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1. Introduction

Of the geometric figures in a given family satisfying real conditions, some figures are real while
the rest occur in complex conjugate pairs, and the distribution of the two types depends subtly upon
the configuration of the conditions. Despite this difficulty, applications ([7, 35, 40]) may demand
real solutions. Fulton [12] asked how many solutions of an enumerative problem can be real. We
consider a special case of his question: Given a problem of enumerative geometry, are there real
conditions such that every figure satisfying them is real? Such an enumerative problem is fully real.

Bézout’s Theorem, or rather the problem of intersecting hypersurfaces in P7, is fully real. This
is readily seen for P2 and the argument generalizes to P”. Suppose X, consists of d real lines, Yy of
e real lines, and X meets Yj transversally in (necessarily) d- e real points. Let X and Y be defined
by suitably small generic real deformations of the forms defining Xy and Yy. Then X and Y are
smooth real plane curves of degrees d and e meeting transversally in d - e real points.

This argument was based upon a degenerate case free of multiplicities; X¢ and Yy are reduced
and meet transversally. While it is typical to introduce multiplicities (for example, in the proof of
Bézout’s Theorem in [36]) to establish enumerative formulas, multiplicities may lead to complex
conjugate pairs of solutions, complicating the search for real solutions.

All Schubert-type enumerative problems involving lines in P™ are fully real [45]. This fol-
lows from the existence of (multiplicity-free) deformations of generically transverse intersections of
Schubert varieties into sums of Schubert varieties. Refining this method of multiplicity-free de-
formations [46] yields techniques for showing other enumerative problems are fully real. Ronga,
Tognoli, and Vust [39] have shown the problem of 3264 conics tangent to five general plane conics
is fully real. Their analysis utilizes degenerate conditions having multiplicities.

Enumerative problems that we know are not fully real share a common flaw: they do not
involve intersecting general subvarieties. For example, Klein [27] showed that at most n(n — 2) of
the 3n(n — 2) flexes on a real plane curve of degree n can be real. These flexes are the intersection
of the curve with its Hessian determinant, not with a general curve of degree 3(n —2). This problem
has been revisited by Wall [51]. For the problem of intersecting hypersurfaces in a complex torus
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defined by polynomials with few monomials, Khovanskii [24] gave an upper bound on the number of
real points of intersection, independent of the total number of points in such an intersection. These
are not generic hypersurfaces with given Newton polytope. Even generic hypersurfaces may fail to
have all their points of intersection be real: For general a,b € R, the system a = z°y>,b = z7y°
has at most 4 real solutions, but has 24 solutions in (C*)™, by the Theorems of Kouchnirenko,
Bernstein, and Khovanskii ([3, 31, 23]).

We are unaware of a good theoretical framework for studying fully real enumerative problems
and it is not known how common it is for an enumerative problem to be fully real. Here are some
examples of enumerative problems worth considering;:

(1) Are there conditions on lattice polytopes Aq,..., A, in Z™ which ensure there exist real
polynomials fi,..., f, where A; is the Newton polytope of f; and all solutions to the
system f; = --- = f, = 0in (C*)™ are real? One could also seek better bounds on the
number of real solutions in the spirit of [49]. A (conjectural) bound is due to Itenberg and
Roy [21].

(2) Generalize the results of [45] and [46]: Are other (all?) Schubert-type enumerative prob-
lems on flag varieties fully real?

(3) All known examples involve spherical varieties ([6, 28, 33]). Which enumerative problems
on spherical varieties are fully real?

(4) In [46] all problems of enumerating lines incident upon subvarieties of fixed dimension and
degree in P™ are shown to be fully real. What is the situation for rational curves of higher
degree? (A rational curve of degree 0 is a point, so degree 0 is Bézout’s Theorem.) For
example, for which positive integers d do there exist 3d — 1 real points in P2 such that the
Kontsevich number Ny of degree d rational curves passing through these points ([30, 41])
are all real? For an introduction to these questions of quantum cohomology, see the paper
by Fulton and Pandharipande [13] in this volume.

This note is organized as follows: In §2 we discuss some examples of fully real enumerative
problems for which multiplicity-free deformations play a central role. This technique is illustrated
in §3, where we show that there are nine real Veronese surfaces in P® such that the 11010048 planes
meeting all nine are real. Next is a discussion of the work of Ronga, Tognoli, and Vust [39] on the
problem of conics. We conclude with a description of some computational work on related questions
and a conjecture of Shapiro and Shapiro regarding the second question above.

2. Effective Rational Equivalence

A common feature of many fully real enumerative problems are multiplicity-free deformations
of intersection cycles. Effective rational equivalence is a precise formulation of this for Grassmann
and flag varieties.

2.1. Real effective rational equivalence. Varieties will be quasi-projective, reduced, com-
plex and defined over the real numbers, R. Let X be a Grassmann or flag variety, G a linear
algebraic group acting transitively on X, and B a Borel subgroup of G. The letters U and V will
denote smooth rational varieties. Let the real points Y (R) of a variety Y be equipped with the
classical topology.

A subvariety 2 C U x X (or £ — U) with generically reduced equidimensional fibres over U
is a family of (multiplicity-free) cycles on X over U. We assume all families are G-stable; if YV
is a fibre of Z over U, then so are all translates of Y. Let ChowX be the Chow variety of X
parameterizing cycles of the same dimension and degree as Z,, [42, §1.9]. Associating a point u of
U to the fundamental cycle of the fibre =, determines a morphism ¢ : U — Chow X. In fact, it
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suffices for U to be normal ([29, §1] or [11, §3]). One may also see this as follows: If C C U is
a smooth curve, then Z|c — C is flat and the canonical map of the Hilbert scheme to the Chow
variety [37, §5.4] shows ¢|c is a morphism. By Hartogs’ Theorem on separate analyticity, ¢ is in
fact a morphism. For a discussion of Chow varieties in the analytic category (which suffices for our
purposes), see [2].

Any positive cycle Y on X is rationally equivalent to a positive integral linear combination of
Schubert cycles. This rational equivalence occurs within the closure of B - Y in Chow X since B-
stable cycles of X (B-fixed points in B-Y’) are integral linear combinations of Schubert cycles [17].
If any coefficients in this linear combination exceed 1, this stable cycle has multiplicities.

A family Z — U of multiplicity-free cycles on X has effective rational equivalence with witness
Z if there is a cycle Z € ¢(U) which is a sum of distinct Schubert varieties, hence multiplicity-free.
An effective rational equivalence is real if Z € ¢(U(R)) and each component of Z is a Schubert
variety defined by a real flag.

Suppose 21 — Ui,...,Z — U, are G-stable families of multiplicity-free cycles on X. By
Kleiman’s Transversality Theorem [25], there is a nonempty open set U of HI;ZI U; consisting
of b-tuples (uy,...,up) such that the fibres (Z1)q,,...,(Ep)y, meet generically transversally. Let
Z C U x X be the resulting family of intersection cycles and call = — U the intersection problem
given by =1, ..., 5.

THEOREM 1 ([45]). Any intersection problem given by families of Schubert varieties in the
Grassmannian of lines in projective space has real effective rational equivalence.

We present a synopsis of the proof: Let X be the Grassmannian of lines in P” and suppose = — U

is an intersection problem given by families of Schubert varieties. A sequence ¥g — Vp,..., ¥, = V.
of families of multiplicity-free cycles on X is constructed with each V; rational, where ¥y — 1} is the
family 2 — U, V, is a point, and ¥, a union of distinct real Schubert varieties. For each ¢ =0,...,¢c,

let G; C Chow X be ¢(V;(R)), the set of fibres of the family ¥; — V; over V;(R).

Then G; C G;_1: For any v € V;(R) a family T' = C of cycles is constructed with C' a smooth
rational curve, the cycle (¥;), a fibre over C(R), and all other fibres of T are fibres of ¥; ;. This
family induces a morphism ¢ : C' — Chow X, which shows (¥;), € G;_1 since ¢(C(R)) — {(¥;),} C
Gi_1. It follows that ¥, € Go = #(U(R)), showing Z — U has real effective rational equivalence. O

While it is difficult to describe an intersection of several Schubert varieties, it is sometimes
possible to describe the limiting position of such an intersection as the Schubert varieties degenerate
to the point of attaining excess intersection. This is the aim of effective rational equivalence. For
example, the ‘limit cycle’ ¥, in the discussion of Theorem 1 is generally not an intersection of
Schubert varieties. However, it is a deformation of such cycles.

An enumerative problem of degree d is an intersection problem = — U with finite fibres of
cardinality d. Tt is fully real if there is a fibre Z, with u € U(R) consisting entirely of real
points. Here, u = (u1,...,up) with u; € U;(R) and =, is the transverse intersection of the cy-
cles (B1)uys- -5 (Zb)uy-

The set M C Sym?X of degree d zero cycles consisting of d distinct real points of X is an
open subset of (Sym?X)(R). Thus & — U is fully real if and only if it has real effective rational
equivalence. Hence Theorem 1 has the following consequence:

COROLLARY 2 ([45]). Any enumerative problem given by Schubert conditions on lines in pro-
jective space is fully real.

2.2. Products in A*X. The variety X is the quotient G/P of G by a parabolic subgroup P.
A Schubert subvariety Q. F, of X is given by a complete flag F, and a coset w of the corresponding
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parabolic subgroup of the symmetric group [5, Ch. IV, §2.5]. Call w the type of Q,F,. A Schubert
class g, is the cycle class of Q,F,.

Let 2y = Uy,...,Zy = Uy be families of cycles on X giving an intersection problem = — U.
Then fibres of Z — U have cycle class [[; 8;, where f; is the cycle class of fibres of Z; — U;. Suppose
2 — U has effective rational equivalence with witness Z. Let ¢,, count the components of Z of type
w. Since Z is rationally equivalent to fibres of = — U, we deduce the formula in A*X.

b
18 = Xewou
i=1 w

2.3. Pieri-type formulas. Given such a product formula with each ¢,, < 1, the action of a
real Borel subgroup B of G shows that the family of intersection cycles = — U has real effective
rational equivalence: Let Y be a fibre of = — U over a real point of U. Then the closure of the orbit
B(R) -Y in Chow X (R) contains a B(R)-fixed point Z as Borel’s fixed point Theorem [4, II1.10.4]
holds for B(R)-stable real analytic sets. Moreover, Z is multiplicity-free as ¢,, < 1.

In the Grassmannian of k-planes in P™, a special Schubert variety is the locus of k-planes
having excess intersection with a fixed linear subspace. A special Schubert variety of a flag variety
is the inverse image of a special Schubert variety in a Grassmannian projection. Pieri’s formula
for Grassmannians [16, 18] and the Pieri-type formulas for flag varieties [32, 44] show that the
coefficients ¢,, in the product of a Schubert class with a special Schubert class are either 0 or 1. It
then follows from the previous paragraph that any intersection problem given by a Schubert variety
and a special Schubert variety has real effective rational equivalence. We use this to prove the
following theorem.

THEOREM 3 ([46]). Any enumerative problem in any flag variety given by five Schubert varieties,
three of which are special, is fully real.

PROOF. First pair each non-special Schubert variety with a special Schubert variety. The
associated families = — U and Z' — U’ of intersection cycles have real effective rational equivalence
with witnesses Z and Z', respectively.

Since the coefficients ¢, in the Pieri-type formulas are either 0 or 1, a zero-dimensional inter-
section of three real Schubert varieties in general position where one is special is a single real point.
Considering components of Z and Z' separately, we see that if Z, Z', and the third special Schubert
variety Y are in general position with Y real, then they intersect transversally with all points of
intersection real. Suitably small deformations of Z and Z' into real fibres of Z and Z' preserve the
number of real points of intersection, completing the proof. O

3. The Grassmannian of planes in P°

The Grassmannian of planes in P?, G35, is a 9-dimensional variety. If K is a plane in P°, then
the set Q(K) of planes which meet K is a hyperplane section of G2 5 in its Pliicker embedding. Thus
the number of planes which meet 9 general planes is the degree of G35, which is % = 42 [43].
This variety is the smallest dimensional flag variety for which an analog of Corollary 2 is not known.

We illustrate the methods of §2 to prove the following result:
THEOREM 4. There are 9 real planes in P such that the 42 planes meeting all 9 are real.

The Veronese surface in P® is the image of P2 under an embedding induced by the complete
linear system |O(2)|, and so it has degree 4.

COROLLARY 5. There are 9 real Veronese surfaces in P5 such that the 11010048 (= 4° - 42)
planes meeting all 9 are real.
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PROOF. Let z;; , 1 <i < j < 3, be real coordinates for P°. For ¢t # 0

4 2 2 2
(1) (z11z33 — t" 273, T11%22 — t° TY9, T11T23 — t T12T13,
2 2
Z12%33 — t T13T23, T13%az — ¢ T12L23, T22¥33 — b T33)

generates the ideal of a Veronese surface, V(t) (cf. [50, p. 142]), which is real for ¢ € R. This family
of Veronese surfaces is induced by the (real) C*-action on the space of linear forms on P5:

Ti; tjiixij for t € C*.

The ideal of the special fibre V(0) of this family is generated by the underlined terms, so V(0) is the
union of the four planes given by the ideals:

(2) <.’L‘11,.Z'22,£E33) (xihmjjamij): 7'.7 = 127 13723

By Theorem 4, there exist 9 real planes Kj,..., Ky such that ﬂ?:l Q(K;) is a transverse in-
tersection consisting of 42 real planes. This property of Ki,..., Ky is preserved by small real
deformations. So for each 1 < i < 9, there is a neighborhood W; of K; in G5 (R) such that if
K;eV;for1<i<09,then ﬂ?zl Q(K]) is transverse and consists of 42 real planes.

For each 1 <4 <9, choose a set of real coordinates for P5 so that the four planes, K; ;, for j =
1,2,3,4, defined by the ideals of (2) are in W;. In these same coordinates, consider the family V;(#)
of real Veronese surfaces given by the ideals (1) with special member V;(0) = K; 1 +K; 2+ K; 3+ K; 4.
If the sets of coordinates are chosen sufficiently generally, then there exists € > 0 such that whenever
t € (—¢,¢€), there are exactly 4 - 42 real planes meeting each of V;(t),. ..,V (t). Indeed, the set of
planes meeting each of V;(0),...,Vy(0) is

9
ﬂ QK1) + UKip) + QUK3) + QK 4)),
i=1
which is a transverse intersection consisting of 4% - 42 real planes: Since K;jeWifor1 <i<9
and 1 < j < 4, this follows if the 4° sets of 42 planes ﬂ?:l Q(K,,,) given by all sequences [;, where
1<; <4for1<1i<9, are pairwise disjoint. But this may be arranged when choosing the sets of
coordinates. O

LEMMA 6. The intersection problem of planes meeting 4 given planes in P° has real effective
rational equivalence.

PrROOF OF THEOREM 4 USING LEMMA 6. Partition the 9 planes into two sets of 4 and a
singleton. Apply Lemma 6 to the intersection problems = — U, Z' — U’ given by each set of 4,
obtaining witnesses Z and Z'. Arguing as for Theorem 3 completes the proof. O

PROOF OF LEMMA 6. We use an economical notation for Schubert varieties. A partial flag
Ay C A; C Ay C P5 determines a Schubert subvariety of Gays:

O(Ao, A1, As) :={H € Gy5 | dim H( | 4; > i, for i =0,1,2}.

If A; is a hyperplane in A;; or if Ay = P%, then it is no additional restriction for dim H [ 4; > j.
We omit such inessential conditions. Thus, if u C M C A is a partial flag, then Q(u), Q(-, M), and
Q(p,«,A) are, respectively, those planes H which meet u, those H with dim H N M > 1, and those
H C A which also meet pu.

Let = C U x G5 be the intersection problem of planes meeting four given planes. Then
U C (Gap5)? is the set of 4-tuples of planes (K1, K2, K3, K4) such that ﬂ;l:l Q(Kj;) is a generically
transverse intersection and the fibre of = over (K, K2, K3, K4) is ﬂ?zl Q(K;). We show = — U
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has real effective rational equivalence by exhibiting a family ¥ C V x Gy, satisfying the four
conditions:

(a) V isrational. In fact V is a dense subset of Magyar’s configuration variety Fp [34], where

D is the diagram
W

(b) V has a dense open subset V° such that the fibres of ¥|y. are also fibres in the family
E-=U.

(c) V has a rational subset V' such that the fibres of ¥|y are unions of distinct Schubert
varieties, real for real points of V.

(d) V(R) C V°(R). Hence ¢(V'(R)) C #(U(R)). Together with (c), this shows E — U has
effective rational equivalence.

Let V C (Gi1,5)% x (G3,5)® be the locus of sextuples (1, p2, A; M1, M2, L) such that u; C M;,
i=1,2, p1, 2 C L, \C My (Mo, and p; ¢ Mj,i # j. We illustrate the inclusions:

M, L M,
<]

Let V° C V be the dense locus where (u;, M;) = P5 for i # j. Then A = M; (M, and
L = (u1, pu2). Let V! C V be the locus where p; (| u2 is a point, so that (M7, M) is a hyperplane.
Then V' is rational and V'(R) C V°(R), proving (d).

We define the family ¥. For v = (u1, pa, \; M1, Mo, L) € V, let ¥, be the cycle

3) Q) ()06, M) + Qua) ()06, M) +
{H €Oy, L) | H(\p2# 0} + {H e QN M)|dimH(| M, >1}.

Let ¥ C Ga;5 x V be the subvariety with fibre ¥, over points v € V.
Suppose v € V°. Since L = {1, u2) and py (2 = 0,

Q) (\Quz) = {H € Qu, L) | H [ \ = # 0},

as any plane meeting both p; and ps must intersect their span L in at least a line. Similarly,
Q(e, M1) N Q2(e, M>) is the fourth term of the cycle (3): If I; is a line in H (| M; for i = 1,2, then
LNl € A = My M2. Thus we see that ¥, = ﬂle () + (-, M;)). This intersection is
generically transverse as each pair of subspaces (u1,p2), (M1, Ms), and (u;, M;) for i # j is in
general position.

We claim ¥, is a fibre of 2 — U: Let K;, K] for ¢ = 1,2 be planes such that p; = K; [ K| and
M; = (K;, K}). Then Q(K;) N QUK]) = Q(pi)+Q(e, M;): If a plane H meets both K; and K, either
it meets their intersection u;, or else it intersects their span M; in at least a line. Moreover, while
K;, K} are not in general position, this intersection is generically transverse as a proper intersection
of a Schubert variety with a special Schubert variety is necessarily generically transverse [47, §2.7].
Thus ¥, = Z(k, k! K. K}), Proving (b).

To show (c), let v = (1, 2, \; M1, M2, L) € V'. Set p = u1 [ 2, & point and A = (M, Ms), a
hyperplane. Then (1, u2) is a plane v contained in L and M; [ M> is a plane N containing A. We
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illustrate these inclusions:

To complete the proof, we show ¥, is the sum of Schubert varieties

Q(p’17'7A) + Q(p7 M?) + Q(N%%A) + Q(pa Ml) +
Q,v) + Qp, L) + QA+, A) + Q(, N).
First note that
Q) ()26, Ma) = Qpaa o, A) + Q(p, M) :
If H € Q(p1) N Q(, My), then either H (p1 ¢ M2, so that H C (u1, Ma) = A, or else p € H so that
H € Q(p, M,). Similarly, we have Q(us) (Q(-, M1) = Q(pa,,A) + Q(p, M7). These intersections
are generically transverse, as they are proper.
Furthermore,

(HeQu,L) [ H( i £0} = Q6v) + A, L) :
Either H(p1 Np2 = 0, thus dim H ({1, p2) > 1, and so H € Q-,v), or else p € H, so that
H € Q(p, L). Finally,

{H € Q(\ M) | dim H (| My > 1} = Q(A,,A) + Q,N):

Either H (Y My ¢ M, thus H C (M1, M>) = A and so H € Q(\,+,A), or else dim H (| My [ M2 > 1,
so that H € Q(-, N). O

Note that for v € V', the fibre ¥, is not an intersection of four Schubert varieties of type Q(K),
for K a plane: The Schubert subvariety Q(., N) is the locus of planes which contain a line [ C N
and hence it consists of all planes of the form (g,!), where [ C N is a line and ¢ € P®\ [ is a point.
Suppose ¥, C Q(K) so that (s, N) C Q(K). Then for every linel C N and point g € P°\[, we have
K (\{g,1) # 0. This implies that K (I # § for every line I C N, and hence that dim K (\N > 1.
Similarly, dim K (v > 1, and so K (YN (v # 0, thus p € K. This shows Q(p) C Q(K) and so if
T, C QK1) N QUK NQUK3) () Q(Ky4), then this intersection must contain Q(p). Hence ¥, is a
proper subset of the intersection.

If a; = dim A;, then 04, 4,45 is the rational equivalence class of 2( A4y, A1, A2). By the observation
of §2.2, Lemma 6 implies the formula in A*Ga5:

(0245)" = 3-0035 + 2-0125 + 30134,

which may be determined by other means from the classical Schubert calculus.

4. Real Plane Conics

In 1864 Chasles [9] showed there are 3264 plane conics tangent to five general conics. Fulton [12]
asked how many of the 3264 conics tangent to five general (real) conics can be real. He later
determined that all can be real, but did not publish that result. More recently, Ronga, Tognoli, and
Vust [39] rediscovered this using different methods. We conclude this note with an outline of their
work. The author is grateful to Bill Fulton and Felice Ronga for explaining these ideas.
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Let X be the variety of complete plane conics, a smooth variety of dimension 5. Let the
hypersurfaces H,, H;, and Hc, be, respectively those conics containing a point p, those tangent to
a line [, and those tangent to a conic, C. If p, i, and C are, respectively, their cycle classes in A'X,
then

C =2 + 2,
which may be seen by degenerating a conic into two lines (cf. Figure 2). Then the number of conics
tangent to five general conics is the degree of

C® = 32(p° + 5p*-1 + 10p%-1% + 10p2-03 + 5p-1* + I9).

The monomials p7 - [®=F for j = 0,...,5, have degrees 1,2,4,4,2,1, giving Chasles’ number of
32(1 + 10 + 40 + 40 + 10 + 1) = 3264 [26, §9].

THEOREM 7 (Ronga-Tognoli-Vust). There are five real conics in general position such that all
of the 3264 conics tangent to the five are real.

SKETCH OF PROOF. The strategy is to realize the five conics as a deformation of five degenerate
conics consisting of a (double) point on a (double) line giving a maximal number of real conics. The
first step is to show that for each j, there are j lines and 5 — j points such that the 2™"17:5=7} conics
tangent to the lines and containing the points are real. In [39], this step is done explicitly with
a precise determination of which configurations of points and lines are ‘maximal’; that is, have all
solutions real. Remarkably, there are five lines l1,...,[5 and five real points py,...,ps with p; € [;

such that each of the 32 terms in
5

m (Hpi + Hli)

i=1
is a transverse intersection with all points of intersection real. This gives 102 real conics. Such a
configuration is illustrated in Figure 1, which also shows the 4 conics incident upon p; and ps, and
tangent to lo, l4, and l5 (solid lines).

FIGURE 1. A Maximal Configuration

The maximality of such a configuration is stable under small real deformations of its points and
lines. Thus we may choose real lines I{,.. ., where
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(1) p; € I} and I} is distinct from [;, for i = 1,...,5,

(2) Any configuration obtained from a maximal configuration by substituting some primed
lines for the corresponding unprimed lines is maximal.

(3) The lines I; and [} partition the real tangent directions at p; into two intervals. The con-
figurations described in condition (2) give finitely many (273) real conics passing through
pi- We require that all tangent directions to these conics at p; lie within the interior of
one of these two intervals.

The relation C = 2p + 20 may be obtained by considering a conic C' near a degenerate conic
consisting of two lines [, I’ meeting at a point p, and a pencil of conics. For any conic ¢ in that pencil
tangent to one of the lines, there is a nearby conic ¢’ in that pencil tangent to C. However, for
every conic ) in the pencil containing p, there are two nearby conics Q', Q" in that pencil tangent
to C. Moreover, if () is real, then ' and Q" are real if and only if the real tangent line to ) at p
does not intersect C'. This is illustrated in Figure 2.

FiGURE 2. Deforming a degenerate conic

By condition (3), we may choose real conics Ci, ..., Cs with C; near the degenerate conic I; + 1}
and, if () is a conic in
5
(4) () (H,. + H, + Hy)
i=1
containing p;, the the real tangent line to @) at p; does not intersect C;. If, in addition, the conics
C; are sufficiently close to each degenerate conic, then there will be 3264 real conics tangent to each
of Cl,...,C5.

Indeed, suppose Hc, replaces Hy,, + Hj, + Hy in the intersection (4). Then for any conic ¢ in
(4) that is tangent to either l; or I], there is a nearby real conic ¢’ tangent to Cy which satisfies the
other conditions on ¢ (since these other conditions determine a pencil of conics). Similarly, if @ is
a conic in (4) containing p;, then there are two nearby real conics @' and Q" tangent to C; which
satisfy the other conditions on (). If Hc, now replaces Hp, + H, + Hy, in the new intersection
He, N ﬂf:2 (Hpi + H;, + Hl;), then each conic tangent to Iy and ) gives a conic tangent to Co,
but each conic through ps gives two conics tangent to Cy. Replacing He,, Hc,, and Hc, in turn
completes the argument. O

Ronga, Tognoli, and Vust gave a careful version of the argument in the previous paragraph.
They considered the incidence variety of sextuples of conics, the first tangent to the last five, and
studied the singularities of the projection to the last five conics at points lying above the five-tuple
of degenerate conics (I1 +11,...,l5 +1}).

Fulton’s argument differs primarily in the last step. He first checks that a maximal configuration
is obtained by a small generic deformation of the configuration of lines defining a regular pentagon
and points at the midpoints of the sides. This defines 102 real conics. For each of these lines, he
chooses a hyperbola where each branch lies very close to the line on one side of the point and crosses
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the line near the point. Then, for each conic among the 102, he argues there are 32 nearby conics
tangent to all five hyperbolas.
The proof we gave used the effective rational equivalence illustrated in Figure 2:

He ~ 2Hp + H; + Hyp,

where [, 1’ form a degenerate conic with p = [[)I'. This deformation to a cycle having multiplicities
(the coeflicient 2 of H,) is unavoidable: The variety X, and thus Chow X has an action of G =
PGL(3,C). The locus of hypersurfaces Ho on ChowX is a single 5-dimensional G-orbit. This
family cannot have effective rational equivalence. If Z is a cycle in the closure of this locus, then Z
is in a G-orbit of dimension at most 4. Thus if Z = H, + Hy + H; + Hy, then the dimension of
the G-orbit of (p,p',1,1') in the product of P?’s and their duals is at most 4. But this is impossible
unless either p = p’ or | =I'. Figure 2 illustrates the case p = p'.

5. Computational aspects

Multiplicity-free deformations have applications beyond showing the existence of real solutions.
When the deformations are explicitly described, it is possible to obtain explicit solutions to the
enumerative problem using continuation methods of numerical analysis [1] to follow real points in
the degenerate configuration backwards along the deformation. Algorithms to accomplish this have
been developed for intersecting hypersurfaces in a complez torus [10, 20]. Huber has implemented
one in the software package PELICAN (http://math.cornell.edu/ birk).

Recently, the Pieri-type deformations of [45, 47] have been used to construct continuation algo-
rithms for finding explicit solutions to Pieri-type enumerative problems on Grassmann varieties [19].
The polynomial systems which arise are over-determined, a novel feature of these continuation al-
gorithms. Techniques based upon flat deformations of the Grassmann variety, either into planes
(induced by a Grobner basis of the Pliicker ideal with square-free initial ideal [50]) or into a toric
variety (induced by a SAGBI (Subalgebra Analog of Grébner Basis for Ideals) basis [22, 38] for the
bracket algebra [48]) are also employed for problems involving Schubert hypersurfaces [19]. These
techniques have an advantage over a traditional continuation (cf. [8, 7]) in that no divergent paths
are followed. These last two methods may apply when a variety has a square-free initial ideal, or
when its coordinate ring has a SAGBI basis inducing a flat deformation into a toric variety. This is
the case, for example, for flag varieties and many Schubert varieties [14].

We conclude with a discussion of an intriguing conjecture of Shapiro and Shapiro. A point on
the rational normal curve defines an osculating flag; the k-dimensional subspace of that flag is the
span of the point and the first k¥ — 1 derivatives of the curve at that point.

CONJECTURE 8 (B. Shapiro and M. Shapiro). An enumerative problem involving Schubert con-
ditions on a Grassmann or flag variety has all real solutions if the conditions are given by osculating
flags at (distinct) real points.

Such enumerative problems arise in the control of linear systems by output feedback [7]. Based
upon a degenerate case, J. Rosenthal suggested that there exist real osculating flags giving all real
solutions. This inspired us to use computer algebra to search for some evidence of this conjecture.
The results of this search are compelling. For each enumerative problem involving Schubert hyper-
surfaces on a flag variety of dimension at most 10, we have verified the conjecture in at least 2 and
as many as 40 instances. We describe one such calculation in detail.

Let K be a 7x 5 matrix whose first two rows are indeterminants and last 5 constitute an identity
matrix. This matrix K gives local coordinates on the Grassmannian of 5-dimensional subspaces of
C": the column span of K is a 5-dimensional subspace of C7. Let F(s) be the transpose of the
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matrix:
1000000 100000s 10000s> 1000s® 100s* 10s® s
0 100000 20000s  3000s> 400s® 50s* 6s°

The column span of F(s) is a 2-dimensional subspace which osculates the rational normal curve
defined by the first column of F'(s). Set f(s) := det[F(s) : K], the equation for K to meet F(s),
which defines a Schubert hypersurface. Thus

(£(1), £(2),...,f(10))

is the ideal of those 5-dimensional subspaces which meet each of F(1),...,F(10). We used the
computer algebra system SINGULAR, [15] to compute an elimination ideal of this system, obtaining
a degree 42 polynomial g as the eliminant. Then the realroot routine of MAPLE showed that ¢
had 42 real roots.
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