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Abstract

We define and characterize switching, an operation that takes two tableaux
sharing a common border and “moves them through each other” giving another
such pair. Several authors, including James and Kerber, Remmel, Haiman, and
Shimozono, have defined switching operations; however, each of their operations
is somewhat different from the rest and each imposes a particular order on the
switches that can occur. Our goal is to study switching in a general context,
thereby showing that the previously defined operations are actually special in-
stances of a single algorithm. The key observation is that switches can be
performed in virtually any order without affecting the final outcome. Many
known proofs concerning the jeu de taquin, Schur functions, tableaux, charac-
ters of representations, branching rules, and the Littlewood-Richardson rule use
essentially the same mechanism. Switching provides a common framework for
interpreting these proofs. We relate Schiitzenberger’s evacuation procedure to
switching and in the process obtain further results concerning evacuation. We
define reversal, an operation which extends evacuation to tableaux of arbitrary
skew shape, and apply reversal and related mappings to give combinatorial
proofs of various symmetries of Littlewood-Richardson coefficients.

Introduction

Schiitzenberger’s jeu de taquin [Scl] is a combinatorial algorithm that transforms a
(column strict) tableau of skew shape into another tableau with the same content but
different shape. This algorithm has become one of the fundamental tools for studying
tableaux and their applications.

Bender and Knuth [BK] present a combinatorial procedure for showing Schur
functions are symmetric. To prove the Littlewood-Richardson rule, James and Kerber
[JK] modify the Bender-Knuth procedure, constructing an algorithm for moving two
tableaux past one another. White [W] applies the methods of [JK] to generalize the
Littlewood-Richardson rule.

In [H1] Haiman presents another approach to the problem of moving tableaux
past one another, and Shimozono expands upon these ideas in [Sh]. Essentially, each
author views two tableaux sharing a border as halves of a single larger tableau. The
problem of moving the halves past one another then becomes one of rearranging the
order of the alphabet of the union. The result is an algorithm that allows great
freedom in the order in which steps are performed.

Addressing questions concerning superSchur functions, Remmel [R] also considers
the problem of moving two tableaux past one another. However in Remmel’s setting
one tableau is column strict while the other is row strict.

The primary purpose of our paper is to define and study an algorithm called
the switching procedure and the mapping it calculates. This mapping, which we call



switching, operates on pairs of tableaux. If S and T are tableaux where T' extends
S (i.e., the outer border of S is the inner border of T'), switching “moves S and T
through each other” transforming S into S and 7" into ®T". The map has the following
properties which characterize it uniquely:

I The objects Sy and °T are tableaux such that Sy extends 57, and the shape of
ST U Sy is the same as the shape of S UT. Moreover, the contents of Sy and S
are the same, as are the contents of °T and 7.

II If SUT has multiple components, we can switch S and T by switching the
components individually.

ITT When S or T contains more than one integer, we can switch S and T recursively,
i.e., by decomposing each into subtableaux (in a way made precise in §2) and
switching the pieces.

In §2 we argue there can be at most one such map and exhibit it by proving
that the mapping the switching procedure calculates has these properties. We show,
moreover, that the steps of the switching procedure can be performed in nearly any
order without affecting the final outcome. This implies the algorithms of [H1], [Sh],
[JK], and [R] are particular cases of the switching procedure.

In §3 we apply the results from §2 to deduce properties of switching. These prop-
erties quickly lead to a single approach by which a large number of combinatorial
identities can be proven. To illustrate the technique we present identities involving
Schur functions, superSchur functions, the Littlewood-Richardson coefficients, multi-
symmetric functions, and branching rules.

In [Scl], Schiitzenberger introduces a procedure called evacuation that transforms
a tableau of normal (partition) shape into another tableau of the same shape. Evacu-
ation is related to the jeu de taquin, and like the jeu de taquin it provides a vehicle for
studying tableaux. In §5 we show how the switching procedure of §2 suggests an al-
gorithm that generalizes Schiitzenberger’s. We prove that the evacuation of a tableau
of normal shape is the normal form of the tableau’s rotation. This leads to two prop-
erties that characterize the evacuation of a tableau of normal shape and motivates
our definition of a mapping called reversal that operates upon tableaux of arbitrary
skew shape. Schiitzenberger [Sc2] extends evacuation to tableaux of arbitrary skew
shape. In general reversal and evacuation produce different results, but they agree
when restricted to tableaux of normal shape. The techniques used to calculate rever-
sal can be applied to other mappings such as the White-Hanlon-Sundaram map ([W],
[HS]). Section 5 concludes with a discussion of these mappings and their relationship
to the symmetries of the Littlewood-Richardson coefficients described by Berenstein
and Zelevinsky [BZ)].



1. Preliminaries

In this section we establish conventions, give definitions, and review results that we
use in subsequent sections. More detailed treatments of this material can be found in
[Sal] and [F].

We work with Z x Z, which we think of as consisting of boxes, and number the
rows and columns of Z X Z “matrix style”, so row numbers increase top to bottom and
column numbers increase left to right. When b and b’ are boxes in Z X Z, b is said to
be north of ' provided the row containing b is above or equal to the row containing b'.
We define the other compass directions analogously and allow ourselves the freedom
to combine directions; for example, b is northwest of b’ if b is both north and west of
b'. If b and b’ are distinct but adjacent boxes, they are neighbors. The neighbor to
the north of a box is the one directly above it. We often consider objects obtained by
filling some of the boxes in Z x Z with integers. If in such an object the integer u fills
b and b is a neighbor of &', then u is a neighbor of b'.

A partition (or normal shape) X is a sequence of integers

M >X > >0, >0).

We ignore the distinction between two partitions that differ only in the number of
trailing zeros. We write |[A| = Ay + -+ + A, for the number which A partitions. The
partition A can be regarded as the set {(i,7) € Zx Z |1 < j < \;}. Thinking of Z xZ
as a collection of boxes, we can picture A as containing n left-justified rows of boxes
with ); boxes in the *" row for each i. For our purposes the difference between
a partition and its picture is unimportant. Throughout this paper, x, A, u, and v
represent partitions.

When \; > p; for every i, we write A O p. For such A and p, the skew shape (or
simply shape) A/ is the collection of boxes inside of A but not in g, and |A\/p| =
|A| — |u| counts the number of boxes in A\/u. We consistently use v and ¢ to denote
arbitrary skew shapes. Two shapes are equal if one is a translate of the other. This
means a choice of partitions A D u such that \/u = « is a choice of coordinates for
7, establishing its position in the plane. The maximal connected subsets of v are its
components; they are themselves skew shapes. We let 7' denote the image of v under
the transpose (i,7) — (j,7), and 7* the image under the rotation (i,j) — (—i, —j)
through 180°. The rotation A\* of a normal shape A is an anti-normal shape.

Whenever A D p D v, then \/p extends p/v. If v extends the single box b, then b
is an inside corner of v. When b extends v, then b is an outside corner. The operation
* transforms inside corners into outside corners.

A tableau with shape 7 is a filling of all the boxes in y with integers. These integers
may be positive, zero, or negative and need not be distinct. A tableau U is column
strict provided it satisfies the following:



1. Whenever u and v’ are integers in U and u is northwest of «/, then u < u'.
2. Within each column of U the integers must be distinct.

If the transpose U' of U is column strict, then U is row strict. A column or row strict
tableau is positive if all of its integers are positive. Sometimes we write sh U for the
shape of U. When U can be expressed as a disjoint union U = VUV, U---UV,
of tableaux, each V; is a subtableau of U. The subtableau V is a component of U
provided sh V' is a component of shU. Let U* be the tableau obtained from U by
rotating the shape 180° and replacing each integer u by —u. Note U** = U. When §
and T are tableaux and the shape of T extends the shape of S, we say T extends S.
We write S UT for the object formed by gluing S and 7" together. Except for a brief
discussion in §2 of Remmel’s work [R] and an example in §3 involving superSchur
functions, every tableau in this paper is column strict. Accordingly we use “tableau”
to mean “column strict tableau”, “positive tableau” to mean “positive column strict
tableau”, and so forth.

The content of a tableau U is the sequence (¢,, ¢p11, - - - , ¢4), Where ¢; is the number
of occurrences of 7 in U. The word of U is the sequence of integers obtained by reading
the rows of U west to east, starting with the southernmost row and working toward
the north.

A tableau is standard if it has no repeated entries. Note the transpose of a standard
tableau is again standard. It is sometimes necessary to start with a tableau U and
derive a related standard tableau U called the standard renumbering of U. If the

content of U is (cp, Cpt1,---,¢4) and n is some integer, we build U by replacing
the ¢’s in U east to west by n,n —1,... ,n — ¢, + 1; the (¢ — 1)’s east to west by
n—cpn—cg—1,...,n—cy— cq—1 + 1; and so on. Most of the time the particular

value we choose for n is of no consequence. Remembering the content of U allows us
to recover U from U in the obvious fashion. The following example shows a tableau
U and its standard renumbering U for n = 15:

1[1]3 3[4]8
2[2]4]5 N 5/6(913
U= |1]5]|5]6]6 U= |[2]11]12[14]15
3 7
15 [1]10

Let U be a tableau and b be an inner corner for U. A contracting slide of U
into the boz b is performed by moving the empty box at b through U, successively
interchanging it with the neighboring integers to the south and east according to the
following rules:

1. If the box has only one neighbor, interchange with that neighbor.
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2. If it has two unequal neighbors, interchange with the smaller one.
3. If it has two equal neighbors, interchange with the one to the south.

The box moves in this fashion until it has no more neighbors to the south or east, i.e.,
until it has become an outer corner. We write j°(U) for the tableau produced (note
the rules insure j°(U) is indeed column strict). When b is an outer corner there is an
obvious analogous procedure called an expanding slide. We write j,(U) for its result.

More generally, when S and T are tableaux and 7" extends S, we can use S as a
set of instructions telling where contracting slides should start in T the first slide
begins at the box containing the largest integer in S, the second at the box containing
the next largest, and so on. We write 55(7) for the resulting tableau. Similarly, T
tells where expanding slides can be applied to S; in this case we write jr(S) for the
result.

Suppose a sequence of contracting slides reduces the tableau U to a tableau U™
of normal shape. Thomas [T] shows U" is independent of the particular sequence of
slides used, and so we refer to U™ as the normal form of U. Similarly, there is exactly
one tableau of anti-normal shape that can be produced by expanding U with slides,
the so-called anti-normal form U? of U. Two tableaux are Knuth equivalent if one can
be transformed into the other with a sequence of expanding and contracting slides.

When U and V' are Knuth equivalent we write U é V.

A word w = wy, ... ,w, of positive integers is a reverse lattice permutation if each
final segment wy, ... ,w, of w contains at least as many 4’s as (i + 1)’s for each 7 > 0.
A Littlewood-Richardson or LR tableau is a tableau whose word is a reverse lattice
permutation. Given any partition A, define Y'(\) to be the tableau obtained by filling
the first row of A with 1’s, the second with 2’s, and so on. It follows that the LR
tableaux of partition shape are precisely the Y (\). The number of LR tableaux of
content p and shape A/v is the Littlewood-Richardson coefficient c,))u. Often it is

convenient to write this number as c,))/ ”. Note that c,))/ "=0ifADv.

The definition of LR tableaux presented above is conventional, but there is a
second characterization which from our viewpoint is more useful: a tableau is LR if
and only if it is Knuth equivalent to some Y (). (One way to prove this is to show the
tableau resulting from a slide on an LR tableau is again LR. This is the approach used
in [Sal], Lemma 4.9.5.) From this perspective, ¢ counts the number of tableaux of
shape A/v that are Knuth equivalent to Y (u).

There are many ways to define the Schur functions, but the following is the most
suitable for our purposes. If x stands for the infinitely many variables z1, xo, ..., the
Schur function sy;, = s),(x) is the symmetric function given by

_ § : U
8)\/,,— X .
U
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Here the sum is over all positive tableaux U of shape \/v. The monomial xV is the
product z{' - 25 - - - 23", where (c1, ¢, ... ,¢,) is the content of U.

2. The Switching Procedure

In this section we describe an algorithm which we call the switching procedure and
characterize switching, the mapping it calculates. We prove that the algorithms of
Haiman [H1], Shimozono [Sh|, James and Kerber [JK], and with a slight adjustment
that of Remmel [R] are special cases of the switching procedure. We conclude by
showing the switching procedure behaves as claimed.

Before we can present the algorithm we must make a few definitions. Our aim is
to describe the intermediate objects produced as the algorithm moves tableaux S and
T through each other.

Let v be a skew shape. A perforated tableau U of shape v is a filling of some of
the boxes in v with integers. These integers may be positive, zero, or negative, and
need not be distinct, but they must satisfy the following restrictions:

1. Whenever u and v’ are integers in U and u is northwest of «/, then u < v’

2. Within each column of U the integers must be distinct.

We write shU for the shape of U, and extend the definitions of content and
standard renumbering to perforated tableaux in the natural ways. Suppose S and 7T’
are perforated tableaux of shape v and together they completely fill v, i.e., every box
of v is filled with an integer from S or 7" and no box is filled twice. Then SUT is a
perforated pair of shape .

Displayed below are perforated tableaux S and T of shape 7.

Since together these tableaux fill all of v and no box is numbered twice, they constitute
a perforated pair S UT of shape 7.

SUT =




We are interested in moving the integers in a perforated tableau in such a way that
the result is again perforated. Let U be perforated of shape 7y, and suppose the integer
uw in U is the neighbor to the north or west of an empty box of v. If interchanging
the positions of u and the empty box produces a perforated tableau, we say the
interchange expands U. Similarly, when v is immediately south or east of the empty
box and interchanging produces a perforated tableau, it contracts U. A perforated
tableau that cannot be expanded (contracted) is fully expanded (fully contracted). Let
S UT be a perforated pair and suppose s and t are adjacent integers from S and 7T’
respectively. Interchanging s and ¢ is a switch provided it simultaneously expands S
and contracts 7. We write s<>t to represent the switch. If no s and ¢t in SUT can
be switched, S UT is fully switched.

Our algorithm is the following:
Algorithm 2.1 (The switching procedure).
1. Start with tableaux S and T such that T extends S.

2. Switch integers from S with integers from T wuntil it is no longer possible to do
s0.

Of course, all we can say at this point is that the end result is a perforated pair
whose shape is that of S UT. In fact, considerably more is true:

Theorem 2.2. Assume the switching procedure transforms S into St and T into °T.
Then

1. Sy and °T are tableauz, and Sy extends 5T .
2. ST U Sy has the same shape as SUT.
3. S and Sy have the same content, as do T and °T.

4. Sr and °T are independent of the particular sequence of switches used to produce
them.

Parts 2 and 3 are obviously true. We defer the proofs of 1 and 4 until the end of
the section and proceed to give an example. Let S and T be the following tableaux:

1]

[y




If we apply the algorithm to S UT, one possible sequence of switches is the following:

1]

Now we define the switching map, prove it has the properties we described in the
introduction, and show these properties characterize the map uniquely.

Suppose S and T are tableaux and T extends S. Throughout the rest of this
paper we write Sy and °T for the tableaux that S and 7T respectively become when
the switching procedure is applied to SUT. Define the switching map (or more briefly,
switching) to be the mapping S UT — ST U Sy the procedure calculates.

To characterize switching we need a definition. When U is a tableau, let us say
subtableaux U; and U; decompose U provided U = U; U Uy and U, extends U;. We
require, moreover, that whenever u; and us are integers in U; and Us, respectively,
then either u; < ug, or u; = ug and uq is west of us.

Theorem 2.3. Switching SUT — 5T U Sy is the unique map with the following
properties:



I Sy and 5T are tableauz, St extends 5T, and ST U St has the same shape as
SUT. Moreover, St and S share the same content, as do T and °T.

II If SUT has multiple components, we can calculate Sy and °T by switching the
components of SUT independently.

III Suppose Ty and Ty decompose T. Then we can switch S with T in stages as
follows. Writing S' for St,, we have

Spr=(S"y, and ST =T,U%T,.

Similarly if subtableaur decompose S, we can switch T with S in stages.

Proof. Switching has Property I by parts 1, 2, and 3 of Theorem 2.2, and it
is clear from the definition of the procedure that switching has Property II. Note
that switching in stages is simply a certain choice of order in the procedure; the map
therefore has Property III by 4 of Theorem 2.2.

To see switching is the unique map with these properties, suppose SUT — TUS
transforms S into S, T into T, and has Properties I, II, and III. When S and T are
the single-box tableaux [S] and [E] respectively, then T U S = ST U Sy since Properties
I and II force S and T to transform in the way shown by the picture below:

(t] 8]

I
[ a—
(2]t +— [ w]
SR

In words, if S and T are not adjacent, then S = Sp = S and T = 5T = T; if they
are, then Sy = S is the tableau whose position is that of T, but whose content is that
of S, and similarly for T = T. But then inducting on the number of boxes in SUT
and using Property III gives T U S = ST U Sy for every SUT. pr

Next we show the algorithms of Haiman [H1] and Shimozono [Sh] are special cases
of the switching procedure. Let S and 7" be tableaux with 7" extending S. To avoid
hiding the essentials behind unnecessary details, assume S and 7" are standard, say
with integers 1g,2g,... ,ps and 17, 27, ... , qr respectively. Note that if we assign the
ordering O : 1g < --- < pg < 1y < --- < g7, we can think of SUT as a standard
tableau. In an ordering when is < jr and ig < i < j5 < jr forces ig = iy and
Jr = j%, let us say jr coversig. To move S and T through one another, Haiman and
Shimozono use the following procedure, which we call shuffling:
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Algorithm 2.4 (Shuffling).
1. Start with S, T, and O as above.

2. Suppose after a (possibly empty) sequence of steps we have obtained the perfo-
rated pair S"UT" and an ordering O" with respect to which S"UT" is a standard
tableau. Choose some ts and jr such that jr covers is and interchange their
order in O so that j;r < ig. Simultaneously, adjust S"UT" as follows: if is and
jr are adjacent, interchange their positions; otherwise, do nothing.

3. Repeat 2 until there are no is and jr with jr covering ig.

An easy induction on the number of steps shows that every time step 2 is per-
formed, the result is a tableau which is standard with respect to the updated order.
Moreover, regardless of how the order is updated, we always have 15 < --- < pg and
1y < -+« < gp. It follows that the S’ UT" produced at each step is a perforated pair.
When shuffling ends, 17 < -+ < gpr < 1g < --- < pg, and thus

Proposition 2.5. Shuffling is a particular case of the switching procedure of Algo-
rithm 2.1.

The reverse is not true: some sequences of switches allowed by the switching
procedure cannot be obtained with shuffling. To see this, consider the following
example:

This is an acceptable sequence of switches for Algorithm 2.1. However, the first switch
in shuffling must interchange the shaded 4 with the unshaded 1, and therefore the
above cannot occur.

In [H2] Haiman defines two algorithms for moving S and 7" through one another
when S and 7T are standard tableaux and 7" extends S. Essentially, these algo-
rithms are extreme cases of shuffling. Haiman’s first algorithm amounts to consis-
tently switching the greatest possible integer from S and his second to switching
the least possible integer in T'. Therefore, Proposition 2.5 implies the algorithms of
Haiman [H2| are also particular cases of the switching procedure.

10



For the algorithm of James and Kerber [JK], assume S and T are tableaux, T
extends S, every integer in S equals s, and every integer in T equals ¢. Clearly, each
column of S UT has one or two boxes, each two-box column has an s above a t,
and each one-box column contains an s or a t. Moreover, if we discard the two-box
columns, each row of what remains must consist of a (possibly empty) sequence of s’s
followed by a (possibly empty) sequence of t’s. Their procedure for moving S through
T is described by the picture below:

s|l.-..|s|-
Sloveonn. Ssl |S|t| ....... |tt -t
t ....... t\ ~~ < ~~ N -
| —
——
Ve " ~ -~ o ~ A \tt .
tl------ ttl ....... |t|s| |SS S
dsl-oo--- S
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To state this explicitly,
1. In each two-box column, interchange the positions of s and t.

2. In each row, reorder the s’s and ¢’s not moved in step 1. If the row contains &
such s’s followed by /£ such t’s, replace them by a sequence of ¢ t’s followed by
k s’s.

It is easy to calculate the effect the switching procedure has on S and T (for
example, by consistently switching the easternmost possible s); the result is the same
as that produced by the algorithm of James and Kerber.

More generally, suppose S and 7" are tableaux with 7" extending S. To move S
and 7" through one another using the algorithm of James and Kerber, we break S and
T into subtableaux S,, Sp11,...,S; and 1), Tp4q, ... , T, where, for each ¢ and j, S;
contains the 7’s of S, and T} contains the j’s of . We then iterate the above to move
T, through all of S, then T, through what S has become, and so on. But this is
nothing but a particular choice of switches in the switching procedure. Consequently,
by 4 of Theorem 2.2 we have

Proposition 2.6. The algorithm of James and Kerber is a special case of the switch-
ing procedure of Algorithm 2.1.

Let S and 7" be tableaux, one row strict and the other column strict, such that 7’
extends S. Remmel [R] describes a method for moving S and 7' through one another.
The following simple adjustment to the switching procedure yields an algorithm that
generalizes Remmel’s.

A perforated t-tableau of skew shape 7 is the transpose of a perforated tableau of
shape ~'. Assume one of S or T is a perforated tableau and the other is a perforated
t-tableau, both of shape «. Suppose together they completely fill v, i.e., every box
of v is filled with an integer from S or 7', and no box is filled twice. Then SUT
is a perforated t-pair of shape y. The notions of expanding and contracting extend
to perforated t-tableaux in the natural way. Let S UT be a perforated t-pair, and
suppose s and t are adjacent integers from S and T respectively. Interchanging s and
t is a t-switch if it simultaneously expands S and contracts 7. The modified version
of the switching procedure is the following:

1. Start with tableaux S and 7' such that one is column strict, the other is row
strict, and T extends S.

2. Perform t-switches of integers from S with integers from 7" until it is no longer
possible to do so.

12



First assume S is column strict and 7' is row strict. Theorem 2.2, translated in
the obvious way, remains true in this setting. Thus, if the new procedure transforms
S into Sy and T into T, then Sy and °T are, respectively, column strict and row
strict tableaux, Sy extends °T, and both are independent of the sequence of t-switches
used. Remmel’s algorithm is the extreme case of the modified procedure in which the
t-switch always involves the largest possible integer from S. (When there is more than
possibility we choose the easternmost one.) The case where S is row strict and 7 is
column strict is analogous.

We conclude this section by proving Theorem 2.2. Our first step in this direction
is

Lemma 2.7. If a perforated tableau U cannot be expanded (respectively, contracted),
then the nonempty boxes in U form a tableau of skew shape.

Proof. First note that whenever some integer u in U is the north or west neighbor
of an empty box, U can be expanded. To see this, start by assuming w is the north
neighbor of an empty box. (If there is more than one such u, take the westernmost
one.) If u cannot be slid south into the box, there must be some integer v’ > u of
U to the west of the box, and by choosing the easternmost such u’' we can assume
u' is the west neighbor of some empty box. The choice of u precludes the possibility
that v is the north neighbor of an empty box. This and the fact that U is perforated
imply that «’ can be slid east, and thus U can be expanded. The case where u is the
west neighbor of the empty box is similar.

Next let U be a fully expanded perforated tableau, and suppose u and u' are
integers in U such that u is to the northwest of v'. If the rectangle whose northwest and
southeast corners are u and u' respectively contains any empty boxes, the paragraph
above shows U can be expanded. Therefore, the nonempty boxes in U occupy a skew
shape. This implies the nonempty boxes in U form a tableau of skew shape.

The arguments when U is fully contracted are completely analogous. pr

This lemma suggests that if we start with a perforated pair S’UT" and switch until
it is no longer possible to do so, the result will be a pair of tableaux. Unfortunately,
as the following simple example illustrates, this need not be the case.

As we shall see below, this problem does not arise in practice. Rather than starting
with an arbitrary S’ UT’, we begin with tableaux S and 7" where T extends S, and
then perform a (possibly empty) sequence of switches to produce S’ UT'. We prove

13



that whenever S’ is not fully expanded (or equivalently, 7" is not fully contracted),
there is a switch s<»t for S’ UT’. Our method is to show that S’ UT' must have a
form that precludes configurations like the one above.

Let S"UT' be a perforated pair and suppose there are two occurrences of ¢ in 77,
one to the northwest of the other. The two t’s define a rectangle which we calla t---¢
rectangle provided all other boxes in the rectangle are filled with integers from S’. If
T’ contains letters and S’ integers, then the following is a ¢ - - - t rectangle:

1i2(2]2|3]|4]|6
1(3|3(4|5(5|7
4(4|5(5|7(8]|8
5(6[(6[/6]9]9 |t

A pair (s,s') of integers from S’ is a step provided s < §' and s is immedi-
ately to the southwest of s’. Assume the rows in a t---¢ rectangle are numbered
1,2,...,p north to south, and columns 1,2,...,q west to east. Then a sequence
(51,51), (52,85), ..., (Sp—1, 5,_;) of steps is a staircase for the rectangle provided each
s; is in row 4 and column j;, where 2 < j; < jp <--- < j,_1. Note any ¢- - -t rectan-
gle with only a single row vacuously contains a staircase. The following displays the
staircase (1,2), (5,5), (6,7) within our previous example:

O |00 | Ot
[l Ko A B R K=;)

= AL

Interchanging the roles of S’ and 7", we define s---s rectangles and steps and
staircases for s- - - s rectangles analogously. A perforated pair S’ U T" is said to have
staircases if every s---s rectangle and every t-- -t rectangle contains a staircase.

Lemma 2.8. Suppose S' UT' is a perforated pair having staircases and S" U T" is
obtained from S' UT' by performing a switch s<>t. Then S”" UT" has staircases.

Proof. To see S” UT" has staircases we first examine its ¢ - - - ¢ rectangles. Each
such rectangle either is inherited unchanged from S’ U 7", is newly created by the
switch, or is produced by modifying some previously existing rectangle. Inherited
rectangles obviously contain staircases. A new rectangle either contains one row,
or contains every row but the last of some rectangle in S’ U T”; in either case the
new rectangle contains a staircase. If s<»¢ alters an existing rectangle, then ¢ is the
rectangle’s northwest or southeast corner. There are four possibilities:

14



1. The integer ¢ is a southeast corner and s<»¢ moves ¢ west, deleting a column;
2. The integer ¢ is a southeast corner and s<+t moves ¢ north, deleting a row;
3. The integer ¢ is a northwest corner and s<>¢ moves ¢t west, adding a column;
4. The integer ¢ is a northwest corner and s«»¢ moves ¢ north, adding a row.

If s<»t deletes a column, s cannot be the southwest part of a step, so no steps are
deleted and the resulting rectangle contains the same staircase as its precursor. If a
row is deleted, the resulting rectangle is missing the last step from its precursor, but
is also missing the bottom row; hence, it contains a staircase. If a column is added,
the resulting rectangle contains the staircase its precursor had. Finally, if a row is
added, s and ¢ switch as in the following picture, creating a new step:

s|s'] | st [t]s]
t] s

It follows the new t-- -t rectangle contains a staircase.
Similar arguments show the s --s rectangles in S” UT" have staircases. pr

Lemma 2.9. Let S"UT' be a perforated pair which has staircases. Either there is a
switch s<>t for S"UT', or S" and T' are tableaur with S’ extending T".

Proof. Suppose S’ and 7" are not tableaux with S’ extending 7”. By Lemma 2.7,
T' is not fully contracted (equivalently, S is not fully expanded), and therefore there
is an integer ¢ in 7" to the southeast of some integer in S’. Let ¢ be minimal among
such integers; if there is more than one such ¢ take the westernmost one. Choose s
so it is the greatest integer in S’ to the northwest of ¢. If there is more than one
possibility, take the easternmost one. We claim s and ¢ can be switched. If s is to the
north of ¢, the choices of s and ¢ guarantee they can be switched, so suppose s is to
the west. The only circumstances under which it might be impossible to switch the
two would be the following:

1. If there were a second copy of ¢, this one in the same column as s and to the
north of s;

2. If there were a second copy of s, this one in the same column as ¢ and to the
south of ¢.

Consider the first case. Necessarily the two copies of ¢ delimit a two-column ¢-- -t
rectangle, and therefore s has to be the southwest piece of a step. This implies s', the
northeast piece of the step, is immediately to the north of the rectangle’s southeast
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t. But s’ > s, contradicting our choice of s. An analogous argument using s---s
rectangles applies in the second case, and therefore s and ¢ can be switched. pr

Proof of 1 of Theorem 2.2. Let S and 7" be tableaux where 7" extends S. Then
S UT is a perforated pair having staircases since every s---s rectangle and every
t---t rectangle contains one row. By Lemma 2.8, any S’ U T’ obtained from SUT
by a sequence of switches has staircases. But then by Lemma 2.9, either S" UT" has
a switch, or S” and T" are tableaux with S’ extending 7". pr

Besides proving 1 of Theorem 2.2 we have shown that at every intermediate step
in the switching procedure there is a method we can employ to locate an s and ¢ to
switch. What remains is to prove part 4 of Theorem 2.2, i.e., that the results of the
algorithm do not depend on the sequence of switches used. Our strategy is to reduce
to the case where the tableaux are standard.

Extending our notation, let us write U for the standard renumbering of the per-
forated tableau U. We require that when we renumber several perforated tableaux
we do so in a way that guarantees the largest integer assigned to each is the same.
Remembering the content of a perforated tableau U allows us to recover U from U in
the obvious way.

Suppose S'UT" is a perforated pair which the switch s<+¢ transforms into S” UT".
Moreover, suppose when S" and T' are renumbered to produce S and T’ s and ¢
become ¥ and . It is not hard to see that $-f is a switch for S' U T’ and the
following diagram commutes:

renumber ~ ~
ST —— S'uT
s>t St
renumber

ST G

Proof of 4 of Theorem 2.2. As in the definition of the switching procedure,
let S and T be tableaux such that 7" extends S. Consider the effect of applying the
switching procedure to S U T twice, each time with a different sequence of switches.

Suppose we know the assertion to be true for standard tableaux. If we perform
two different sequences of switches on .S and T, then using our commutative diagram,
we get two sequences of switches that move S and T through one another, and the
end result of those sequences must be the same. Since every tableau can be recovered
from its standard renumbering, the final result of the two original sequences must
also be the same. We can, therefore, assume S and 7' are standard, say with integers
s=1,2,...,mand t=1,2,... n respectively.

We induct on ¢t — s to show the following:
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1. If s>t is a switch that occurs in one sequence, then it occurs in the other.

2. When s<+t occurs in both, the boxes that s and ¢ occupy immediately before
their switch (and hence immediately after) are the same for both sequences.

First note that since s’s move to the south and east and ¢’s to the north and
west, and every switch produces a perforated pair, it must be the case that each s
switches with an increasing sequence of ¢’s. Similarly, each ¢ switches with a decreasing
sequence of s’s.

We begin our induction. For ¢ —s < 1 —m there are no switches, so the hypotheses
hold vacuously.

Suppose that 1 and 2 hold for t — s < k, and let t — s = k. Assume s<>t occurs
in the first sequence, and just prior to their switch s and ¢ occupy boxes b and ¢
respectively. We show this is also the case for the second sequence. First let us
establish that at some point in the second sequence s occupies b. If s occupies b in
S UT this is clearly the case, so suppose the first sequence contains a switch s<>t'
that moves s into b. Necessarily ¢ < ¢, so by the first induction hypothesis s«>t'
occurs in the second sequence as well. Similarly, at some point in the second sequence
t occupies c¢. Some switch in the second sequence must move s from b or ¢ from c;
otherwise, as b is northwest of ¢, the end result of the second sequence would not
be fully switched. Suppose that ¢ is the first to move, switching with s”. If s” > s,
then the first induction hypothesis implies s”<+t occurs in the first sequence; this is a
contradiction since s<»t is the switch in the first sequence that moves ¢ from ¢. Thus
s" < 5. On the other hand, the switch s”<»t leaves s” in ¢, and c is southeast of s.
Since switches produce perforated pairs, s” > s. This forces 8" =s. pr

3. Properties and Applications of Switching

In this section we list some properties of switching and show they afford a unified
approach to proving a large number of combinatorial identities.

Theorem 3.1. Suppose S and T are tableauzr, T' extends S, and switching S with T
transforms S into TS and T into Ts. Then

1. S and St are Knuth equivalent.

2. T and 5T are Knuth equivalent.

3. If S is standard (respectively, column strict, positive, LR), so is Sr.
4. If T is standard (respectively, column strict, positive, LR), so is °T.
5. Switching 5T with St transforms 5T into T and St into S.
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Proof. Items 2 and 4 are analogous to 1 and 3, and we leave their proofs to the
reader. From 4 of Theorem 2.2 and the definition of jr(S) it follows that St = jr(S5).
This and the definition of Knuth equivalence imply 1. Part 3 follows from 1. For 5,
assume we obtain T and Sy by applying the switching algorithm to S and T with
some sequence of switches. When reversed, this sequence moves T and Sr through
one another, transforming ®7" into 7" and Sy into S. Item 5 then follows from 4 of
Theorem 2.2. pr

When one of S and 7' is row strict the other is column strict and t-switching is

used instead of switching, then results similar to those in Theorem 3.1 can be shown
to hold.

These properties can be exploited to prove a wide variety of identities. The method
is based on the following observation. Suppose we start with a skew shape v and break

it into skew subshapes 7, ... , v, such that v;,; extends ; for each 1.
Y
[ Y2 .
’Ym—l JJ_

Assume U; is a tableau obtained by filling ; with integers. We allow U; to have
different “flavors”, i.e., it can be standard, column strict, positive, or LR. Switching
U; with U;;; moves the two through one another in a way that preserves Knuth
equivalence and the shape of their union. By 5 of Theorem 3.1, switching is an
involution, and therefore a second application restores U; and U, ,; to their original
states. Since every permutation o is a product 7, - - - 75, of adjacent transpositions 7; =
(¢ i+ 1), applying 7;,, then 7, _,,..., then 7, successively transforms (Uy,...,Uy,)
into (U7, ... ,Uy,), where for each i, U; and U7, are Knuth equivalent and therefore
share the same content and flavor.

To formalize the above let us say ' = (; 71, - - -, Ym) 1S an m-fold multishape with
outer shape v, and U = (Uy, ..., U,,) is an m-fold multitableau of shape T' and outer
shape v. Then we have

Lemma 3.2. Let o be a permutation of {1,... ,m}. Then there is a bijection
U= (U,...,Uy) —s U°=(U?,...,U%)

mapping the set of m-fold multitableaux onto itself. Under this bijection, U and U?
have the same outer shape, and the tableaux U; and Ug(i) are Knuth equivalent for
each 1.
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Our strategy should now be clear: by choosing m, v, and different flavors for the
U; we obtain a combinatorial identity; Lemma 3.2 supplies the proof. The list of
possible identities is extensive, and we content ourselves with some examples.

Example 3.3 (The skew Littlewood-Richardson rule). Suppose 7 is the parti-
tion A\, m = 2, 7 is the partition v, and hence 7, is A/v. Consider the multitableaux
U = (U, Us) of shape I' = (v;71,72) = (\; v, \/v) where U; is LR and U, is positive.
There is a unique LR tableau of shape v, namely Y (v). The mapping of Lemma
3.2 transforms U into U’ = (U7,UYJ), where UY is a tableau of shape u (for some
partition p), and UJ is LR of shape A\/u and content v. This gives a bijection that
proves the Littlewood-Richardson rule for Schur functions,

_ A
Sy = E M s,
I

(Here )™ is the usual Littlewood-Richardson coefficient, i.e., the number of LR

tableaux of skew shape \/u and content v.) This is essentially the proof in [JK].

Example 3.4 (The generalized skew Littlewood-Richardson rule). Let us
broaden Example 3.3 slightly. This time we again take m = 2 but allow 7 to be an
arbitrary skew shape. Fix a partition v and consider the multitableaux U = (Uy, Us)
of shape I = (7;71,72) where U; is LR of content v and Us is positive. Basically the
same argument as in Example 3.3 shows

Y1 —_ 2
E : Cy Sy, = E C, 8515

I=(v71,72) I"=(;01,02)

which generalizes the skew Littlewood-Richardson rule. This identity can be found in

[WI.

Example 3.5 (SuperSchur functions). If x stands for the infinitely many vari-
ables 1, x9,..., and y for the infinitely many variables y,ys,..., the superSchur
function (hook Schur function) corresponding to the partition A is given by

HS\(x,y) = Z xUiylz,

U1,U2

The sum ranges over all partitions k C A, all positive tableaux U; of shape «, and all
positive row strict tableaux U, of shape A/k. Consider the multitableaux U = (Ui, Us)
of shape I' = (\; k, A\/k), where k, Uy, and U, are as above. The mapping of Lemma
3.2 (adjusted suitably for a mixture of row and column strict tableaux) transforms U
to U? = (U7, Ug) where U7 is a row strict tableau of shape (say) v* and UY is a tableau
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of shape A/v'. Suppose V = (V1,V5) where Vi is Y (¢') and V5 = UJ. Applying the
mapping of Example 3.3 to V' gives (V/7, V), where V{7 is a tableau of shape p and V¥
is an LR tableau of shape A/ and content v*. The map U = (Uy, Us) — (T, V7, VYY)
where T'= (U?)" is a bijection that establishes the identity

HS)\(x,y) = Z C,,{ #5u(x)s,(y).

u,tCA
(Compare [R], Eqn. 1.3 and [BL], §3.)

Example 3.6 (Symmetries of Littlewood-Richardson coefficients). Asin Ex-
ample 3.3 let us again take m =2, v = A, 41 = v and 5 = A\/v. As before let U; be
LR, but this time assume Us is LR as well, say of content . Our mapping transforms
U = (U, Uy) into U? = (U7,UY9), where U? and U are LR, and UY has partition
shape. But this forces U? to have shape p, and therefore UJ is LR of shape \/u
and content v. Not only have we proven et = c,))/ “: we have displayed an explicit
involution that interchanges the inner shape and content of an LR tableau. A brief
description of this mapping based upon the algorithm of James and Kerber can be

found in [W].

Example 3.7 (Generalized Littlewood-Richardson coefficients).  Let usex-

pand on the ideas in Example 3.6. Given a skew shape v and partitions vy, ... , v,
let ¢] ., ~be the number of m-fold multitableaux for which the outer shape is ~y

and the i™ tableau is LR of content v;. These “generalized” Littlewood-Richardson
coefficients are related to the ordinary ones by the formula

2 — E VL eIm
CVI U Cul Cum .
FZ(’Y;’YI:--- :7m)

Suppose U = (Uy, ... ,Uy,) has outer shape 7, each U; is LR of content v;, and o is a
permutation of {1,...,m}. Then by Lemma 3.2 U? = (U7,...,UZ) also has outer
shape 7, and each U:(z') is LR of content ;. This proves

! =
V1'Vm Va'(l)""/a(m)'
A _
Since ¢, /w’ this generalizes Example 3.6.

It is interesting to note that the identities arising in Examples 3.3, 3.6, and 3.7
make it possible to deduce representation theoretic results such as branching rules.
We illustrate this with the following example.
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Example 3.8 (Branching rule). Assume x = {x1,..., 2y}, and consider the eval-
uation of the Schur function s, given by

87(5) = S’)’ |zm+1:$m+2:"'20 .

Thus, s,(x) = Y, x" where the sum is over all tableaux U of shape y whose content
is contained in {1,...,m}. Suppose my,...,my are positive integers such that m; +
<-4+ my = m, and let x® = {Tm, ,41,--- 20} for i = 1,... k, where M, =
0 and M; = mqy + --- + m;. In each tableau of partition shape A with entries in
{1,...,m} there is a subtableau of some skew shape, say 7;, which contains the
entries in {M; ; +1,..., M;}, and 7,41 extends ; for each i = 1,..., k. As a result,
it follows that

5)\(5) = Z S (5(1)) T Sy (X(k))'

T=(A7150057k)

By Examples 3.3 and 3.6 s, = ) c}s,, which can be combined with Example 3.7 to
give

sa®) = > el s, (xM) s, (x®)
F:(A;’yl:---a')/k)
V..V
= Z cﬁl,...,uk Sl/l (K(l)) e SVIc (K(k))-
VlyeeyVi

The irreducible polynomial representations for the general linear group GL(m)
are in one-to-one correspondence with the partitions A having length < m, and s,(x)
is the character of the irreducible polynomial GL(m)-representation labeled by A.
Thus, the identity derived above is just the branching rule for GL(m) to the subgroup
GL(my) x --- x GL(my,) (or equivalently, for the general linear Lie algebra gl(m) to
the subalgebra gl(m;y) X - - - X gl(my)). This identity holds equally well with A replaced
by any skew shape ~.

We conclude this section by taking a closer look at the bijection of Lemma 3.2. We
defined the mapping U = (Uy,...,U,) — U = (U{,...,UZ) by factoring o into
a product of adjacent transpositions, and it is natural to ask whether the bijection
depends on the factorization. Unfortunately, as the next example shows, the answer
is yes. Let ' = (v;v1,72,73) and U = (U, Us, Us) be defined by the pictures below.

| L] L]

")/: "Yl: ")/QZD ")/3:[':\
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Now o = (13) factors as both (12)(23)(12) and (23)(12)(23), and applying the corre-
sponding mappings to U yields

TP 2 FEE eo BEE a2 FEE
3 3 1 1
1]1]2] 1]1]2] 3[3[2] 3(3([2
2|3 Iﬂ»33 Iﬁ»ll &»21
3 2 2 1

As the results are different, the mapping in Lemma 3.2 depends on the factorization.

4. Dual Equivalence

In [H2] Haiman introduces the notion of dual equivalence for standard tableaux and
notes that most of his results extend to column strict tableaux. Here, to lay the
groundwork for the next section, we describe these extensions explicitly.

Boxes by, bs, ... , by define a sequence of slides for a tableau U if it meaningful to
form U = Uy, Uy, ... ,Uy, where b; is a corner of U;_{, and U; is the tableau that
results when we perform a slide starting at b; on U;_;. Following Haiman [H2], we
define tableaux U and V to be dual equivalent if every sequence of slides for U is a

d
sequence of slides for V', and vice-versa. We write U 2 V' to indicate U and V are
dual equivalent. Dual equivalent tableaux have the same corners and therefore have
the same shape.

In large measure Haiman’s results concerning dual equivalence carry over into the
column strict world without change, and for the most part the same proofs work. The
fact that bridges the gap is the following.

Lemma 4.1. Any tableau U is dual equivalent to its standard renumbering U.
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Proof. We intend to induct on the number of boxes in U; however, to do so we
need some machinery. Recall that to say subtableaux V and W decompose U means
that W extends V', and whenever v and w are integers from V and W respectively,
either v < w, or v = w and v is west of w. Let U and U’ be tableaux of the same shape,
and suppose 7; and 7, are shapes such that v, extends v, and shU = sh U" = v, Us.
Assume U and U’ have decompositions U = V UW and U' = V' U W', where
shV =shV' = and shW = sh W' = ~,. Then the following is a simple consequence

d d d
of ([H2], Lemma 2.1): if V 2 V' and W =2 W' then U = U".
Now we start the induction. When U contains fewer than two boxes the assertion

is obviously true, so suppose U has at least two boxes and let V' and W be nontrivial
tableaux that decompose U. Then U= VUW provided when we renumber We choose

—~

maximum values appropriately. By the induction hypothesis, V V and W W, so
d
uv=v. p

Lemma 4.1 shows the following result of Haiman remains true when the tableaux

are column strict:

Proposition 4.2 ([H2] Corollary 2.5). Let U and V be tableauz of the same nor-
mal shape. Then U and V are dual equivalent.

With Proposition 4.2 in hand, the proofs in [H2] can be applied to give

Theorem 4.3 ([H2] Corollaries 2.8 and 2.9). Let U and V be dual equivalent
tableau.

1. If W is any tableau that extends U (or equivalently, extends V), then YW = VW
d
and Uy = Viy.

2. If W is any tableau that U extends (or equivalently, V' extends), then Wy = Wy
d
and VU =WV,

Perhaps the deepest of Haiman’s results on dual equivalence is that tableaux are
uniquely characterized by dual and Knuth equivalence.

By Theorem 4.3, dual equivalence shares with Knuth equivalence the following
property: Any two equivalent tableaux have normal forms with the same shape.
Thus, to each dual or Knuth equivalence class there corresponds a unique normal
shape.

Theorem 4.4 ([H2] Theorem 2.13). Let D be a dual equivalence class and K be
a Knuth equivalence class, both corresponding to the same normal shape. Then there
15 a unique tableau 1 D N K.
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Proof. Haiman’s arguments work without change, but we present his proof of the
existence of the tableau since it involves a construction to be used in §5. Let U € D
be any representative, and V' € K be the unique representative with normal shape.
We construct the unique tableau in D N K as follows:

1. Choose any tableau W such that U extends W and W U U has normal shape.
2. Switch W with U to produce U* = WU and Wy.
3. Since shV = sh U™ we can switch V' with Wy to obtain the tableau Vi, .

By Theorem 4.3, Vi, is dual equivalent to U, and by Theorem 3.1 it is Knuth
equivalent to V. pm

In light of this theorem the usefulness of the Littlewood-Richardson tableaux is
apparent: they form a complete transversal for the set of dual equivalence classes.
Moreover, the Littlewood-Richardson coefficient ¢}, counts the number of dual equiv-
alence classes of tableaux of shape v whose normal shape is pu.

Haiman establishes a number of other dual equivalence results that can also be
transferred to column strict tableaux; however, the above suffice for our purposes.

5. Evacuation, Reversal, and Related Mappings

In this section we describe Schiitzenberger’s algorithm [Sc1] for evacuating a tableau
of normal shape and show using switching how this algorithm can be generalized. For
tableaux of normal shape we prove the evacuation is the normal form of the rotation.
This leads to two properties that characterize the evacuation of a tableau of normal
shape and motivates the definition of a mapping called reversal that operates upon
tableaux of arbitrary shape. In [Sc2] Schiitzenberger extends his evacuation algorithm
so it can be applied to tableaux of arbitrary shape. For tableaux of normal shape,
reversal and evacuation agree, though for general tableaux they yield different results.
The mapping U —— U° is defined and shown to be closely related to both reversal
and *. We discuss the White-Hanlon-Sundaram map U —— UWHS ([W], [HS]),
which transforms LR tableaux of shape v and content u into LR tableaux of shape ~*
and content pu'. The section closes with a proof that the symmetries of Littlewood-
Richardson coefficients observed by Berenstein and Zelevinsky [BZ] follow from §3
and ([W], [HS]).

We start by recalling some notation. Whenever U is a tableau, U™ (respectively,
U?) is the unique tableau of normal (respectively, anti-normal) shape Knuth equivalent
to U. The rotation U* is the tableau obtained by rotating the shape of U by 180° and
replacing each integer u by —u. If v is a skew shape, then ~! is the transpose of 7;
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similarly, when U is a tableau, U' is its transpose. We write Y'()\) for the LR tableau
obtained by filling the first row of A\ with 1’s, the second with 2’s, and so on.

Algorithm 5.1 (Schiitzenberger’s evacuation algorithm). Let U be a tableau

of normal shape. The following algorithm transforms U into UY, the evacuation of
U:

1. Replace the integer u at the northwest corner of U with —u and mark the new
integer.

2. Use a contracting slide to move the marked integer through the tableau formed
by the unmarked integers.

3. Repeat steps 1 and 2 until every integer has been marked.

In §2 we generalized the algorithms of Haiman [H1|, Shimozono [Sh], James and
Kerber [JK]|, and Remmel [R] with the switching procedure, and it is natural to do
something similar here. Roughly speaking, the idea is that at each step the marked
and unmarked integers form a perforated pair. The algorithm converts unmarked
integers to marked ones and switches marked with unmarked integers, stopping when
no more conversions or switches are possible.

Algorithm 5.2 (Generalized evacuation). Let U be a tableau of normal shape .

1. Start with every integer in U unmarked.
2. Do one of the following:

(a) If the integer u at the northwest corner of X\ is unmarked, replace it with
—u and mark the new integer, or

(b) Switch some marked integer with an unmarked one.

3. Repeat 2 until no more switches or conversions are possible.

For brevity let us say that every time we perform step 2 of the algorithm we have
made a move. We write t — s for a move that converts an unmarked ¢ into a marked
s, and st for a move that switches s with . The following shows one possible
sequence of moves the algorithm could use to transform a tableau:
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There are several facts we must prove about generalized evacuation. We define
staircases as in the discussion preceding the proof of Lemma 2.8.

Theorem 5.3. Suppose that after performing a (possibly empty) sequence of moves
in Algorithm 5.2 we obtain S' and T" where S’ consists of the marked integers and T’
of the unmarked ones. Then S'UT' is a perforated pair with staircases.

Proof. We induct on the number of moves. The initial case is trivial, and the case
in which the last move is a switch follows from Lemma 2.8. Consider what happens

if the last move converts an unmarked ¢ into a marked s = —t.
Start by supposing S’ contains exactly one copy of s. The smallest integer in S’ is
s, s0 S"UT" is a perforated pair. The conversion of ¢ into s = —t might have destroyed

a t---t rectangle, but could not have created one. Since S’ contains only one s, the
conversion could not have created any s---s rectangles. Putting these facts together
we see that S’ U T’ is a perforated pair with staircases.

Now suppose S’ contains k& > 2 copies of s. Then S’ and T were obtained by
applying a sequence of moves to a perforated pair S” UT" where S” contained k — 2
copies of s. We can assume the first of these moves converted a t to a marked
s = —t. Note this conversion must have destroyed a ¢ - - -t rectangle. By the induction
hypothesis the conversion produced a perforated pair with staircases. Next came a
nonempty sequence of switches. Among these were ones which moved the ¢ originally
in the southeast corner of the rectangle to the northwest, eventually switching ¢ with
the s produced by the conversion mentioned above. Just before they switched, the
two must have been side-by-side, so the switch slid ¢ west and s east. (We can be sure
of this because the staircase from the destroyed rectangle prevented ¢ from moving
into the same column as s.) The final move converted ¢, now in the northwest corner,
to an s. It follows that S’ contains exactly one s in its westernmost column. Since
no integer in S’ is smaller than s, S" U T’ is a perforated pair. Reasoning as in the
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proof of Lemma 2.8, we see that the newly created s and the first-formed one are the
northwest and southeast corners respectively of an s---s rectangle with a staircase.

The second conversion of ¢t to s = —¢ might have destroyed a ¢ - - -t rectangle, but it
could not have created one. This proves S’ UT" is a perforated pair with staircases.
r

Theorem 5.4.

1. When Algorithm 5.2 stops, every integer is marked.
2. The end result of the algorithm is independent of the sequence of moves used.

3. Schitzenberger’s evacuation procedure is a special case of Algorithm 5.2.

Proof. Whenever W is a perforated tableau, let us write W for the standard
perforated tableau obtained by renumbering W as in §2. Again we require that when
several perforated tableaux are renumbered, the same largest integer must be assigned
to each.

For part 1 assume that after performing a (possibly empty) sequence of moves
we have obtained perforated tableaux S’ and 7" of of marked and unmarked integers
respectively. By Theorem 5.3, S’UT" is a perforated pair with staircases. It is enough
to show that if S” is not fully expanded (or equivalently, 7" is not fully contracted),
there is a switch s« for S’ U T”. This follows directly from Lemma 2.9.

To prove 2, assume at some point the algorithm has produced the perforated pair
S'"UT" of marked and unmarked 1ntegers and the move m turns S'UT" into S" UT".
There is a corresponding move m that transforms S'UT" into S U T” and it is not
hard to see the following diagram commutes:

renumber

SUT ——— SuT

~

m m

renumber

ST G

Suppose we know 2 to be true for standard tableaux, and let U be column strict.
Assume we apply the algorithm to U twice, each time with a different sequence of
moves. Using our commutative diagram, we obtain two corresponding sequences for
U, and the end result of each sequence must be the same. But every tableau can
be recovered from its standard renumbering, so the final result of the two original
sequences must also be the same. We are therefore free to assume U is standard, say
with integers 1,2,... ,p. Let us write t’s for the unmarked integers the algorithm
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consumes and s’s for marked ones it creates. Obviously each of the two sequences
contains a move that converts each ¢ into the corresponding s = —¢, and every other
move in either sequence is a switch. To complete the proof of 2, use induction on t+ s
to show

1. If s>t is a switch that occurs in one sequence, then it occurs in the other.

2. When s<»t occurs in both, the boxes s and ¢ occupy immediately before their
switch (and hence immediately after) are the same for both sequences.

The induction is virtually identical to that used to prove 4 of Theorem 2.2, and we
leave the details to the reader.

Finally, to see 3, observe Schiitzenberger’s evacuation algorithm is the special case
of the generalized evacuation algorithm obtained by consistently deferring conversions
of unmarked integers into marked ones as long as possible. pr

The next result shows how evacuation and rotation are related.

Theorem 5.5. Let U be a tableau of normal shape. Then U¥ = U™,

Proof. We induct on the number of boxes in U. When U is empty or consists of
a single box, the assertion is obvious, so suppose it contains more than one. Let u be
the integer at the northwest corner of U and let V' be the tableau that results when
this u is deleted.

We can transform U into U® by converting the unmarked u at the northwest corner
to a marked —u, switching to move this —u to the outer edge, and then applying the
algorithm to what remains of U, i.e., to the normal form W of V. It follows U® can
be obtained by adjoining a —u at an outer corner of W&,

There is a —u at the southeast corner of U*, and if we delete this —u, the tableau

we obtain is V*. It follows that U™ consists of V** extended by —u. But V** ’é W,
and by the induction hypothesis W*® = W¥, so V** = WE. We know shU*® =sh U,
and in Lemma 5.6 below we prove sh U*™ = shU. Then the —u that extends W¥ in
U® must occur at the same position as the —u that extends W¥ in U*", and therefore
Ut =U". p

Lemma 5.6. Let U be a tableau of normal shape. Then shU™ = shU.
Proof. Before inducting on the number of boxes in U we need to show the

following: if V' is a subtableau of U derived by discarding one box b from the southeast
edge of U, then sh U™ D sh V*". First consider the case where U is standard and the
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discarded box b contains the largest integer u in U. Then —u is the integer in the
northwest corner of U™, and V*" is produced if we erase —u and use a contracting
slide to move the empty box through what remains of U*". It follows sh U™ D sh V*".
For the general case let U’ be a standard tableau of shape sh U whose largest integer
is in the box b, and let V' be the tableau obtained by discarding b from U’. Then

U S U and V £ V! soU* £ (U")* and V* < (V")*. This implies sh U*™ = sh (U')*™ D
sh (V)™ =sh V*", as claimed.

Now we begin the induction. Observe that when U is empty or rectangular the
result is clear, so we may assume U contains at least two boxes and is not a rectangle.
Then there are two distinct subtableaux V and W of U, each obtained by discarding
one box from the southeast edge of U. By the induction hypothesis, shV** = sh V'
and shW* = shW. Then shU™ D shV*™*UshW*™ =shV UshW = shU. Since
|shU*"| = |sh U| this forces shU™ =shU. pr

k

It follows easily from [Sc1] that U* & U®, and Fulton [F] proves U** = UE. Both
arguments are based on Schensted insertion using the words of the tableaux rather
than the approach we have presented here. Much of the importance of evacuation

stems from these results. After developing our proof of Theorem 5.5 we learned
Haiman has also related UE to U? ([Sa2])

The above results allow us to characterize UE as follows.

Theorem 5.7. Let U be a tableau of normal shape. Then UF is the unique tableau
Knuth equivalent to U* and dual equivalent to U.

Proof. Whenever V and W are Knuth (respectively, dual) equivalent, V* and
W* are as well. Since U® = U*®, U® is Knuth equivalent to U*. Also, U¥ and U
are tableaux of the same normal shape, so are dual equivalent by Proposition 4.2.
Theorem 4.4 says there can be only one tableau with these properties. pr

There is a simple way to extend evacuation to tableaux of arbitrary skew shape:
in Algorithm 5.1, rather than saying

“replace the integer u at the northwest corner of U with —u and mark the new
integer”
use instead

“replace the smallest integer v in U with —u and mark the new integer (if there
is more than one such u, take the easternmost one)”.

Schiitzenberger [Sc2| and Haiman [H2] study evacuation in this broader context. The
mapping U —— U of the new algorithm is the same as the original mapping when
restricted to tableaux U having normal shape, and the new mapping U — U" is an
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involution. However, when this mapping is applied to a skew tableau the result does
not in general enjoy the properties indicated in Theorem 5.7.

In operating upon tableaux of arbitrary shape, we follow a different path. Our
idea is to use Theorem 5.7 to motivate the definition.

Definition 5.8. Let U be a tableau of arbitrary skew shape. Define U®, the reverse
of U, to be the unique tableau Knuth equivalent to U* and dual equivalent to U. The

mapping U — U*® is called reversal.

The construction in the proof of Theorem 4.4 gives an algorithm for computing
U¢. Let W be any tableau such that U extends W and W U U has normal shape.
Then

U= (U w,.

Next we introduce a tableau U° which is closely related to U* and U®. For an
arbitrary tableau U let U° be the unique tableau Knuth equivalent to U and dual
equivalent to U*. Note that since U° = U®*, we have an explicit algorithm for calcu-
lating U°.

Proposition 5.9. The mappings
{U+—U,U+— U Ur—U*U+— U"}
determine an action of the Klein four group Zo @ Zy on the set of tableau.

Proof. Since each mapping is its own inverse it suffices to show the set is closed
under composition. Applying one or more of the mappings to U yields a tableau dual
equivalent to U or U* and Knuth equivalent to U or U*, and hence is one of U, U*,

U¢,or U°. p

It is instructive to consider an orbit of this group:

113 1|[5]
2[2]4]5 3
U= [1]5]5]6]6 1[1[1]2]6] =U°
3 2[3[4]e6
[1]5 5|5|5
-5[-5|-5 -5[-1]
-6|-4[-3]-2 -3
U¢ = [-6]2]1]1]1 -6[-6]-5]-5]-1] = U~
-3 -5]-4[-2]-2
l-5]-1 -3]-1[-1
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As an application of the mapping U —— U° let us fix a skew shape v and consider
the problem of showing the skew Schur functions s, and s, are equal. The mapping
U —— U* defines a bijection between tableaux of shape v and those of shape ~+*
which can be used to show s, = s,.. However, corresponding tableaux do not have
the same content, and therefore cannot be Knuth equivalent. From a combinatorial
viewpoint this is unsatisfactory; if s, = s,«, it ought to be possible to use slides to
transform tableaux of shape 7 into tableaux of shape «*. The difficulty disappears
when we use the mapping U — U° in place of U —— U*; corresponding tableaux are
Knuth equivalent. In particular, U — U° sends LR tableaux of shape + and content
i to LR tableaux of shape v* and content p, so we have an explicit combinatorial
involution that proves

Proposition 5.10. The Littlewood-Richardson coefficients c], and CZ* are equal.

White [W] describes a mapping that transforms LR tableaux of shape v and
content y into LR tableaux of shape 7' and and content x'. Using an algorithm based
on Schensted insertion, Hanlon and Sundaram [HS] introduce an analogous map and
use it to give a bijective proof that the LR coefficients ¢}, and th are equal. As Fulton
shows in [F], the White map and the Hanlon-Sundaram map produce the same result,
and so we denote the map by U — UWHS, It is interesting to note the technique used
to construct U¢ and U° can be applied to build UVHS. From the proof of Theorem
4.4 there is exactly one tableau Knuth equivalent to Y ((shU)!) and dual equivalent
to (). That tableau is UWHS, and so the construction affords an explicit way of
calculating this tableau. In essence this is the approach adopted in [W].

Identifying the Littlewood-Richardson coefficients with the number of lattice points
in certain polytopes, Berenstein and Zelevinsky [BZ] prove the coefficients are sym-
metric under an action of the group Z, X S3. We conclude by showing the same result
can be derived from the usual definition of the coefficients.

Let us fix notation. Whenever p is a rectangular shape, x is a partition, and
p D Kk, we write K¢ = k°(p) for the partition (p/k)*, and (x')¢ for (p'/k")*. Recall
in Example 3.7 we defined the generalized Littlewood-Richardson coefficient ¢

e
to be the number of m-fold multitableaux for which the outer shape is v and the 7*®
tableau is LR of content ;. We proved cJ .., ~is symmetric in vy,vy,... ,Vp. Let

us restrict to the case where 7 is a rectangular shape p, m = 3, and vy, 15, and v3
are the partitions v, u, and A respectively. Consider a typical multitableau obtained
in this special case. Necessarily the inner tableau is Y (v) and the outer tableau is

Y (A)°. Therefore ¢, = ol = ¢y, counts the number of middle tableaux; this is
the number of LR tableaux of shape A°/v and content p. In light of Example 3.7, cl)j‘;
is symmetric in v, u, and A. Putting this together with the symmetries given by the

White-Hanlon-Sundaram map, we have proven
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Proposition 5.11 (Berenstein-Zelevinsky). The Littlewood-Richardson coeffi-
cient c,),‘; is symmetric under the following action of the group Zo X S3: the nonidentity

element of Zy simultaneously transposes each of v, u, and X\, and Sz permutes v, u,
and A.

Note this gives another way to derive Proposition 5.10. Fix a skew shape v and
choose p, A, and v such that v = X°/v. Then v* = (v°/X), so ¢} = ¢ by Proposition
5.11.
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