A, be
the partition (n —k — A\g,...,n — k — A1). Suppose |A| + |u| = k(n — k), then

if p =X\
otherwise -

St
Sa(@r, o xk) - Su(xy, ..o x) = {O(n k)

We suppress the dependence of A\ on n and k.

A map f: X — Y between manifolds induces a group homomorphism f, : H*X — H*Y
via Poincaré duality and the functorial map on homology. This map satisfies the projection
formula (cf. [19, 8.1.7]): Let o € H*X and € H*Y, then

fu(ffang) = an fiB. (2.3.2)

For a(n oriented) manifold X of dimension d, HX = Z - [pt] is generated by the class
of a point. Let deg : H*X — Z be the map which selects the coefficient of [pt]. Then
deg(f.B) = deg(B).

Let 7, : FOV — Grass,V be defined by m(E,) = Ey. Then 7, 'O F = X,k and
Tk 2 Xugoire,k) Fo — (0 F, is generically one-to-one. Thus,

TS = Gy

{ S if w = wov(A% k)

(M): 6w = 0 otherwise

The cohomology of FV x F¢W (dim W = m) has an integral basis of classes &, ® &,
foru € §, and ¢ € §,,. Likewise the cohomology of GrassyV x GrassW has a basis
S\® S, for A C (n—k)* and p C (m —1)".

While we use the cohomology rings of complex varieties, our results and methods are
valid for the Chow rings [19] and I-adic (étale) cohomology [13] of these same varieties
over any field.

3. ORDERS ON S,
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3.1. The k-Bruhat order. The k-Bruhat order, <, is a suborder of the Bruhat order
on S, related to the coefficients cﬁv(/\yk). It was called the k-coloured Ehresmanoédre

in [30]. Its covers are given by the index of summation in Monk’s formula [37]:

U<pw
Thus w covers u in the k-Bruhat order (u < w) if £(w) = £(u) + 1 and w = u(a, b) where
a < k <b. The k-Bruhat order has a non-recursive characterization.

Theorem A. Let u,w € Sy. Then u <p w if and only if
I. a < k < b implies u(a) < w(a) and u(b) > w(b).
II. If a < b, u(a) < u(b), and w(a) > w(b), then a < k < b.

Proof. We show the k-Bruhat order is the transitive relation u < w defined by I and II.
If u < u(a,b) is a cover, then u < u(a,b). Thus u < w implies u <y w. Algorithm 3.1.1
completes the proof. pr

Algorithm 3.1.1 (Produces a chain in the k-Bruhat order).

input: Permutations u,w € Sy with u <y w.

output: A chain in the k-Bruhat order from w to u.
Output w. While u # w, do

1 Choose a < k with u(a) minimal subject to u(a) < w(a)
2 Choose k < b with u(b) mazimal subject to w(b) < w(a)
3 w:=w(a,b), output w.

.S u(b).

At every iteration of 1, u < w. Moreover, this algorithm terminates in £(w) — £(u)
iterations and the sequence of permutations produced is a chain in the k-Bruhat order
from w to u.

Proof. It suffices to consider a single iteration. We show it is possible to choose a and
b, then u <y w(a,b), and lastly w(a,b) <; w.

In 1, u # w, so one may always choose a. Suppose u <, w € &, and it is not possible
to choose b. In that case, if j > k and w(j) < w(a), then also u(j) < w(a). Similarly, if
J <k and w(j) < w(a), then u(j) < w(j) < w(a). Thus a < w(a) & vw (a) < w(a),
which contradicts uw ™! (w(a)) = u(a) < w(a).

Let w' := w(a,b). Since w(b) > u(a) implies I for (u,w’), suppose w(b) < u(a). Set
by := u~tw(b). Then w(b;) # u(b;) and the minimality of u(a) shows that b; > k and
w(by) < u(by). Similarly, if by := u *w(by), then by > k and w(by) < u(by). Continuing,
we obtain a sequence by, by, ... with u(a) > u(by) > u(by) > - -+, a contradiction.

(u,w'") satisfies II: Suppose ¢ < j and u(i) < u(j). If j < k, then w(i) < w(j). To
show w'(i) < w'(j), it suffices to consider the case j = a. But then u(i) < u(a), and
thus u(i) = w(i) = w'(), by the minimality of u(a). Then w'(i) < u(a) < w(b) = w'(a).
Similarly, if £ < 4, then w'(2) < w'(j).

Finally, suppose w does not cover w' in the k-Bruhat order. Since w(a) > w(b), there
exists a ¢ with a < ¢ < b and w(a) > w(c) > w(b). If k < ¢, then II implies u(c) > u(b)
and the maximality of u(b) implies w(a) < w(c), a contradiction. The case ¢ < k similarly
leads to a contradiction. pr

Remark 3.1.2. Algorithm 3.1.1 depends only upon ¢ = wu™!:

input: A permutation ( € Su.
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output: Permutations (,(1,--.,CGn = e such that if u < Cu, then
U < Guoitt <g o0 < QU < Qu (= w)
1S a saturated chain in the k-Bruhat order.
Output . While ( # e, do

1 Choose o minimal subject to o < ().
2 Choose  mazimal subject to ((B) < ((a) < B.
3 ¢:=((e, B), output ¢.
To see this is equivalent to Algorithm 3.1.1, set & = u(a) and S = u(b) so that w(a) =
((a) and w(b) = C(B). Thus w(a,b) = (a, A)u.

More is true, the full interval [u, w]; depends only upon wu '

Theorem 3.1.3. If u <, w and v <, y with wu™' = zz~!, then the map v — vu~'z
induces an isomorphism [u, w)y — [z, 2]g.
This is a consequence of the following lemma.

Lemma 3.1.4. Let u <, w and z <j, z with wu™! = zz~t. Then u < (o, B)u <p w <
z < (o, Bz <y 2.

Proof. Let ( = wu™' = zz~!. The position of v in u is v~ (7).
Suppose (a, B)x does not cover x in the k-Bruhat order, so there is a v with a < v < 8
and z '(a) < 271 (y) <2 '(B). Then we have

r= ... @ ... v ... B ... and
z= ...¢(a)...C(7)...C(B)-..

Since u <y, (o, B)u, either k < u='(B) < u () orelse u ' (7) < u () < k. We illustrate
u, (e, B)u, and w for each possibility:

k<u(B) <u'(v) u(y) <u () <k

(VR A & P R el Y oo .. B
(,B)u: ... B ... a ... v ... R U o RO T
w: ...()...CB)...C(y)-.. L) (@) ... C(B) - -

Assume k£ < v™}(3) < u7'(y) . Then Theorem A and («,B)u <; w imply v > ((v)
and C(ﬁ) ¢(7), since @ < = and both have positions greater than & in (o, B)u. Let
(). If ¢ < k, then z <, 2z implies v < ((7) so v = ((y). Also, a < v
1mp11es ((a) < ¢(vy) and thus {(y) =7 < B < ((a), a contradiction. Similarly, ¢ > & or
ul(y) < _1(oz) leads to a contradiction. Thus z <, («a, 8)z.
To show y := (a,f)x <) z, first note that (y,z) satisfies I of Theorem A, because
(e, B)u < w. For II, we need only show:
a) If a <y < B and 271 (y) < 271 (), so that v = yz~(y) < yz '(a) = B, then
zx(y) = () <{(B) = =z 1( ), and
b) If a < v < B and z1(B) < z7'(y), so that & = yz*(8) < yz'(y) = 7, then
¢(a) < ()
If & < v < B3, then one of these does occur, as x <}, (o, 8)z = y. Suppose z7'(7) <
z7 (), as the other case is similar.
Since z71(y) < k and z <y 2, we have v < ((7), by condition L. If u=!(y) < u™*(a),
then (a B)u < w = ((y) < {(@). I u™'(B) <u~'(7), then v = ((7), and so {(7) =7 <
B < ((a). Since u <i (o, B)u, we cannot have v (o) < u '(y) <u '(6). pr



SCHUBERT POLYNOMIALS AND THE BRUHAT ORDER 13
Define up, := {a|a < ((a)} and down; := {B|5 > ((6)}.

Theorem 3.1.5. Let ( € Sy.

(i) For u € S, u <y Cu if and only if the following conditions are satisfied.
(a) utup, C {1,...,k},
(b) u*down, C {k+ 1,k +2,...}, and
(c) For all a, B € up, (respectively o, § € downe), a < § and v (a) < u™"(B)
together imply ((a) < ((B).
(ii) If #up, < k, then there is a permutation u such that u <; Cu.

Proof. Statement (i) follows from Theorem A. For (1), let {ay, ..., ax} contain up, and
possibly some fixed points of ¢, and let {ag;1, agyo,...} be its complement in N. Index
these sets so that ((a;) < ((a;;1) for i # k. Define u € Sy by u(i) = a;. Then (u is
Grassmannian with descent k, and Theorem A implies u < Cu. pr

3.2. A new partial order on S,. For ( € Sy, define |(| to be the difference of
#{(a, B) € C(up,) x ((down¢) [a > B} and

#{a,b € up, or a,b € down¢ | a > b and ((a) < ((b)}
+ #{(a,b) € up, x down¢ |a > b}.

Lemma 3.2.1. If u < Cu, then £(u) + |¢| = £(Cu).

Proof. By Theorem 3.1.3, £(Cu) — £(u) depends only upon (. Using the permutation
u in the proof of Theorem 3.1.5, shows it equals |(|: If ¢ = ((c¢), then the number of
inversions involving c is the same for both v and (u. The first term above counts the
remaining inversions in (u and the last two terms the remaining inversions in u. pr

By Theorem 3.1.3, [u, (ulr depends only upon ( if u <; (u. In fact, it is independent
of k as well. That is, if # <; (x, then the map v — zu~'v defines an isomorphism
[U, Cu]k — [Ia Cx]l

Definition 3.2.2. For (,n € S, let n < ( if there exists u € S, and a positive integer
k such that u <y nu <y Cu. If u is chosen as in the proof of Theorem 3.1.5, then we see
that n < Cif
(1) If a < n(a), then n(a) < ((a).
(2) If a > n(a), then n(a) > ((a).
(3) If o, B € up, (respectively, o, 8 € down¢) with a < 8 and ((a) < ((8), then
n(a) <n(B).

Figure 2 illustrates < on S;. For ¢ € S, define ( := wyCwy.

Theorem 3.2.3. Suppose u,(,n,& € Soo-

(1) (Seoy X) is a graded poset with rank function [|.

(i9) The map A — v(\, k) exhibits Young’s lattice of partitions with at most k parts as
an induced suborder of (S, <X).

(1i3) If u <y Cu, then n — nu induces an isomorphism [e, (J< — [u, Cul.

() Ifn 2 ¢, then & &' induces an isomorphism [n, (]< — [e, (n~ <.

(v) For every infinite set P C N, ¢p : Seo — Swoo i an injection of graded posets.
Thus, if (,n € Ss are shape equivalent, then [e, (]< ~ [e, n]<.
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(13)|(24)

(1234) (1324) (1342)  (1243) (1423) (1432)

N TN SN

(124) (234) (134) (243) (12)(34) (14)(23) (123) (142) (132) (143)

(24) (34) (23) 14) (12) 13)

\\\8///

FIGURE 2. < on S,

(vi) The map n — n¢~* induces an order reversing isomorphism between [e,(]< and
[67 C_l]j'

(vii) The homomorphism ¢ — C on S, is an automorphism of (S,, <).

Theorem E (i) follows from the definition of < and (v).
Proof. Statements (i)—(v) follow from the definitions. Suppose u < nu <, (u with
u,nu,Cu € S,. If w := Cu, then wwy <, ¢ wwy <, ("'wwy, which proves (vi).
Similarly, u <, w < u <, W implies (vii). pr

Example 3.2.4. Let ( = (24)(153) and n = (35)(174) = ¢71,345,71(¢). Then 21345 <,
¢ - 21345 and 3215764 <3 n - 3215764. Figure 3 shows [21342, ¢ - 21345, [3215764, n -
32157643, and [e, (]<-

45123 5273461 (24)(153)
N N N
35124 43125 4273561 5243761 (15423) (13)(24)
e | e | | |
25134 34125 42135 3274561 4253761 5234761 (1543) (1423) 1243)
A R 7 |
24135 32145 41235 3254761 4235761 5214763 (143) (123) (243)
| 7 \ | / | e
23145 31245 3245761 4215763 (13) (23)
N |
21345 3215764 e

FIGURE 3. Isomorphic intervals in <, <3, and <

3.3. Disjoint permutations. Let ( € §,, and 1,...,n be the vertices of a convex planar
n-gon numbered consecutively. Define the directed geometric graph I'¢ to be the union of
directed chords (a, ((a)) for o in the support, supp,, of ¢.

Permutations ¢ and 7 are disjoint if the edge sets of I'c and I';, (drawn on the same n-gon)
are disjoint as subsets of the plane. This implies (but is not equivalent to) supp, (|supp, =
0.

In Figure 4, the pair of cycles on the left is disjoint and the other pair is not. We relate
this definition to that given in §1.3.
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8 1
A 4 1
7 2
6° /3
3 2
5 4

FIGURE 4. Graphs of the permutations (1782)(345) and (13)(24)

Lemma 3.3.1. Let (,n € So. Then the edges of I'¢ are disjoint from the edges of 'y if
and only if supp, (supp, = 0 and [C| + |n] = [Cn].

Proof. Suppose ¢ and 7 have disjoint support, and let (a,((a)) be an edge of I'; and
(b,m(b)) be an edge of I',,. The contribution of the endpoints of these edges to |(n|—|¢|—|n]
is zero if the edges do not cross, which proves the forward implication.

For the reverse, suppose they cross. The contribution is 1 if ¢ < ((a) and b > 7(b)
(or vice-versa), and 0 otherwise. Since each edge is part of a directed cycle, there are at
least four crossings, one of each type shown in Figure 5. There, the numbers increase in

n(b)><a b><a n(b)><C (a) b><C (a)
¢(a) b ((a) n®) o« b a n(b)
FI1GURE 5. Crossings

a clockwise direction, with the least number in the northeast (). Thus [(n| > [{| + |7]-
F

Lemma 3.3.2. Let a < 3, ( € Sy, and suppose (< (a, B)C. Then

(1) o and B are connected in I, g)c.

(i) If (c,d) is any chord meeting T'¢, then (c,d) meets T'(q g)c-
(¢1i) If p and q are connnected in I'¢, then they are connected in I g
(i) If ¢ and n are disjoint and (' < (, then ' and n are disjoint.

Proof. Suppose u € Sy with u <; Cu <i (o, 8)Cu. Define i and j by (u(i) = a and
Cu(j) = B, and set a = u(i) and b = u(j). Since (u <y, (o, B)Cu is a cover, i < k < j, and
thus a < a < B <b, as u <j Cu. Thus the edges (a, ) and (b, &) of I'(4 )¢ meet, proving

(7).

For (i), note that I, g)¢ differs from I'c only by the (possible) deletion of edges (a, o)
and (b, 8) and the addition of the edges (a,3) and (b, ). Checking all possibilities for
(c,d), {(a,a), and (b, B) shows (ii).

Statement (44) follows from (iz) by considering I'c — (a, o) — (b, 5). The contrapositive
of (iv) is also a consequence of (i7); If (" and 7 are not disjoint and ¢’ < ¢, then ¢ and 7
are not disjoint. pr
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Lemma 3.3.3. Suppose u,(,n € Sy with (,n disjoint. Then
u < (nu <= u <, Cu and u <p nu.

Proof. Suppose u < (nu. Let i < k so that u(s) < ¢nu(i). Since supp,[|supp, = 0,
u(?) < Cu(i). Similarly, if & < j, then u(j) > Cu(j), showing I of Theorem A holds for the
pair (u, Cu).

For II, suppose ¢ < j, u(i) < u(j), and Cu(i) > Cu(j). If j <k, then u(i) € supp,. Since
u <y (nu, and ¢,n have disjoint supports, Cu(i) = nCu(i) < nCu( /), thus u(j) € supp,
,and so

u(i) < w(j) < Cu(@) < nu(j).

But then the edge (u(7), Cu(?)) of I'c meets the edge (u(j), nu(j)) of I';, a contradiction.
The assumption that £ < ¢ leads similarly to a contradiction. Thus v <; (u and similarly,
u < Nu.

Suppose now that u <j (u and u <; nu. Condition I of Theorem A holds for (u,{nu)
as ¢ and n have disjoint support. For II, let i < j with u(i) < u(j) and suppose j < k.
If the set {u(7),u(j)} meets at most one of supp, or supp,, say supp¢, then u <; Cu
implies (nu(i) < ¢nu(j). Suppose now that u(i) € supp, and u(j) € supp,. Since
u <j Cu, we have Cu(i) < Cu(j) = u(j). But u <, nu implies u(j) < nu(j). Thus
nCu(i) = Cu(i) < u(j) < nu(j) = nCu(j). Similar arguments suffice when £ <i. pr

Proof of Theorem G (7). Suppose ¢ and 7 are disjoint. By Lemmas 3.3.2 and 3.3.3, the
map (e, (]< X [e,n]<x — [e, {n]< defined by (¢',n') — ('n’ is an injection. For surjectivity,
let £ < (n. By Lemma 3.3.2 (744) and downward induction from (7 to £, I'c has no edges
connecting supp¢ to supp,. Set &' := {f\suppg, and £’ := §|Suppn. Then £ = £'¢", and £ and
&" are disjoint. Surjectivity will follow by showing £ < ¢ and " < 7.

It suffices to consider the case £~ («, 5)§ = (n of a cover. By Lemma 3.3.2 (i),  and 3
are connected in I'¢,, so we may assume that a, 8 € supp,. Then £" =7 and (o, B)E' = (.
We show that & < (a, 8)&' = ( is a cover, which will complete the proof.

Choose u € S, with u < &u <j, Cnu. Let a := (€u)*(a) and b := (&'u)~'(B). Since
¢ and 7 are disjoint, o, 8 ¢ supp, and so a,b ¢ supp,. Thus (o, 8)nu = 'nu(a,b),
showing a < k < b, as {'nu <, (o, B)EMu.

Since &' and 7 are disjoint and & = ¢y, Lemma 3.3.3 implies u < &'u. Thus [£'|+£4(u) =
£(&'u). But since & and n are disjoint and £'n=< (n is a cover, we have

I+ 1Inl = I¢nl = 1+1&n = 1+ + Inl,
s0 £(§'u) +1 = £(¢'u(a, b)). Since a < k < b and (u = 'u(a,b), this implies {'u <, (u. pr
Example 3.3.4. Let ¢ = (2354) and n = (176), which are disjoint. Let u = 2316745.
Then
u <sg (nu = 3571624, wu <3 (u=3516724, and wu <3nu = 2371645.

The intervals [u, Culs, [u, nuls, and [u, (nu|s are illustrated in Figure 6.

4. COHOMOLOGICAL FORMULAS AND IDENTITIES FOR THE c?,
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3571624

17

/N~

2571634 3471625 3561724

7/
3516724 2471635 2561734 3461725 3;16724
2371645 2516734 3416725 2371645 2461735 2516734 3416725
| N/ | T~/
2361745 2416735 2361745 2416735
| | |
2316745 2316745 2316745

FIGURE 6. Intervals of disjoint permutations

4.1. Maps on S

Ep,g(W)(7)
w(j—1)
w(j—1)+1

Note that €, , =

n-gpy- I p # g, then g, : So

. For p,q € Nand w € Sy, define ¢, 4(w) € Suo:

j <pand w(j) <gq
j<pand w(j)>gq
J=p .
j>pand w(j) <q
j>pand w(j)>gq

— Sy is not a group homomorphism.

The map ¢, has a left inverse /,, defined by

u(j) J <pand u(j) < u(p)

u/y(j) = u(j) — j < p and u(j) > u(p)
J u(j + 1) j > pand u(j) < u(p)
w(i+1)—1  j>pandu(j) > u(p)

Representing permutations as matrices, u/, erases the pth row and u(p)th column of u
and €, , adds a new pth row and gth column consisting mostly of zeroes, but with a 1 in
the (p, ¢)th position. For example,

£33(23154) = 243165 and 264351/ = 25341.

Lemma 4.1.1. Suppose u < w and p, q are positive integers. Then we have the following.

(6) €p,g(u) < pg(w).
() If £(w) = £(u) = Lepq(w)) = L(epq(u)), then
Epg (U] = [Epq(u), €pq(w)].
(ii2) If u,w € S, and either of p or q is equal to either 1 or n+ 1, then £(w) — £(u) =
Uepq(w)) — Llep,q(u)).
() Ifu <x w and u(p) = w(p), then u/p, <p w/p and [u, wlx =~ [u/p, w/plr, where k' is
equal to k if k < p and k—1 otherwise. Furthermore, wu™" = ey0) up) (W/p(u/p) ™).

Proof. Suppose u < u(a,b) is a cover. Then ¢, ,(u) < €, 4(u(a,b)) is a cover if either
p<aorb<p, orelse a < p < b and either ¢ < u(a) or u(b) < ¢. If however,
a < p < band u(a) < ¢ < u(b), then there is a chain of length 3 from ¢, ,(u) to
epa(u(a; b)) = gp(u)(a; b+1):

Epq(t) < gpg(u)(a,p) < gpq(u)(a,b+1,p) < ep4(u)(a,b+1).
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The lemma follows from this. For example, under the hypothesis of (i), €, ,(w) and
£p,4(u) each have the same number of inversions involving g. Thus, if e, ,(u) < v < g, 4(w),

then v(p) = ¢. pr N

4.2. An embedding of flag manifolds. Let W C V with W ~ C™ and V ~ C"".
Suppose f € V — W so that V = (W, f). For p € [n+1] define the injection t, : F{W —
FEV by
E; ifj<p
E) = J g
Wl); { (By o f) i 2p
Proposition 4.2.1 ([50], Lemma 12). Let E, € F/W and w € S,. Then, for every
p;q € [n+1],
prwEl - Xsp,q(w)wn—{—Q—qu .

Recall that e is the identity permutation.

Corollary 4.2.2. Letw € S, and E,, E! € FEW be opposite flags. Then 1 E, and 1, 1 E!
are opposite flags in FLV and

prwE = Xep,l(w)wn—l—lE m Xap,n_;_l(e)lell = Xap,l(e)d]n—l—lE:I m Xsp,n_;,_l(w)lel .

Proof. Since X E' = F(W, Proposition 4.2.1 with ¢ = 1 or n + 1 implies ¢, X, E, is a
subset of either intersection:

Xep,1(w)¢n+1El m Xsp,n+1(e)w1Ell or Xsp,1(e)wn+1Ell ﬂ Xsp,n+1(w)7/)1El .

Since E, and E! are opposite flags, 1,1 F, and ¥ E are opposite flags, so both intersec-
tions are generically transverse and irreducible. Since

Uepi(w)) = Lw)+p—1 and Lleppii(w)) = l(w)+n+1—p,
both intersections have the same dimension as ¢, Xy, E,, which proves equality. pr
Since €pn41(€) = v(n+1—p, p), where n+1—p is the partition of n+ 1 — p into a single
part, we see that &, . () = Ans1-p(71,...,7p), the complete symmetric polynomial of
degree n+ 1 —p in 1,...,2,. Similarly, &, () = €p—1(21,.-.,Tp—1) = T1-* Tp_1, a5

gp1 = v(1P7' p— 1), where 177! is the partition of p—1 into p—1 equal parts, each of size
1.

Corollary 4.2.3. Let w € S,,. In H*F¢V
Sepiw) * hnti—p(T1, -, Tp) = Gy pii(w) L1 Tp1
and these products are equal to (1,).S,.

We compute ¢);. The Pieri formulas of [50] show that if u € S, and k,m < n positive
integers, then

Ck,m

1 —_—
Gy Gugw - em(T1--- ) = { 0 gtherwisu(; (4.2.1)

1 Tk,m
GU - 6w0w . hn—Hfm(xl; e ,.’Ek) = { 0 gthervvlsué y (422)

where u —" w if there is a chain in the k-Bruhat order:

u < (o, Bi)u <p - <k (o, Bm) - (1, B)u = w
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such that 8, > --- > f,. When k£ = m, it follows that {ay,...,ax} = {u(1),...,u(k)}.

When £k =m = p—1, write — 4 for this relation. Similarly, u k™ if there is a chain
in the k-Bruhat order:

u < (oq,0)u < - <k (Cng1-ms Brt1-m) - - (o1, fr)u = w

such that 51 < fo < --- < ﬁn—kl—m-
Recall that w, € §,, is the longest element.

Theorem 4.2.4. Letv € S, 41. In H*FY¢,,,

() ¥;6, = Y o8, = > S,.

UAS] Sn RS Sn
v—"ep1(y) v 1 ()
T; 1< p
() v@) = {0 i=p.
Ti-1 1> P
Proof. In H*FY,,
UGSy = Y deg(Suy - 156,) 6,
yeSy,
By the projection formula (2.3.2) and Corollary 4.2.3, we have
deg(gwny : 7/);611) = deg(6v : (¢p)*6wny) = deg(Gv : 6sp,n+1(wny) “ Ly 'xpfl)'

Note that €ppnt1(wWny) = wnt16p,1(y). By (4.2.1), the triple product
Sy Sepir(wny) * T1 - Ty

is zero unless v—=¢,;(y), and in this case it equals &, .1~ This establishes the first
equality of (7). For the second, use the other formula for (¢,),&, from Corollary 4.2.3
and (4.2.2).
For (i), let F, be the tautological flag on F/, 4, & the tautological flag on F¢,, and 1

the trivial line bundle. Then

gi/gi—l if7 < P

Y (Fi/Fia) = {1 ifi=p ,
gi_l/gi_g ifi>p

But —z; is the Chern class of both F;/F; 1 and &;/&;_1. r

4.3. The endomorphism z, — 0. For p € N and v € S, define
Ap(v) = {y € Soo |v—551 ()}
Lemma 4.3.1. Ifv € S, and p < n, then A,(v) = {y €Sy |v 22 e 1(y)}.

Proof. Ifv e S,, p<n, and v—2sw, then w € Sn+1, 50 Ay(v) C S,. But then A,(v)

Tpn+l-p

and {y € S, |[v —— €pn11(y)} index the two equal sums in Theorem 4.2.4(7). pr

Let WU, : Z[z1, o, ...] = Z[z1, %9, . ..] be defined by
Uy(z;) = {0 ifi=p .
Ti—1 ifi >p
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Theorem C (i). Forv € Sy andp €N, ¥,6, = Z S,.
y€Ap(v)
Proof. For p <n+ 1, the homomorphism ¥, induces the map ¢, : H*F(,, ., — H*F(,,

by Theorem 4.2.4 (ii). Choosing n large enough completes the proof. r

Corollary 4.3.2. For w,z,y € Sy and p € N,

> Y o= Y

u€Ap(z) vEAR(Y) wej (2)
Proof. Apply ¥, to the identity &, - &, =}, c;,6, to obtain:
2 2 GG = D ay ) G
u€Ap(z) vEAL(Y) wEAp(2z)

Expanding the product G, - G, and equating the coefficients of G,, proves the identity.
F

Example 4.3.3. We compute W3(G,13652). The polynomial Gy3652 is

1045 + 23020475 + 23T12 75+
T1ToT3Ts + T1ToT3T5 + T1X3T4T5 + TiX5T3T4 + TIX3T325 + T3T00504+

T3T02Ts + T3T0w373 + T3TET4Ts + T3T375T5 + 2 - T3 TT3T4T 5.

Thus V3(Syize50) = ¥1ToT3T4 + 23030374 + 23107374. However,
4
652341 = T{T2T3%4 and
_ 3.2 3., .2
Gugszr = TiT5T3T4 + TIT2T3T4,
which shows U3(Syg13652) = Os341 + Gaosz1. To see this agrees with Theorem C, we

compute the permutations w such that z — w:

623451 631452 531642 523641

NSNS

613452 513462
~N 7
413652
Of these, only the two underlined permutations are of the form 3 ;(u):
631452 = £31(52341) and 531642 = e£3,(42531).

Lemma 4.3.4. Let A\ be a partition and p,k positive integers. Then A,(v(A k)) =
{(v(\, k")}, where k' =k —1 if p < k and k otherwise.

Proof. By the combinatorial definition of Schur functions [46, §4.4], V,(&,nr) =
6u(A,k')- rF

Lemma 4.3.4 implies that v(), &) is the only solution z to v(), k) —=&,1(x), a state-
ment about chains in the Bruhat order.
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4.4. Identities for ¢¥, when u(p) = w(p).

v

Lemma 4.4.1. Let u,w € S,4+1 with u(p) = w(p) for some p € [m + 1] and suppose
Lw) — L(u) = L(w/p) — L(u/p). Then in H*Fly 4,

W) (Busy* Gunws) = GuGuppyu-
Proof. Let E,, E! be opposite flags in W. By Proposition 4.2.1,
Uy (Xener B Xt B) = Xowpratior B [\ Xatnio wp B (441

Note that wy,(w/p) = (Wny1w)/p- Since u(p) = w(p), Yuwp)E. and ¢, o yp) E' are opposite
in V. Also, as £(w)—¢(u) = £(w/,) —¢(u/,), both sides of (4.4.1) have the same dimension,
so they are equal. pr

Proof of Theorem C (z)(b). It suffices to compute this in H*F/, ., for n such that
p<mn,v € Syy and A,(v) C S,. By Lemma 4.4.1,

Gu : 6wn+1’w = (djp)* (Gu/p ) GWn(“’/p (Z CZZ::U wn(w/p) "y) )
yESn
Since ¢i»Y = ¢z, for x,y,2 € S, and €51 (wWnY) = Wni16p,1(Y),
6u : 6wn+1’w = Z CZ//py wny)
yESn
= Z CZ//:yGWn+15p 1(y) " L1 Tp—1,
yESn

by Corollary 4.2.3. Thus
Cy, = deg (6 “GSupprw 6,,)

= Z Cu/ y deg wnt1€p,1(y) (371 - .xpfl) : 611)
YESn

— w/p

o Z Cu/p Yy’ r
yE€Ap(v)

When p = 1, this has the following consequence:

Corollary 4.4.2. If u(1) = w(1), then c, = 0 unless v = 1 X y. In that case, ¢y, =
wh

c, ).

uhy

4.5. Products of flag manifolds. Let P, Q € (["Zm]), that is, P,Q C [n + m] and each
has order n. List P, (), and their complements P¢, ()¢ in order.
P=p < <p, P® = [n+m]—P = pf<---<p,
Q=q<-<g Q= [n+ml-Q = ¢f<---<gqj,
Define a function epg : S, X Sp, = Spyn by:
ep(v,w)(Pi) = Guuy 1=1,...,n
5P,Q(v,w)(p§) = qfu(j) i=1,....m

epg(v,w) is the permutation matrix obtained by placing the entries of v in the blocks
P x @ and those of w in the blocks P¢ x Q. If P = [n+ 1] — {p} and Q = [n + 1] — {q},
then epg(v,e) = e,4(v).
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Suppose V ~C", W ~C™, and P € ([n+m]) Define a map
dp 2 BV xEOW < FUV & W)

by vp(E,, F); = (Ei, Fy|pi,p% < j). Equivalently, if e;,...,e, is a basis for V' and
fi,--., fm a basis for W, then

7vbP(«el, .- -;en»: «fla .- afm») = «91, .- -;gn-}-m»a

where gp, = ¢; and g,e = fi. From this, it follows that if E,, E/ € F¢V and F, F' € F(W
are pairs of opposite flags, then ¢p(E,, ) and 1, ,,,p(E/, F") are opposite flags in VeW.

Lemma 4.5.1. Let P,QQ € (["J;m]), v €S, and w € S,,. Then, for E, € F{V and
F e ™MW,

wP (XwnvE X mewF:) C Xwn+msp,Q('u,w)wQ(ElaE)
U (XoB x XuE) € Xepotayonrme(B F).

Proof. For a flag G,, define G := G; — G; ;. By the definition of g, we have
E} Cg(E,, F);. and FY C ¢q(FE,, F)g.. Since

Wnem®@ = n+m+l—qg, < - < n+m+1-—gq,

En+1—j C wwn+mQ(EaE)n+m+1—q]’a and
Fn+1—j C wwn+mQ(EnE)n+m+1—qj’

the lemma follows from the definitions of Schubert varieties and ¢p. pr

Corollary 4.5.2. Let E,,E! € TV and E,F' € F{W be pairs of opposite flags and let
Pe ("*m) Set Q = {m+ 1,...,m+n}. Then, for everyv € S, and w € Sy,

v (XuE x XoF) = Xepww¥o(B E) () XepoteoYm (B E')
= Xeppwe¥e B BN () Xepgtewm (B, E)
= Xepaem ¥ (B E) () Xepotwe Vim (B, E')
= Xeppeo®e(BL BN () Xerow¥m (B, F)

Proof. Since wyim[n] = Q, X E, = FV, and X F = F(W, Lemma 4.5.1 shows that
Yp (XyE, X X,F) is a subset of any of the four intersections. Equality follows as they
have the same dimension. Indeed, for z,z € S, and y,u € S,

Uepm(z,y) = €z)+Ly)+#{ien],jem]|p>pj}
lepqlz u) = L(z)+L(u)+#{i € [n],j € [m]|p > pi}.
Thus l(epm(z,y)) + Uepg(z,u)) = €(x) + £(y) + £(2) + £(u) + n - m and so

(") - teri(on) ~ tenatern) = (5) + () — 0~ t0) €2 - 160

If (x,y, z,u) is one of (v, w, e, e), (v, e,e,w), (e,w, v, e), (e, e,v,w), then the left hand side is
the dimension of the corresponding intersection, and the right hand side is the dimension
of X, E, x Xy F. pr
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Corollary 4.5.3. Let Q = {m+1,...,m +n} = wypm[n]. For everyv € S,, w € S,
and P € ([”+m]), the identities hold in H*Fl, ., :

n

66p,[n](v,w) : GEP,Q(C,C) = Gsp,[n](v,e) : GEP,Q(e,w) =
GEP,[n](e,w) . 681:,@(1),6) = 65}3,[,,1](6,8) . 65}3,@(’0,1[))7
and this common cohomology class is (Vp)«(6, @ &y).

Theorem 4.5.4. Let x € Sy, and P € (["+m]). Then

n

(i) e, = Y, Y 6,06,

sp,[n](e,e)
VESy, WESH

N ep,n)(vswm)
- Z Cep (e wmw) = S, ® Gu
VESH, WESH

=Y e 6,86,

ep,[n](wnv,e) T
vESH, WESH

= €p,[n)(Wn,wm)
B Z CEP,[n](wnv,wmw) x 61} ® G’W
vesna wESm

(i)) Let Q={m+1,...,m+n}. For everyv € S, and w € S,,, we have

5P,[n](vaw) E':P,[n](’Uﬂ"JW’L) _ EP,[n](wn7w) _ EP,[n](wn’wm)
ep,n)es€) T ep,n]{eWwmw) T ep,n){wnvie) T T ep,n](Wnv,wnmw) T

ep,q(v,w) _ ep,Q(v,wm) _ ep,Q(wn,w) _ ep,Q(Wn,wm)
epqlee) x epqlewmw) x ep,Q(wnv,e) © ep,Q(Wnvwmw) T

Remark 4.5.5. Each structure constant in (4i) is of the form cgy where ( is one of

x?
vXw, v xw L, vt xw,or v ! xw ! Each interval [y, (y] is isomorphic to [e, v] X [e, w].

This is consistent with the expectation that the c;  should only depend upon [y, z] and
x.

Proof.  In (i), the second row is a consequence of the first as ¢, = cin+my = for
Z,Y,2 € Spim, and the first row is a consequence of the identities in (7). For (i), there
exist constants d2" defined by

Up8, = Y A’ &, ® 6,
Since the Schubert basis is self-dual (2.3.1), we have

d," = deg (w;Gw : (Gwnv ® 6wmw))
= deg (658 : (wP)*(gwnv ® 6wmw)) .

Each expression for (¢p).(Sy,v ® G,,,w) of Corollary 4.5.3 yields one of the sums in (z).
For example, the last expression yields

dgw = deg (Gw ) 65}3,["](6,6) ) 6“”"""8}”[”](”’1”))

EP,[n]('Usw)
€P,[n] (eae) x?

since Wnmep,m](V, W) = €pu,ymin] (Wnl, Wnw). r
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4.6. Maps Z[z1, s, ...] = Zy1, Y2, ---, 21, 22,...]- Let P C N, define P¢:= N— P, and
suppose P¢ is infinite. List P and P¢:

P : p <p < { otherwise

Peooopi < py <
Define ¥p : Zlz1, 29, ...] = Zly1,Yo, - -, 21, 22, - - -] by

Tp;

3

— Y Tpe — Zj.

Then there exist di."(P) € Z for u,v,w € S defined by:

Up(Gu(z)) = ) di’(P) Guly) &u(2).

U,V

For ,d€ Nand RC {d+1,...,d+2l} with #R = [, define P(l,d, R) := (P(N[d]) U R.

Theorem D'. Let P C N andw € Sy. For any integersl > ¢(w) and d exceeding the last
descent of w and any subset R of {d+1,...,d+2l} of cardinality I, set n := #P(l,d, R),
m:=d+2l—n, and T := ep; 4 p) (€, €). Then d,,°(P) =0 unless u € S, and v € Spp,
and in that case,

dzv(P) — C(uXv)n'

™ w

Moreover, di¥(P) # 0 implies that a :== #P()|d] exceeds the last descent of u and d — a
exceeds the last descent of v.

Remark 4.6.1. Theorem D’ generalizes [29, 1.5] (see also [35, 4.19]) where it is shown
that d%”([a]) > 0. Define Ip to be

{epuimymlee) [LEN, n=1+#(P( ), and RC {I+1,...,31}, #R =1},

For w € §,,, choose N € N so that N/3 exceeds both the ¢(w) and the last descent of w.
If 7 € Ip with m € Sy, then 7 = EP(L,d,R),n] (e,e) for [,d, R satisfying the conditions of

Theorem D’ and so d“?(P) = AT for - € Ip — Sy, which establishes Theorem D.

Apply the ring homomorphism ¥p to both sides of the product:

Gu(z) 6,y(z) = Zcﬁ,76<(x).
¢

Expand this in terms of &, (y)S¢(2) and equate coefficients to obtain:

Corollary 4.6.2. Let w,v,n,§ € Soo, and P C N. Then there exists an integer N € N
such that if m € Ip — Sy, then

¢ 0,0,
Proof of Theorem D’.  First, &,(x) € Z[xy,...,xs] whenever s exceeds the last

descent of 7 [28] (see also [35, 4.13]). Thus, &,(z) € Z[x1,...,z4], and if d%"(P) # 0,
then &,(y) € Z[yy, ...,y and &,(2) € Z|z1,. .., 2], hence a, respectively, b, exceeds the
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last descent of u, respectively v. Since deg &,,(z) < [, both deg &,(y) and deg &,(z) are
at most [. Consider the commutative diagram

L v
Lz, ..., xq) —— Z[x1,- -, Tnim) P ZlYi, -y Yny 215 -« - 5 Zm]
H*Fly H*FY, @ H*F(,
Here, Up is the restriction of U5 to Z[z1, ..., Tnym)- The vertical arrows are injective on

the module Z(z{" - - - z3¢ | o; <) and its image

Z<y1ﬁl"'y5az¥1"'ng |ﬁw%§l> C Z[yla"'aynazla"'azm]-

Moreover, as P([d] = P([d], the composition, Up o 1, of the top row coincides with
Up o Since &,(z) € Z(z(" -+ -3¢ | a; < 1), the formula for ¢%(&,,) in Theorem 4.5.4
computes ¥p(Sy(7)).

4.7. Products of Grassmannians. Let k¥ < n and [ < m be integers, V' ~ C", and
W ~ C™. Define ¢y, : GrassyV x GrassW — Grasse(V @ W) by

op, ¢ (HK) — H®K.

Theorem 4.7.1.
(i) For every Schubert class Sx € H*GrassV & W,

Ph(S) = D Su® S,
"%

(%) If Sye ® Sye € H*GrassyV @ H*GrassW, then
(Pr)-(Se ®Se) = Db, S,
A

where X, ¢, and v¢ are defined by ui =n —k — pgp1—i, Vi =m — 1 — vj41-4, and

)\Zq:m+n_k—l—Ak+l+1_i.

Remark 4.7.2. Suppose —zx1,..., —x) are Chern roots of the tautological bundle over
GrassV, —y1, - - ., —y; those of the tautological bundle over GrassW, and f € H* Grassy V&
W (which is a symmetric polynomial in the negative Chern roots of the tautological bundle
over GrassiV @& W). Then

(Pz,lf = f(xl,"'amkayla"'ayl)-

Let A = A(z) be the ring of symmetric functions, which is the inverse limit (in the category
of graded rings) of the rings of symmetric polynomials in the variables z, ..., z,. Fixing
A and choosing k, [, n, and m large enough gives a new proof of [36, 1.5.9]:

Proposition 4.7.3 ([36, 1.5.9]). Let A\ be a partition and x, y be infinite sets of variables.
Then

Sx(z,y) = Y ch, Sulz) - Suly),

where S, are Schur functions in the ring A of symmetric functions.
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If we define a linear map A : A(z) — A(z) @z A(y) by A(f(2)) = f(z,y), then A is
induced by the maps ¢} ;. Moreover, the obvious commutative diagrams of spaces give a

new proof of [36, 1.5.25], that A is a cocommutative Hopf algebra with comultiplication
A.

Proof of Theorem 4.7.1. The first statement is a consequence of the second: Schubert
classes form a basis for the cohomology ring, so there exist integral constants d4” such

that
0r(Sy) = > 48, ®S,.
v
Since the Schubert basis diagonalizes the intersection pairing,
dy" = deg(pp,(Sh) - (Spe @ Sie)).

Apply (¢k,)« and use the second assertion to obtain
dy” = deg(Sx - (@r)s(Spe ® Sie))

= S5y Sk

by
e

The second assertion is a consequence of the following lemma.

= C

Lemma 4.7.4. Suppose u,v are partitions with p C (n — k)* and v C (m — 1)'. Let
E, € FV and F, € FIW and let G be any flag opposite to Y (E,, F) with G}, = W.
Then

Oet Qe B X QeE) = Quetb(B, B) () Queiy G, (4.7.1)
where p s the partition
v+m—Fk) > - >uyu+n—k > m > > .

We finish the proof of Theorem 4.7.1. Lemma 4.7.4 implies
(()Ok,l)* (Suc ® Suc) = [Qpcw[n] (E. ) E) n Q(n—lc)lc';.l]
= Dty Sxe
A

Since deg(S - Sp - S,) = cf,, we see that

xe _ P _ =k} ullv _ X
CPC (n—k)t — C(n—k)l)\ = G = G - C;u/‘

Here, p [ v is a skew partition with two components y and v and the last equality is a
special case of (1.3.1) in §1.3. pr

Proof of Lemma 4.7.4. Since
QG = {M € Grassy VoW | dim M (G, > 1}

and G, = W, we see that ¢ (GrassyV x GrassW) C Q,_juG.. The inclusion in (4.7.1)
follows, as the definitions imply

Ora(Que B, X Qe ) C Quetppy (B, E).

Equality follows, as the cycles have the same dimension: The intersection has dimension
ol = [(n = k)| = [p|+|v| = dimQuE, x Q. F. p
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w
5. IDENTITIES AMONG THE Coan(O\k)

5.1. Proof of Theorem E (#i). Combining Lemma 4.3.4 with Theorem C (7)(b), we
deduce:

Lemma 5.1.1. Suppose x <y z and z(p) = z(p). Let k' = k-1 ifp <k and k' = k
otherwise. Then for all partitions A\, we have

2 _ z/p
Cook) = Co/pu(rk)

By Lemma 4.1.1 (i), zz~! and z/,(z/,)"" are shape-equivalent.

Lemma 5.1.2. Let x,z,u,w € S,. Suppose v < z, u < w, and zx~! = wu~'. Further

suppose that w is Grassmannian with descent k, the permutation wu=' has no fized points,
and, for k < i <n, u(i) = z(i). Then, for all partitions X\ with at most k parts,

w _ 2z
Cy v(\k) = G v(A\k)"

Proof of Theorem E (i) using Lemma 5.1.2.  We reduce Theorem E (i) to
Lemma 5.1.2. First, by Lemma 5.1.1, it suffices to prove Theorem E (i) when z, z, u, w €
S,., k =1, with wu™! = zz~! and the permutation wu~' has no fixed points.

Define s € §,, by

: u( 1<i<k
s(i) = {x%zg kzzgn

and set ¢ := wu~'s. Then s <, ¢t and

. wli) 1<i<k
t) = {z(z) k<i<n ’

It suffices to show that cgv()\,k) and ¢! () each equal cfv()\,k). Thus we may further assume
u(i) = z(3) for 1 <4 <k or u(i) = z(i) for k < i < n.
Suppose that u(i) = z(i) for 1 <i < k. If for v € S, T := wpvwy,

z _ w z — w
Czonk) = Cuunk) T Guoum vk

Set I = n—k and A\’ the partition conjugate to \. Then T <y z, u <p w, z(T~') = wu ",

v(\ k) = v(A4 1), and (i) = u(3i) for I < i < n. Thus we may assume z(i) = u(i) for
1<i<k.

Finally, there is a permutation s € S,, such that wu~'s is Grassmannian of descent k.
Thus it suffices to further assume that w is Grassmannian with descent k, the situation
of Lemma 5.1.2. pr

We prove Lemma 5.1.2 by studying two intersections of Schubert varieties and their
image under the projection F/V — GrassyV. Let ey, ...,e, be a basis for V' and set
(e1,...,en). Let M(w) C Mux,C be the set of matrices satisfying the conditions:
(a)
(b)
Then M (w) ~ ) as the only unconstrained entries of M (w) are M (w); ; when j < w()
and i < w! _]) and there are /(w) such entries.

M(w )zw)—l
M (w);

w);,; = 0 if either w(i) < j or else w™'(j) < i.
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Example 5.1.3. M (25134) is the set of matrices

a1 000
b 0 ¢c d 1
1000 0] |(abecd)eC*
00100
00010

Fix a basis ey, ...,e, for V. For a € M(w), and 1 < i < n, define the vector f;(a) :=
> igej. Then fi(a),..., fo(e) are the ‘Tow vectors’ of the matrix o and they form
a basis for V as a has determinant (—1)“®). Set E, (a) = {(fi(a),..., fu(@)). Since
fila) € Fyiy — Fygiy—1, we see that E (o) € X, F. In fact, M(w) parameterizes the
Schubert cell X; ,F.. When w is Grassmannian with descent &, matrices in M (w) have
a simple form: if & <4, then fj(a) = ey().

For opposite flags E, E', &, - S, is the class Poincaré dual to the fundamental cycle of
XoowE, X E'. We use the projection formula (2.3.2) to compute the coefficient Con(ak)’

cgv(/\,k) = deg(Sa(z1,-.-,%k) - Suow - Gu)
= deg(me)«(Sx(x1, -, Tk) - Cuow - Gu)
= deg(Sx - (71)+(Guwow - Gu))
Thus Lemma 5.1.2 is a consequence of Lemma 5.1.4, which shows:

(%)« (Suow *+ Su) = (k)4 (S - Ga)-

Lemma 5.1.4. Let u,w,, z satisfy the hypotheses of Lemma 5.1.2. Then, if F, and F'
are opposite flags in'V,

T (X EVXE) = m (X E () XE)
and the projections m onto the image cycle have the same degree.

Proof. Letey,...,e, bea basis for V such that F, = {(e1,...,e,) and E' = {e,, ..., e1)),
and define M (w) as before. Let A C M (w) consist of those matrices « such that E,(«) €
XoF' If j > k, set gj(a) = fi(a) = ey For j < k construct g;(c) inductively,
setting g;() to be the intersection of F, ., .y and the affine space f;(a) + (g;(@) |i <
j and u(i) < u(j)). Since E (o) € X F and dim E;(a) (\ Fy,1_,;) = #{i < jlu(i) >
u(j)}, this intersection consists of a single, non-zero vector, g;(«).

The algebraic map A > a — (gi(a),...,gu(a)) € V™ parameterizes a basis of V.
Moreover, for o € A, E (o) = (91(a),...,gn(a)), and if 1 < j < k, then g;(a) €
F! ) N Fugj)- For o € A,

G.(@) = (Gu1a)(@),- -, Guraw)(Q)) € XugoF [ XoE, (5.1.1)

thus A parameterizes a subset of X, ,F (| X,FE'. Indeed, for 1 < j < k, Gu—1a(j) €
Fi_a() N Fyj). Also for j > k, we have u 'z(j) = j = w 'y(j), thus g;(e) = f;(a) =
ey(j) and Gj(a) = Ej;(c). Then the definition of Schubert varieties in §2.3 implies (5.1.1).

Both cycles X, F (X E' and X, F ()X FE' are irreducible and have the same di-
mension, £(w) — £(u) = |wu~'|. Since G, () = G, (f) if and only if o = 3, the loci of flags
{G,(a) | € A} is dense in X, F' () Xy F- Since the association E,(«) — G, (c) induces
a rational map

XugwE [ XuE' = = = XupoF (X, E'
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covering the projections 7y, these projections have the same degree, which completes the
proof. pr

5.2. Proof of Theorem G (#z). We show that if ( and 5 are disjoint permutations and

A any partition, then
< _ A
g = ch ci cl.
v

Lemma 5.2.1. Let (,n € Sy be disjoint permutations. Suppose k > #up, | > #up,,
n > #supp,, and m > #supp,. Let u € Spyy be a permutation such that u <gy; Cnu. Let
Q be any element of ([n+m]—nsuppn) which contains supp, for which k = #u~"(Q) N[k +1].
Set Q°:=[n+m] — Q.

Define ¢' € S, and f € Sn by édg(¢') = ¢ and ¢ge(n') = n. Set P = v HQ),
P =u"Y(Q°), and definev € S, and w € Sy, by u(p;) = Gy and u(p§) = yi)» where

P=p <p < - < py P = pf < p5s < - < po
Q:q1<q2<...<qn Qc:qf<q§<...<qfn
Then
(i) v <k ("v and w <; N'w,

(#1) u=-¢epg(v,w) and (nu =epg({'v,Nw), and

(#1) For all pairs of opposite flags E,, E! € Ft,, and F,, F' € F¢,,,
U [(XoncoB (VX ) 5 (Ko (Xl )| =

Xonimem¥@(Ey E) [ Xuth i (B, E).

Proof. Since u <yy; (nu, (1) follows from Theorem A. Statement (ii) is also immediate.
For (#ii), Lemma 4.5.1 shows the inclusion C. Since (' is shape equivalent to (, 7' to 7,
and ¢ and 7 are disjoint, |(n| = |¢’| + |7/|, showing both cycles have the same dimension,
and hence are equal, as ¢g(E,, F)) and dng’"*“)Q(E-l’ E') are opposite. r

Note that if u <; (u, then

& = deg(Sx (M) (Guocu - Gu)).
Thus the skew coefficients ¢ are defined by the identity in H*GrassV:
T+ (Guogu - Gu) = D §She. (5.2.1)
AC(n—k)k
Proof of Theorem G (#2).  We use the notation of Lemma 5.2.1. The following
diagram commutes, since [k + 1] = {p1,..., 0k, D, - ., D}
IFETL X Fgm ¢P > an—km
T X T J {W k+i
Pk,

Grass,C* x GrassC™ Grassy,C*t™

From this and Lemma 5.2.1, we see that

k4l (Xwn+m<nu¢Q (E., E) ﬂ Xt omim g (E, F'))
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is equal to
ort (e (Xoweo B (VXoB) % 11 (KB () XuF'))
Thus (7g41)« (6wn+m<nu . Gu) is equal to
(@r0)« (k) (Buongro - &) @ (M) (G - Gu)) -
This, together with (5.2.1) and Theorem 4.7.1 (i), gives

Z CinS)\c = (ﬂ-k-l-l)* (Gwn+m4nu ) Gu)
A

= (Pr)« (ZCCS ®Zc”5,,c>

= chlc" i t)e (Sue @ Spe)

= Zc ZCWS,\C.
A

We are done, as (', ( and 7, n are shape equivalent pairs.
n,n r

5.3. Cyclic Shift. Theorem H' (Cyclic Shift) Let u,w,z,z € Sy with u < w and
z < z. Suppose wut € S, and zz~! is shape equivalent to (wu1)12-™" for some t.
Then, for every partition A,

w _ 2z
Cy v(Ak) = Cron)-

Proof. It suffices to prove a restricted case. Suppose u,w € S,, v <; w, and w is
Grassmannian with descent k. We construct permutations z,z € S, with x <, z and

zz~' = (wu~')1 2" for which

- (XwowF, N XuE') - (XWG, N XwG,’) , (5.3.1)
where e, ..., e, be a basis for V and the flags F/, F',G., and G.' are
E = (e1,...,en) E' = {en,.-.,e1)

G. = {en,er,...;en_1) G = (en_1,...,€1,€).

Then (5.3.1) implies ¢ o) = M(/\ k) which completes the proof.

If wu='(n) = n, then 227" = 1 x wu™"', which is shape equivalent to wu™', and the

result follows by Theorem E (7). Assume wu '(n) # n. Then w(k) = n and u(k) < n,
as w is Grassmannian with descent k. Set m := u(k), p :== v (n)(> k) , and [ := w(p).
Define z € S, by:

u(j) +1 1<j<korp<j
N I =k
@)= mr j=k+1

uw(i—1)+1 k+1<j<p
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Then z <j z := (wu™")*2~"z where

w(j) +1 1<j<korp<j
N RS =k
) = 1 j=k+1

w(iij—1)+1 k+1<j<p
To show (5.3.1), let gi(c),...,gn(a) for « € A be the parameterized basis for flags

E (o) € XoE'(N XS, E constructed in the proof of Lemma 5.1.4. Since gx(a) € F). | _, ) N Fuk

u(k) = m, and w(k) = n, there exist regular functions 3;(c) on A such that

Since F| = (e,) C Ep(a) — Ep_1(o) and g,(a) = ¢, there exist regular functions d,(«) on
A with J,(a) nowhere vanishing such that

o = Y hlal(a)
= gul0) + Y ade) + D dyfade

j=k+1

as gr(c) is the only g;(c) whose e,-coefficient is has a non-zero. Thus

P k-1
— Y §i(@ew;, = gela) + ) d(a)gi(e) € Ex(e) — Epa().
j=k+1 j=1

Define a basis hi(a),. .., h,(a) for V by

gj(@) 1<j<korp<j

hi(a) = €n — < ?:k+15j(a)ew(j)> j=k

€én j=k+1

gi-1(e) k+1<j<p
We claim E!(«) := {(h ( )y« -oyhn()) is aflagin X, .G, (| X,G., which implies (5.3.1):

Since hi(a) € Ex(o) — Ex—1(a) and hj(a) = g;(«) for j < k, we have
A@ = (l(a),..., (@) = Eia)

Thus if a # o/, then E!(a) # E!(c/) and so {F!(«) |« € A} is a subset of the intersection
Xuo:G. (1 XzG! of dimension equal to dim A = ¢(w) — £(u) = £(z) — £(z), the dimension
of X,,.G. X,G). Thus {E/(c) | € A} is dense, and so E} () = Ey(a) implies (5.3.1).
For notational convenience, set G := G —G;_1, and similarly for F;. To establish this
claim, we first show that h;(a) € G° for j =1,...,n, which shows hi(a),..., h,(a) is
a parameterized basis for V' and E ( ) € Xu,G.. Then for a fixed oo € A, we construct
15+« - by, which satisfy E(a) = (A, ..., hy)) and b € G’ nt1-a(j) 0T J =1,...,n, showing
E!(a) € X,G!.
Note that if ¢ < n, then G;11 = (en, F;). Thus h;(a) € F°(J C Gy, for1 <j<kand
p < j,and if k+1 < j < p, then hj(a) € Foi—1y € G- Then, s1nce G1 = (e,), we
see that hgi1(a) = €, € G = Gy 141 41)- Finally, since w is Grassmannian of descent

)s
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k,if k+1 < i < p, then w(i) < w(p) = [, which shows hi(a) € G}, = G ;). Thus
F(0) € X2,.G.

We now show that E/(a) € X,G/. Note that 1f a < b < n, then F+1 JNF C
Gha N Gor1. Thus if 1 < j <k, hj(e) = gj(a) € F 1 ;)N Fug) C Gy g Since
z(k) =1, we see that hy(a) € G,y = V. FixaeAandseth’ —h jla)forl <j<k.
Define

h;c+1 = gr(a) —e, ZB] 6] € G{n—f—l—(m—i—l) = Gln—f—l—z(k—l—l)'

Since Ay | + hpi1() = ge(a), we see that B, (a) = (E} (o), Hy ).
Finally, since F,(«) € X, F', if k < j there exists a vector

= Z%’,jgi(a € Faiiug)
1<j
such that (E; 1(a),g;) = Ej(a). For k+1<j <p, set
h;' = 95—1_%,]'—1671 € (n—1---)Cnti—u(j-1)) = {n_|_1_;c(j)a
as as gg(«) is the only vector among {gi(c),...,gn(«)} which is not in the span of
e, .. en1. I p < j, set By = gi — Ypjen € Gpiq_y;)- Then (hy,... k) = El(a),
completing the proof. pr

w
6. FORMULAS FOR SOME Cuv(Ak)

6.1. A chain-theoretic interpretation. We give a chain-theoretic interpretation for
some coefficients cf\ similar to the results of [50]. If either u < («, 8)u or (=< («, 8)( is
a cover, label that edge in the Hasse diagram with the integer 8 = max{«, 8}. Given a
saturated chain in the k-Bruhat order from u to Cu, equivalently, a saturated <-chain from
e to ¢, the word of that chain is its sequence of edge labels. Given a word w = ay.as . .. Gy,
Schensted insertion [47] or [46, §3.3] of w into the empty tableau gives a pair (S,7T) of
Young tableaux, where S is the insertion tableau and T the recording tableau of w.

Let u C X be partitions. A permutation ( is shape-equivalent to a skew Young diagram
A/ if there is a k such that ¢ is shape-equivalent to v(\, k) - v(u, k)~!. It follows that
¢ is shape equivalent to some skew partition A/ if and only if whenever «, 5 € up, or
a, B € down,

a < f = ((a) < ¢P).

Theorem F'. Let yp C A be partitions and suppose ( € Sy is shape equivalent to \/pu.
Then, for every partition v

(i) & =™, and
(#9) For every standard Young tableau T of shape v,
g <-chains from e to ( whose
v = word has recording tableau T
Equivalently, if u <, w and wu™! = (, then

o - Chains in k-Bruhat order from u to
uv(vk) T w whose word has recording tableau T |~
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Remark 6.1.1. Theorem F’ (i) gives a combinatorial proof of Proposition 1.1, when
wu~! is shape equivalent to a skew partition. Theorem F’ (i) is deceptively similar to
Theorem 8 of [50]:

Theorem 8 [50]. Suppose v = (p,1971). Then for every u,w € Sy and k € N, the
constant ¢/, ) counts either set

(i) { Chains in k-Bruhat order from u to w with }
word a; < -+- < ap > App1 >t > Opyg1- |

g Chains in k-Bruhat order from u to w with
() { word a; > > 0g < g1 < 00 < Oppg_1- }

The recording tableaux of words in (i) have 1,2,...,p in the first row and 1,p +
1,...,p+g—11in the first column, and these are the only words with this recording tableau.
Similarly, the recording tableaux of words in (i) have 1,2,...,¢ in the first column and
1,q41,...,p+qg—1 in the first row. However, Theorem F is not a generalization of this
result: The permutation ¢ := (143652) is not shape equivalent to any skew partition as
4,5 € down, but ¢(4) > ((5). Nevertheless, C€4,1) = 1. Interestingly, ¢ does satisfy the
conclusions of Theorem F'.

While the hypothesis of Theorem F’ is not necessary for the conclusion to hold, some
hypotheses are necessary: Let ( = (162)(354), a product of two disjoint 3-cycles. Then
¢(1+6) = (132)(465) = v(@xn, 2) - v(w, 2)~'. Hence, by Theorem H, we have:

o= o= o= 1

(This is also a consequence of Theorem G and the form of the Pieri formula in [28], or
of [50], Theorem 5.) If u = 312645, then (u = 561234 and the labeled Hasse diagram of
[u, Culs is:
561234
N
461235 521634
V w 7 V

361245 421635 512634

The labels of the six chains are:
2456, 2465, 2645, 4526, 4256, 4265

and these have (respective) recording tableaux:

(4] 3 3 2 24
1]2]3] 1]2]4] 1]2]4] 1]3]4] 1/3]-

[1]2[3]4]

This list omits , and the third and fourth tableaux are identical.
Proof of Theorem F'. Suppose { = v(\ k) - v(p, k)~L. Then
[6, C]j = [U(lu’a k)a /U()"k)]k = [,U,, )‘]C

The first isomorphism preserves the edge labels, and in the second these labels correspond
to diagonals in a Young diagram: If v G v/ is a cover in Young’s lattice, there is a unique



34 NANTEL BERGERON AND FRANK SOTTILE

row ¢ such that v; # v/. In that case, v; + 1 = v/} and the label of the corresponding edge
in the k-Bruhat order is k£ — i + v/, the diagonal on which the new box of /' lies.

A chain in Young’s lattice from u to A is a standard skew tableau R of shape A\/pu.
Consider its word, a; - - - a,,, as a two-rowed array:

( 1 2 -« m )
wo o= .
ar Gy -
Then the entry ¢ of R is in the a;th diagonal.

Let S and T be, respectively, the insertion and recording tableaux of w. Consider the
two-rowed array consisting of the columns (“Zl) arranged in lexicographic order. Then the
insertion and recording tableaux of this new array are T and S, respectively [26, 48].

The second row of this new array, the word inserted to obtain 7, is the ‘diagonal’ word
of R; the entries of R ordered lexicographically by diagonal. By Lemma 6.1.2, the diagonal
word is Knuth-equivalent to the original word. Thus 7' is the unique tableau of partition
shape Knuth-equivalent to K. This gives a combinatorial bijection

=<-chains from e to ¢ whose Skew tableaux R of shape
word has recording tableau T’ A/p Knuth-equivalent to T

proving the theorem in this case, as it is well-known that

V" Skew tableaux .R of shape .
v A/p Knuth-equivalent to 7T

Now suppose ¢ is shape-equivalent to v(), k) - v(y, k)~'. By Theorem E (i), ¢$ = cp/*,
proving (7). Assume \, i, and k have been chosen so that ( = ¢p (v(A, k) - v(p, ) ) for
some P. By Theorem 3.2.3 (#ii), ¢p induces an isomorphism

P - [6, U()"k)'v(uak)il]j — [6, C]ﬁ

If n< (o, B)nis acoverin [e, v(A, k)-v(u, k) !]<, then ¢pn—< ¢p((c, B)n) is a cover in [e, {]<
with label pg, where P = p; < py < ---. Thus, if v is a chain in [e, v(\, k) - v(p, k) 1)<
whose word ay, . .., a,, has recording tableau T', then ¢p(7) is a chain in [e, {]< with word
Pays - - - s Pay,» Which also has recording tableau T'. pr

Order the diagonals of a skew Young tableau R beginning with the diagonal incident
to the end of the first column of R. The diagonal word of R is the entries of R listed in
lexicographic order by diagonal, with magnitude breaking ties. The tableau on the left
below has diagonal word 75837914826 26 58. Schensted insertion of the initial segment
758379148, (those diagonals incident upon the first column), gives the tableau on the
right, whose row word is this initial segment.

71819 7

51718 518
3]4]6]6 31719
1[2]2[5]8] 1[4]8

This observation is the key to the proof of the following lemma.

Lemma 6.1.2. The diagonal word of a skew tableau is Knuth-equivalent to its column
word.

Proof. Let d(R) be the diagonal word of a skew tableau R. We show d(R) is Knuth
equivalent to the word c.d(R'), where c is the first column of R and R’ is R with ¢ removed.
An induction completes the proof.
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Suppose the first column of R has length b and R has r diagonals. For 1 < j < b let
w; := aj ...al, be the subword of d(R) consisting of the jth diagonal. Then aj < --- < af,
51 < 59 < -+- < 5, and if k < s, then af; > aﬁl
entries in the kth column of R.

For 1 <1 < b, let Tj be the insertion tableau of the word w;.ws....w;. Then the kth
column of 7} is a, > --- > al, where s;_; < k < s;. Hence c.d(R') = c.row(T").wp41 - - . wy,
where row(T") is the row word of T}, with its first column, ¢, removed. Since the column
word of a tableau is Knuth-equivalent to its row word, we have the Knuth-equivalences:

c.row(T") =k c.col(T') = col(Ty) =k row(T}), which completes the proof. pr

> ... > a?, as these are consecutive

6.2. Skew permutations. Define the set of skew permutations to be the smallest set of
permutations containing all skew partitions v(\, k) - v(u, k) =" which is closed under:
1. Shape equivalence. If n is shape equivalent to a skew permutation (, then 7 is
skew.
2. Cyclic shift. If ¢ € S, is skew, then so is (2™,
3. Products of disjoint permutations. If {,n are disjoint and skew, then (7 is skew.
A shape of a skew permutation ( is a (non-unique!) skew partition 6 which is defined
inductively. If ¢ is shape equivalent to A/u, then ¢ has shape A\/u. If ( € S, is a
skew permutation with shape 0, then ((!2-~™ has shape 6. If ¢ and 7 are disjoint skew
permutations with respective shapes p and o, then (n has skew shape p[]o.
Theorem 6.2.1. Let ( be a skew permutation with shape 6, then
(i) For all partitions v,
& = .
(i1) The number of chains in the interval [e, (]< is equal to the number of standard
Young tableaux of shape 6.

Proof.  The number of standard skew tableaux of shape 6 is >, f2c}, hence (i) is
consequence of (i) and Proposition 1.1. To show (i), we need only consider the last part
(3) of the recursive definition of skew permutations, by Theorems E (7)) and H. Suppose ¢
and 7 are disjoint skew permutations with respective shapes p and o, and for all partitions
v, ¢, =cf and ¢ = ¢2. Then by Theorem G (ii),

o — v ¢ .n
¢ = Cxp Cx Cu
A

= 2 e
Ap
= c,’jua. r
Example 6.2.2. Consider the graph of (1978)(26354):

Thus the two cycles ¢ = (1978) and n = (26354) are disjoint.
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Note that ¢ is shape equivalent to (1423) and (1423)(1%*%) = (1342). Similarly, 7 is
shape equivalent to (15243) and (15243)(12349) = (13542). Both of these cycles, (1423)
and (15243), are skew partitions: Let A =a, p =, v =Hh. Then

v(\,2) = 13245, w(p,2) = 34125, o(v,2) = 35124
and
U()" 2) <2 (1342),0()"2) = U(,U,, 2)a
v(A,2) <o (13542)-v(A,2) = o(v,2).

Hence, for every partition &, ¢ = ¢/ and ¢ = ¢2/*. Thus it follows that 7 = ¢2,

where p is any of the four skew partitions:

T e B h

6.3. Further remarks. For small symmetric groups, it is instructive to examine all per-
mutations and determine to which class they belong. In Table 2, we enumerate each class
in 8y, S5, and Sg. If ( is one of the 42 permutations in Sg that is not a skew permutation,

skew shape equivalent to skew
partitions a skew partition permutation
Sy 14 21 24
S5 42 79 120
S 132 311 678
TABLE 2.

and ( is not one of
(125634), (145236), (143652), (163254), (153)(246), or (135)(264), (6.3.1)

then there is a skew partition # such that ¢ = ¢! for all partitions v. It would be
interesting to understand why this occurs for all but these 6 permutations. Can one
characterize those permutations ¢ such that there exists a skew partition 6 with ¢§ = ¢
for all partitions v?

For each of these (6.3.1) six ‘exceptional’ permutation (, there is a skew partition 6 for
which ¢ = ¢? for all v C ab, where a = #up, and b = #down,. For these we have, 6 ¢ a’.
For example, let ¢ = (153)(246). If u = 214365, then u <3 Cu and there are 42 chains in
[u, Culs. Also

cgm = 1, cga: = 2, and cgﬁ = 1,
which verifies Proposition 1.1 as f® = 5, f® = 16, and f® = 5. In this case, § = By
Since up, = {1, 2,4} and down; = {6, 5, 3}, we see that a = b = 3, however § ¢ H = a’.
A bijective interpretation of the Cuv(rg Should also give a bijective proof of Proposi-
tion 1.1. We show that a function 7 from chains to standard tableaux satisfying some
extra conditions will provide a bijective interpretation of the cﬁ’v()\’k).
Let ch[u, w]; denote the set of (saturated) chains in the interval [u, w]. For a partition

u and integer m, let uxm be the set of partitions A with A — y a horizontal strip of length
m. These arise in the classical Pieri’s formula:

Su(l‘l,...,l'k)'hm(.Q?l,...,.Tk) = Z S,\(l‘l,...,.Tk).

AEuxm
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If T is a standard tableau of shape 1 and m any integer, let T'xm be the set of tableaux U
which contain 7" as an initial segment such that U — 7' is a horizontal strip whose entries
increase from left to right.

Theorem 6.3.1. Suppose that for every u <, w, there is a map

Standard Young tableau T whose }

ehlu, wly — { shape is a partition of £(w) — £(u)

v — 7(7)
such that

(1) dyyany = #{v € chlu,wlk [7(y) = T} depends only upon the shape A of the
standard tableau T'.

(2) If v = b.€ is the concatenation of two chains § and €, then 7(9) is a subtableau of
7(y). (This means that 7(vy) is a recording tableau.)

(3) Suppose v = 0. with § € chlu, z|g, and hence € € chjx,w],. Then 7(d.€) € T(§)*m
only if © L, w, and €(0) := € € chlz,w]y is unique for this to occur.

Then, for every standard tableau T of shape A and u <, w,

Czjv()\,k) = dgv()\,k) .

Such a map 7 is a generalization of Schensted insertion. In that respect, the existence
of such a map would generalize Theorem F’.

Proof. We induct on A. Assume the theorem holds for all u,w, and partitions m with
fewer rows than A, or if A and 7 have the same number of rows, then the last row of A
exceeds the last row of 7.

The form of the Pieri formulas expressed in [50, 55] (also §4.2) and condition (3) prove
the theorem when A consists of a single row. Assume that A has more than one row and
set 1 to be A with its last row removed. Let m be the length of the last row of A and T
be any tableau of shape p. Recall that U + shape(U) gives a one-to-one correspondence
between 1"« m and p* m.

By the definition of ¢! we have

o(p,k)?

Sy - Su(@r, .- mp) = Z Cy v(p,k) Sy

ury

By the Pieri formula for Schubert polynomials,
Gu-Su(xr,. .., xk)  hm(z1,...,28) = Z Z c (k) S

By the classical Pieri’s formula, this also equals

Sy - Z Sa(T1,...,28) = Z Z Coy (o) O+

TEUXM w TEUXM
Hence
w _ Y
E : Cy v(mk) E : Cu v(p,k) "
TEpEM u<py
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We exhibit a bijection between the two sets

Mrym = H {6 € chlu,ylx | 7(6) =T}

and [, ¢ um Lx, Where
L, := {v € chlu,w]p | 7(7) € T * m and 7(y) has shape 7}.
This will complete the proof. Indeed, by the induction hypothesis

#Mrgm = Z sz/w(u,k)

and for m € p* m with m # A,

Thus the bijection shows

cgv()\,k) = Z CZv(u,k)_ Z cgv(w,k) = #L/\a

u<py rEpsm, TN

Tk,m
y———w

which is #7771 (U), for any U of shape A.
To construct the desired bijection, consider first the map

MT,k,m — H L7r

TE WX

defined by § € chlu, y]x — d.£(6). By property 3, 7(0.€(9)) € T x m, so this injective map
has the stated range. To see it is surjective, let 7 € p* m and v € L,. Let 6 be the first
|p| steps in the chain v, so that v = d.¢ and suppose 0 € chlu,y|g. Then 7(6) = T so

7(6.€) € T7(0) * m. By 3, this implies y LN w, and hence 6 € M7y m.
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