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1. Introduction

The aim of this note is to give a presentation for the Chow homology groups for an
arbitrary variety with an action of a connected solvable linear algebraic group, and
to compute the operational Chow cohomology ring of a complete variety on which
such a group acts with finitely many orbits. These results apply to any spheri-
cal variety, which is a variety with an action of a reductive group that contains a
Borel subgroup with a dense orbit in the variety.! They also apply to the closures
of the orbits of the Borel subgroup in any such variety. These varieties include
Grassmannians, flag manifolds, and homogeneous spaces G/P and their Schubert
subvarieties, toric varieties, varieties of complete quadrics and other compactifica-
tions of symmetric spaces, and varieties of complexes. For the smooth varieties
on this list, their cohomology rings, with their rich combinatorial structure, have
been vital in many areas of mathematics, dating back to the Schubert calculus of
classical enumerative geometry. OQur primary goal here is to extend this as far as
possible to the singular case.

The Chow group AxX of an arbitrary variety or scheme? X is defined to be
Zy X /R X, where Z, X is the free abelian group generated by all k-dimensional
closed subvarieties of X, and Ry X is the subgroup generated by divisors [div(f)] of
nonzero rational functions f on (k+1)-dimensional subvarieties W of X (see [6, §1]).
When an algebraic group I' acts on X, one can form a group ALX = ZL X/RL X,
with Z,SX the free abelian group generated by all I'-stable closed subvarieties of X,
and RLX is the subgroup generated by all divisors of eigenfunctions on I'-stable
(k + 1)-dimensional subvarieties; here a function f in R(W)* is an eigenfunction if
g-f=x(g)f for all g in T, for some character x = xy on I'.
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n the literature, spherical varieties are taken to be normal, but this condition is not needed
here. The general theory of spherical varieties has been developed primarily by Luna and Vust,
Brion, Vinberg, Pauer, and Knop, cf. [1], [15], [17].

2See the end of the introduction for conventions about schemes and varieties.
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Theorem 1. If a connected solvable linear algebraic group T acts on a scheme X,
then the canonical homomorphism AEX — ArX is an isomorphism.

Theorem 1 was proved by for projective varieties by Hirschowitz [11]. Brion
[3, §1.3] pointed out that Vust had proved the surjectivity for complete varieties,
and asked if the isomorphism holds without the assumption of projectivity.

When T acts on X with only finitely many orbits, this gives a finite presentation
of the Chow groups of X. This follows from two facts: (i) when I" has a dense orbit
in W, each eigenspace R(W), can have dimension at most one; (ii) the group of
characters is finitely generated (see [12, §16, Ex. 12]). It is not always easy to make
this presentation explicit. However, for toric varieties, the invariant subvarieties
correspond to cones in the defining fan, and eigenfunctions on a corresponding va-
riety come from points in the lattice dual to the cone; this gives a finite presentation
of the Chow groups in terms of the combinatorics of the fan (see [10]).

If T is unipotent, then the groups RL X are trivial, and the theorem says that
A X is the free abelian group on the orbit closures. For example, if X is a Schubert
variety, one can take I to be a unipotent group, so the Chow group is the free abelian
group on the Schubert subvarieties of X.

Corollary. Suppose a connected solvable linear algebraic group acts on a complete
scheme X with only finitely many orbits. Then

(i) The cone of effective cycles in Ax(X) ® Q is a polyhedral cone, generated
by the classes of the closures of the orbits.
(ii) Rational equivalence and algebraic equivalence coincide on X .

Let A, X = @, AxX. For any schemes X and Y one has a “Kiinneth map”
AX ® AY - A (X xY), taking [V] ® [W] to [V x W], where V and W are
subvarieties of X and Y. This is an isomorphism only for very special algebraic
varieties, but when it is, there are strong consequences.

Theorem 2. If a connected solvable linear algebraic group acts on a scheme X with
only finitely many orbits, then for any scheme Y the Kinneth map A, X @ A.Y —
A (X xY) is an isomorphism.

Corollary. If, in addition, X is nonsingular and complete, then the cycle map
A, X — H,X is an isomorphism.

The Chow groups AxX are called Chow “homology” groups, since they are
covariant for arbitrary proper maps. Historically, it has not been easy to construct
directly Chow “cohomology” groups out of geometric “cocycles”, to pair with these
Chow homology groups. In [9, §9], cf. [6, §17], operational Chow cohomology groups
AF X were defined, to have the expected functorial properties:

(i) “cup products” APX ® A1X — APTIX a® b — aUb, making A*X =
@D, AFX into a graded associative ring (commutative when resolution of
singularities is known);

(ii) contravariant graded ring maps f*: A¥X — A*Y for arbitrary morphisms
1Y —=>X;

(iii) “cap products” A*X ® A,, X — A, X, ¢c® 2z — ¢N 2, making A,X into

an A* X-module and satisfying the usual projection formula;

(iv) when X is a nonsingular n-dimensional variety, the natural “Poincaré du-

ality” map from A*X to A, ;X taking c to ¢cN[X] is an isomorphism, and
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the ring structure on A*X is that determined by intersection products of
cycles on X;
(v) vector bundles on X have Chern classes in A*X.

(There are other functorial properties, such as Gysin push-forward maps for proper
maps that are local complete intersection morphisms.) A class ¢ in A¥X deter-
mines a collection of homomorphisms A,,Y — A,,_Y, written z — f*cN z, for
all morphisms f: Y — X and all integers m > k; in fact, elements of A*X are de-
fined to be collections of such homomorphisms that are compatible with standard
intersection-theoretic constructions; the ring structure is defined by composition of
such homomorphisms. We point out that the Chow cohomology rings A* X used
here are not the ideal Chow cohomology rings one hopes will someday be con-
structed; rather, they form the coarsest possible Chow cohomology theory with the
properties listed. For a discussion of this, see [7, §10.3]. From work of Kimura [14],
however, they are more computable, and closer to the ideal, than one might have
expected.

An element in A* X determines, by the cap product, a homomorphism from A X
to AgX; if X is complete, composing with the degree homomorphism from Ay X to
Z, one has a natural “Kronecker duality” homomorphism

A*X — Hom(ArX,Z), ¢~ [a+ deg(cna)l

For a general complete variety this is far from being an isomorphism; for exam-
ple, when X is a nonsingular curve and k¥ = 1, the kernel is the Jacobian of the
curve. This is the map analogous to the Kronecker map H*X — Hom(HX,Z) in
topology, which is always an isomorphism, at least up to torsion. If X is nonsingu-
lar and the cycle map from A,X to H,X is an isomorphism, then it follows from
topology that the Kronecker duality is an isomorphism for the Chow groups. For
singular spherical varieties, however, the cycle map need not be an isomorphism; in
fact, singular toric varieties can have non-trivial odd-dimensional homology which
is rather hard to calculate [18], and the cycle map need not be surjective in even
dimensions. This makes the following result somewhat unexpected:

Theorem 3. If a connected solvable linear algebraic group acts on a complete
scheme X with only finitely many orbits, then the Kronecker duality map A*X —
Hom(ArX,Z) is an isomorphism.

For example, let X be the closure of a generic torus orbit in the Grassmannian
G(2,4); X is the toric variety constructed from the fan over the faces of a cube, with
lattice generated by the vertices of the cube. The Chow homology groups are Z, Z,
795, and Z in dimensions 0, 1, 2, and 3, while the Chow cohomology groups are Z,
7,795, and Z in codimensions 0, 1, 2, and 3. Note that the Poincaré duality maps
AFX — A, _; X are not isomorphisms. (In this example, the maps Ay X — Hop X
are isomorphisms, but H3 X = Z%2.) In general, even for toric varieties, the groups
AL X can have large torsion subgroups. By Theorem 3, the groups A*X are torsion
free. More generally, if one considers Chow groups A;(X;R) and A*(X;R) with
coeflicients in a commutative ring R, the same theorems are valid, and, under the
hypothesis of Theorem 3, the canonical map

A¥(X;R) — Hom(ApX,R) = Homg(A(X;R), R)

is an isomorphism.
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The orbits, so their closures—the I'-stable subvarieties—can be indexed by a
finite set ¥, with V,, denoting the corresponding orbit closure for o in .. We write
T < o to mean that V. C V, (the “Bruhat” order), and we set d(o) = dim(V}),
and denote by (%) the set of ¢ in ¥ with d(¢) = k. Theorem 3 means that a
Chow cohomology class ¢ in A¥X can be identified with a function c¢: £¢*) — 7,
o — c¢(o), where we write ¢(o) for the degree of ¢ N [V,]; these functions must
satisfy the condition that for any 7 in X(*+1) and any eigenfunction f in R(V;),
> ord,(f) c(c) =0, the sum over those o < 7 with d(o) = k, where ord, (f) is the
order of f along V,,. Our last goal in this note is to describe the ring structure of
A*X in terms of such combinatorial data. It follows from Theorem 2 that, for any
7, the class of the diagonal in V, x V,, can be written in the form

(%) BVl = Y m, Vol@[Vy] in Ay (Vy x V),

the sum over pairs o, 7 with ¢ <7, 7 < 7, and d(0) + d(7) = d(), and some inte-
gers my .. When I is unipotent, e.g., in the case of Schubert varieties, these coeffi-
cients are uniquely defined; on the Grassmannian they are the classical Littlewood-
Richardson coefficients. In general these coefficients m] _ are not unique; at least in
the toric case they can be found explicitly by choosing appropriate one-parameter
subgroups to deform the diagonal [10]. These coefficients determine the cap and
cup products:

Theorem 4.

(a) For ¢ € APX and d(vy) = p+ q, the cap product ¢ N [V,] in AgX is
2. m7 c(o) [V;], the sum over (o,7) € @) x $@),

(b) Force APX and c' € A1X, the cup product cUc' in APT4X is given by the
formula (cU ') () =Y mY . (o) ¢(1), the sum over (o,7) € TP x B0,

If H is a closed subgroup of a reductive group G, with a Borel subgroup B such
that B - H is dense in G, then G/H is a spherical variety, and all G-equivariant
normal and complete compactifications G/H < X are spherical varieties. One can
form the direct limit lim A*X of the Chow cohomology rings of these compact-
ifications. Each of the rings A*X is embedded as a subring of this direct limit.
This limit ring can be regarded as the natural intersection ring for solving enumer-
ative geometry problems arising on G/H, at least those compatible with the group
action. When G/H is a symmetric variety, these rings have been studied by De
Concini and Procesi [4], and the general spherical case is discussed by Brion [2]. For
toric varieties, they are in fact the polytope algebras introduced by McMullen [19],
Morelli [20], and Khovanskii and Pukhlikov [13], as shown in [10].

For an arbitrary scheme X the first Chern class determines a functorial homo-
morphism from Pic(X) to A'X. One defect of the operational definition of A' X is
that this need not always be an isomorphism [6, Ex. 17.4.9]. The work of Brion [2],
together with Theorem 3, shows that this map is an isomorphism when X is a pro-
jective spherical variety; Brion has informed us that his result extends to arbitrary
complete spherical varieties. A direct proof for complete toric varieties is given
in [10].

If X is an arbitrary surface with only rational singularities, it is easy to see
that the canonical map from Pic(X) to A'X is an isomorphism. It follows from
[16, Prop. 12.1.4] that, for complex varieties of arbitrary dimension with rational
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singularities, this map becomes an isomorphism after tensoring with Q. However,
A. Corti has constructed a threefold with rational singularities for which the map
from Pic(X) to A'X is not an isomorphism. In this sense the singularities of
spherical varieties are better behaved than those of general rational singularities.

The rings A* X exhibit a rich combinatorial structure, which should be interesting
to investigate. It is not always easy to compute the coefficients m] . needed to
describe the ring structure. In a sequel [10] devoted to toric varieties, we will
identify the functions ¢ with Minkowski weights on the corresponding fan, calculate
the integers m] _ in terms of the fan, and describe the ring A*X as a subalgebra
of the polytope algebra.

Any orbit of a connected solvable linear algebraic group is isomorphic to a prod-
uct of an affine space and an algebraic torus. B. Totaro [22] has answered a natural
question left open by this paper, by showing that Theorems 2 and 3 are valid when-
ever X can be decomposed into a finite number of pieces isomorphic to A* x G, *.
Moreoever, he shows that for any such variety over C, the canonical map from A;(X)
to the Borell-Moore homology HEM (X)) determines an isomorphism of 4;(X) ® Q
with the smallest weight space Wo; HEM (X, Q). This identifies A(X) ® Q with a
direct factor of H* (X, Q).

Conventions. We work in the category of algebraic schemes over an arbitrary
algebraically closed field. A variety or subvariety is understood to be reduced and
irreducible. When discussing homology, we take the ground field to be the complex
numbers; the results extend without difficulty to £-adic homology, using correspond-
ing coefficients for the cycles. Throughout, I' denotes a connected solvable linear
algebraic group. A I'-scheme is a scheme with an algebraic action of I'; a subvariety
is I'-stable if it is mapped to itself by each element of I'.

Acknowledgements. We thank V. Batyrev, M. Brion, A. Corti, S. Kimura, J.
Kollér, R. Kottwitz, R. Morelli, and B. Totaro for useful conversations. The first,
second, and fourth authors were partially supported by the N.S.F.; the fourth also
received support from the David and Lucile Packard Foundation.

2. PROOF OF THEOREM 1

The case when X is projective was proved by Hirschowitz [11]. The essential
point there is to use the Chow variety of effective cycles of given degree X, which
is a projective variety with an action of I'. The fact that a solvable group always
has a fixed point on such a variety (Borel’s fixed point theorem) implies that any
effective cycle is rationally equivalent to a cycle fixed by T', which in turn implies
the surjectivity of the map from AL X to A4,X. An additional argument is needed
to show that a chain of rational curves connecting two fixed points in the Chow
variety can be deformed to a chain of I'-stable rational curves, which implies the
injectivity of the map.

To deduce the general case from Hirschowitz’s theorem, we argue by induction
on the dimension of X, assuming the result for all I'-schemes of smaller dimension.
The reduction requires two simple lemmas:

Lemma 1. If Z is a closed I'-stable subscheme of a I'-scheme Y, and U =Y \ Z,
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there is a commutative diagram with eract rows:

A'Z —— Aly s AU > 0
| | |
AZ —— AY y AU » 0

with horizontal maps determined by the inclusion of Z in'Y and the restriction from
Y toU.

Proof. The exactness of the bottom row is proved in [6, §1.9]; the proof for the top
row is the same, but using only invariant subvarieties and eigenfunctions. [

Lemma 2. Let p: X' — X be a proper equivariant morphism of T'-schemes, such
that every closed (resp. T-stable closed) subvariety of X is the birational image of
a closed (resp. T-stable closed) subvariety of X'. Suppose S is a T-stable closed
subscheme of X such that p maps X' ~ p~1(S) isomorphically onto X \ S. Let
E =p=1(S). Then there is a commutative diagram

ATE — 5 ATS@ATX — — ATX —— 0

! ! !

AE —— ASPAX — AX —— 0

with exact rows, and vertical maps the canonical maps of Theorem 1.

Proof. Form and label the fibre square

The left horizontal maps in the diagram send a cycle class v on E to (g«7, —j«7),
and the right horizontal maps send a pair (a,3) to i.a + p.8. The surjectivity
of the maps p.: AL(X') — AL(X) and ¢.: AL(E) — AL(S) are obvious from the
assumptions. The exactness of the bottom row was mentioned in [8, §1], and that
of the top is proved in the same way. For completeness, we include a proof. Since
the cokernels of i, and j, are isomorphic (Lemma 1), p, maps Im(j.) onto Im(i,).
By a diagram chase, it suffices to show that g, maps Ker(j,) onto Ker(i,). An
element in the kernel of i, is represented by a cycle a on S which has the form
> [div(f;)] on X, for eigenfunctions f; on I'-stable subvarieties W; of X. Let W/
be a closed I'-stable subvariety of X’ such that p maps W/ birationally onto W;.
Then f; defines a rational eigenfunction f] on W/, and the cycle o' = > [div(f/)] is
supported on E (since its restriction to X'\ E = X \ S vanishes); o' is equivalent
to zero in ZL (X'), so o/ represents a class in the kernel of j., and, by construction,
g(a)=a. O

We claim next that, given any I'-scheme X, there is a morphism p: X' — X
satisfying the conditions of Lemma 2, such that X' is a disjoint union of T'-stable
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open subvarieties of normal projective I'-varieties, and such that the dimensions of S
and E = p~1(S) are strictly smaller than the dimension of X. Theorem 1 will then
follow by induction on the dimension of X. Indeed, the isomorphism of the theorem
will be known for X' by Hirschowitz’s theorem, Lemma 1, and the induction on
the dimension; the isomorphism will be known for S and E by induction on the
dimension, and then Lemma 2 implies the isomorphism for X. The essential point
for proving the claim is the theorem of Sumihiro [21] that any [-variety V has an
equivariant Chow cover, i.e., there is a proper equivariant morphism V- V, with
V' a I'-stable open subvariety of a normal projective I'-variety, and a I'-stable open
subvariety U of V over which this morphism is an isomorphism. Given an arbitrary
X, start by constructing Xo — X, with Xy a disjoint union of equivariant Chow
covers of the irreducible components of X. Let Y; be a I'-stable closed subscheme
of X of dimension smaller than that of X, so that X¢ — X is an isomorphism on
the complement of Y;. Then repeat the process on Y7, constructing an equivariant
Chow cover X; — Y7; take Y5 C Y7 so that this map is an isomorphism off Y5, and
take an equivariant Chow cover Xy — Y. This process stops after at most dim(X)
steps, and the variety X' can be taken to be the disjoint union of these X;, with
the induced morphism to X, and one can take S = Y;. The conditions of Lemma 2
are clear, since every subvariety of X intersects in an open subset with one of the
relatively open sets over which some X; — Y; is an isomorphism.

The deduction of the corollary to Theorem 1 from the theorem is exactly as in
[3, §1.3]: for (i) one uses the existence of a Chow cover to reduce to the case where
X is projective; then moving in a Chow variety of cycles to a point (cycle) fixed by
the solvable group; (ii) follows from the fact that the group of cycles algebraically
equivalent to zero modulo those rationally equivalent to zero is divisible.

3. PROOF OF THEOREM 2

Now we assume that I' acts on X with only finitely many orbits. Let ¥ be an
arbitrary scheme, and take the trivial action of I" on Y. Theorem 2 will be an easy
consequence of the following lemma (for which the solvability of T is irrelevant).

Lemma 3.

(a) Every I'-stable closed subvariety of X xY has the form V x W, where V is
a T'-stable closed subvariety of X and W is a closed subvariety of Y.

(b) For such V and W, every eigenfunction for T in the field of rational func-
tions on V. x W has the form f - g, where f is an eigenfunction for I in
R(V) and g is in R(W)*.

Proof. To prove (a), let Z be a I'-stable closed subvariety of X x Y. For each orbit
closure V of X, let Zy be the set of y in Y such that V x {y} is an irreducible
component of Z N (X x {y}). The projection of Z into Y is the union of the sets
Zy, each of which is a constructible subset of Y. One of the Zy must be dense in
the projection, since there are only finitely many I'-orbits on X. This implies that
V x Zy is dense in Z, and it follows that Z = V x W, where W is the closure of
ZV inY.

For (b), let h be an eigenfunction for I' in R(V x W), with x its corresponding
character. There is an open set U C W of points w such that the restriction of h
to V' x {w} is a nonzero rational function h,, on V; this h,, is an eigenfunction in
R(V) with the same character x. Fix wyg € U, and set f = hy,,. For any w € U,
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hw/f is an eigenfunction with trivial character. Since T' has a dense orbit in V/,
such an eigenfunction is a constant g(w). This function g is a rational function on
W,and h = f - g, as required. O

Consider the commutative diagram

ALX@ATY —— AU(X x Y)

! !

AX®AY — A, (X xY)

It follows immediately from Lemma 3 that the top horizontal map is an isomor-
phism. Theorem 1 implies that the vertical maps are isomorphisms, so it follows
that the bottom map is an isomorphism.

The Corollary to Theorem 2 follows from a result of Ellingsrud and Strgmme [5]:
whenever X is a complete nonsingular variety such that the class of the diagonal
in X x X is in the image of A, X ® A, X, then the cycle map from A, X to H. X
is an isomorphism. The point is that if [6(X)] = >_ u; ® v;, then any z in A, X has
the form ) (u; - 2)v;, which implies that the v; generate A,X and H,X, and that
numerical equivalence implies rational equivalence.

4. PROOFS OF THEOREMS 3 AND 4

These theorems follow quite formally from the Kiinneth property of Theorem 2.
Theorem 3 is a special case of the following proposition.

Proposition. Suppose X is a complete scheme such that the Kinneth map A, X®
AY = A (X xY) is an isomorphism for all schemes Y. Then the Kronecker
duality maps A*X — Hom(A,X,Z) are isomorphisms.

Proof. We construct the inverse map from Hom(A;X,Z) to A¥X. Given a ho-
momorphism ¢: Ay X — 7Z, we must construct an element cys in A¥X. For every
morphism f: Y — X and m > k, we must construct a homomorphism from A,,(Y)
to Ak (Y). This homomorphism is defined to be the composite

AnY — Ap(X xY) = ) (4,X @ Ap_,Y)
— AR X RAp_tY — ZRAn_rY = An_rY.

The first map in this sequence is induced by the inclusion of Y in X xY by the graph
of f; the second is the isomorphism of Theorem 2; the third is the projection to the
factor of the direct sum; the fourth is the tensor product of ¢ with the identity on
A—Y; and the last is the usual identification of Z ® M with M for any abelian
group M. To be an element of A*X, these homomorphisms must satisfy three
conditions of compatibility: with proper push-forward (resp. flat pull-back, resp.
intersection with a divisor) for maps Y’ - Y — X, with Y/ — Y proper (resp. flat,
resp. determined by intersection with a divisor); see [6, §17] for precise statements.
All of these follow readily from the definitions, since each of the maps in the above
sequence is clearly compatible with such operations.

We next verify that the composite A*X — Hom(A;X,Z) — A¥X is the identity.
Given c € A*X, f: Y — X, and z € A,Y, let 77: Y — X x Y be the graph of
f, and let 7; and 7wy be the two projections from X x Y to X and Y. Since
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m oy = f and mp oy = idy, the fact that operational classes commute with
proper push-forward implies that

ffenz = (7r2)*('yf)*('yf*7r1*c N z) = (7r2)*(7r1*c n (’yf)*(z))

Now write (vf)«(2) = Y u; ® v; with u; € Ap»X and v; € Ap,_p;)Y. Since ¢
commutes with flat pull- back, m*c N (u; ® v;) = (¢ N u;) ® v;. The projection
(m2)« maps such a class to 0 unless p(i) = k, and in this case, (m2).((cNu;) ®v;) =
deg(c N u;) v;. Therefore f*cN z is the sum of the terms deg(c N w;) v; for which
p(i) = k. This shows that ¢ can be recovered from the functional deg(c N -) on
A X by applying the above sequence of three maps, which is the required assertion.
The same calculation shows that the other composite Hom(A;X,Z) — A¥X —
Hom(ArX,Z) is the identity as well. O

For c € A¥X, 2 € AxX, we write ¢(z) for deg(c N z). The first corollary was
proved in the proof of the proposition.

Corollary 1. Let f: Y —» X, c€ AKX, 2z € A, Y. Suppose (74)«(2) = 3 u; @ v;
with u; € Ay X, vi € Apy_p(5)Y . Then

ffenz = Z c(ug) v; .

p(i)=k

Corollary 2. Let c € AFX, ¢ € A!'X, 2z € AMX, and write 6.(2) = Y u; @ v;
with u; € Ap(i)X, v; € Ak+l—p(i)X- Then

(cud)(z) = Z c(ui) ' (v;) -

p(i)=k

Proof. We apply the first corollary with f the identity on X, v = 6 the diagonal
embedding. Since the cup product in A*X is defined by composition of the corre-
sponding operators, and since d.(2) = Y v; ® u;, (by permuting the two factors),
one has

(cud)ynz =cn(dnz =cn ( Z c'(vi)ui> = Z c (vi)(c N uy),

p(i)=Fk p(i)=k
and the corollary follows by taking the degrees of both sides. O

Parts (a) and (b) of Theorem 4 are special cases of Corollaries 1 and 2, respec-
tively.

It may be remarked that the general proof that the rings A* X are commutative
relies on resolution of singularities. For the varieties considered in Theorem 4,
however, the commutativity is obvious from the formula in (b), given the symmetry
of the diagonal embedding.

For spherical varieties, at least in characteristic zero, another proof of Theorem
3 can be given by constructing X’ — X as in Lemma 2, but using equivariant
resolution of singularities, and then using the cohomology version of the exact
sequence of that lemma;:

00— A*X — A*Sp A*X' — A*E
which has been proved by Kimura ([14, Thm. 2.3]); a similar induction reduces the

theorem to the case when X is smooth and projective, where one knows that the
Chow groups and topological homology groups are the same.
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