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Abstract. We establish the formula for multiplication by the class of a spe-
cial Schubert variety in the integral cohomology ring of the flag manifold. This
formula also describes the multiplication of a Schubert polynomial by either an
elementary or a complete symmetric polynomial. Thus, we generalize the classi-
cal Pieri’s formula for symmetric polynomials/Grassmann varieties to Schubert
polynomials/flag manifolds. Our primary technique is an explicit geometric de-
scription of certain intersections of Schubert varieties. This method allows us to
compute additional structure constants for the cohomology ring, some of which
we express in terms of paths in the Bruhat order on the symmetric group, which
in turn yields an enumerative result about the Bruhat order.

Résumé

Nous établissons la formule pour la multiplication par la classe d’une variété de

Schubert spéciale dans l’anneau de cohomologie de la variété de drapeaux. Cette for-

mule décrit aussi la multiplication d’un polynôme de Schubert soit par un polynôme

symétrique élémentaire soit par un polynôme symétrique homogène. Ainsi nous généralisons

la formule classique de Pieri sur les polynômes de Schur/variétés de Grassmann ou cas

des polynômes de Schubert/variétés de drapeaux. Notre technique principale est une

description géométrique explicite de certaines intersections des variétés de Schubert.

Cette méthode nous permet de calculer quelques constantes de structure additionnelles

pour l’anneau de cohomologie, dont nous exprimons certaines en termes de châınes dans

l’ordre de Bruhat dans le groupe symétrique. Cette description induit à son tour un

résultat sur l’ordre de Bruhat.

1. Introduction

Schubert polynomials had their origins in the study of the cohomology of flag
manifolds by Bernstein-Gelfand-Gelfand [3] and Demazure [7]. They were later
defined by Lascoux and Schützenberger [17], who developed a purely combinatorial
theory.
For each permutation w in the symmetric group Sn there is a Schubert polyno-

mial Sw in the variables x1, . . . , xn−1. When evaluated at certain Chern classes,
a Schubert polynomial gives the cohomology class of a Schubert subvariety of the
manifold of complete flags in C n. In this way, the collection {Sw |w ∈ Sn} of
Schubert polynomials determines a basis for the integral cohomology of the flag
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manifold. Thus there exist integer structure constants cwuv defiined by the identity

Su ·Sv =
∑

w

cwuvSw.

No combinatorial formula is known, or even conjectured, for these constants. There
are, however, a few special cases in which they are known.
One important case is Monk’s formula [21], which characterizes the algebra

of Schubert polynomials. While this is usually attributed to Monk, Chevalley
simultaneously established the analogous formula for generalized flag manifolds in
a manuscript that was only recently published [6]. Let sk be the transposition
interchanging k and k + 1. Then Ssk = x1+ · · ·+xk = s1(x1, . . . , xk), the first
elementary symmetric polynomial. For any permutation w ∈ Sn, Monk’s formula
states

Sw ·Ssk = Sw · s1(x1, . . . , xk) =
∑

Swta b
,

where ta b is the transposition interchanging a and b, and the sum is over all
a ≤ k < b where w(a) < w(b) and if a < c < b, then w(c) is not between w(a) and
w(b).

The classical Pieri’s formula computes the product of a Schur polynomial by
either a complete or an elementary symmetric polynomial. Our main result is
a formula for Schubert polynomials and the cohomology of flag manifolds which
generalizes both Monk’s formula and the classical Pieri’s formula.
Let sm(x1, . . . , xk) and s1m(x1, . . . , xk) be respectively the complete and ele-

mentary symmetric polynomials of degree m in the variables x1, . . . , xk. When
evaluated at certain Chern classes, they become the cohomology classes of special
Schubert varieties. Let ℓ(w) be the length of a permutation w. We will show

Theorem 1. Let k,m, n be positive integers, and let w ∈ Sn.

I. Sw · sm(x1, . . . , xk) =
∑

v Sv, the sum over all v = wta1 b1 · · · tam bm, where

ai ≤ k < bi and ℓ(wta1 b1 · · · tai bi) = ℓ(w)+i for 1 ≤ i ≤ m with the integers

b1, . . . , bm distinct.

II. Sw · s1m(x1, . . . , xk) =
∑

v Sv, the sum over all v as in I, except that now
the integers a1, . . . , am are distinct.

Theorem 1 computes some of the structure constants in the cohomology ring
of the flag manifold. If n is taken large enough, equivalently, if the index of
summation is over v ∈ Sn+m, then these cohomological formulas become identites
among the Schubert polynomials.
These formulas were stated in a different form by Lascoux and Schützenberger

in [17], where an algebraic proof was outlined. They were later independently
conjectured in yet another form by Bergeron and Billey [2]. Our formulation facil-
itates our proofs. Using geometry, we expose a surprising connection to the clas-
sical Pieri’s formula (Lemma 11), from which we deduce Theorem 1. In Theorem
5 this connection is used to determine additional structure constants. Theorem
8 utilizes the formulas of Theorem 1 to give a formula for the multiplication of a
Schubert polynomial by a hook Schur polynomial, indicating a relation between
multiplication of Schubert polynomials and paths in the Bruhat order on Sn. This
is exploited in Corollary 9 to deduce an enumerative result about the Bruhat order
on Sn.
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This exposition is organized as follows: Section 2 contains preliminaries about
Schubert polynomials while Section 3 is devoted to the flag manifold. In Section 4
we deduce our main results from a geometric lemma proven in Section 5. Two ex-
amples are described in Section 6, illustrating the geometry underlying the results
of Section 5. We remark that while our results are stated in terms of the integral
cohomology of the complex manifold of complete flags, our results and proofs are
valid for the Chow rings of flag varieties defined over any field.
We would like to thank Nantel Bergeron and Sara Billey for suggesting these

problems and Jean-Yves Thibon for showing us the work of Lascoux and Schützenberger.

2. Schubert Polynomials

In [3, 7] cohomology classes of Schubert subvarieties of the flag manifold were
obtained from the class of a point using repeated correspondences in P1-bundles,
which may be described algebraically as “divided differences.” Subsequently, Las-
coux and Schützenberger [17] found explicit polynomial representatives for these
classes. We outline Lascoux and Schützenberger’s construction of Schubert poly-
nomials. For a more complete account, see [20].
For an integer n > 0, let Sn be the group of permutations of [n] = {1, 2, . . . , n}.

Let ta b be the transposition interchanging a < b. Adjacent transpositions si = ti i+1

generate Sn. The length, ℓ(w), of a permutation w is characterized by ℓ(wta b) =
ℓ(w)+1 if and only if w(a) < w(b) and whenever a < c < b, either w(c) < w(a) or
w(b) < w(c).
For each integer n > 1, let Rn = Z[x1, . . . , xn]. The group Sn acts on Rn by

permuting the variables. For f ∈ Rn, the polynomial f − sif is antisymmetric in
xi and xi+1, and so is divisible by xi−xi+1. Thus we may define the linear divided
difference operator

∂i = (xi − xi+1)
−1(1− si).

If w = sa1sa2 · · · sap is a factorization of w into adjacent transpositions with min-
imal length (p = ℓ(w)), then the composition of divided differences ∂a1 ◦ · · · ◦ ∂ap
depends only upon w, defining an operator ∂w for each w ∈ Sn. Let w0 be the
longest permutation in Sn, that is w0(j) = n+1−j. For w ∈ Sn, define the Schubert
polynomial Sw by

Sw = ∂w−1w0

(

xn−1
1 xn−2

2 · · · xn−1

)

.

The degree of ∂i is −1, so Sw is homogeneous of degree
(

n

2

)

− ℓ(w−1w0) = ℓ(w).
Let S ⊂ Rn be the ideal generated by the non-constant symmetric polynomials.

The set {Sw |w ∈ Sn} of Schubert polynomials is a basis for Z{xi1
1 · · · x

in−1

n−1 | ij ≤
n−j}, a transversal to S in Rn. Thus Schubert polynomials are explicit polynomial
representatives of an integral basis for the ring Hn = Rn/S.
Recently, other descriptions have been discovered for Schubert polynomials [1,

4, 10, 11]. One may define Schubert polynomials Sw for all w ∈ S∞ =
⋃∞

n=1 Sn.
Then {Sw |w ∈ S∞} is an integral basis for the polynomial ring Z[x1, x2, . . . ].
While our methods involve cohomology calculations and so are a priori valid only
in the rings Hn, they imply identities among Schubert polynomials in the ring
Z[x1, x2, . . . ].

A partition λ is a decreasing sequence λ1 ≥ λ2 ≥ · · · ≥ λk of positive integers,
called the parts of λ. Given a partition λ with at most k parts, there is a Schur
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polynomial sλ = sλ(x1, . . . , xk), which is symmetric in the variables x1, . . . , xk.
For a more complete treatment of Schur polynomials, see [19].
The collection of Schur polynomials forms a basis for the ring of symmetric

polynomials, Z[x1, . . . , xk]
Sk . The Littlewood-Richardson rule is a formula for the

structure constants cλµν for this basis, called Littlewood-Richardson coefficients,
which are defined by the identity

sµ · sν =
∑

λ

cλµν sλ.

If λ and µ are partitions satisfying λi ≥ µi for all i, we write λ ⊃ µ. This defines a
partial order on the collection of partitions, called Young’s lattice. Since cλµν = 0
unless λ ⊃ µ and λ ⊃ ν (cf. [19]), we see that In,k = {sλ |λ1 ≥ n− k} is an ideal.
Let An,k be the quotient ring Z[x1, . . . , xk]

Sk/In,k.
To a partition λ we may associate its Young diagram, also denoted λ, which is

a left-justified array of boxes in the plane with λi boxes in the ith row. If λ ⊃ µ,
then the Young diagram of µ is a subset of that of λ, and the skew diagram λ/µ
is the set theoretic difference λ − µ. If each column of λ/µ is either empty or a
single box, then λ/µ is a skew row of length m, where m is the number of boxes
in λ/µ. The transpose µt of a partition µ is the partition whose Young diagram
is the transpose of that of µ. We call the transpose of a skew row a skew column.
The map defined by sλ 7→ sλt is a ring isomorphism An,k → An,n−k.

If w has only one descent (k such that w(k) > w(k+1)), then w is said to be
Grassmannian of descent k and Sw is the Schur polynomial sλ(x1, . . . , xk). Here λ
is the shape of w, the partition with k parts where λk+1−j = w(j)−j. For integers
k,m define r[k,m] and c[k,m] to be the Grassmannian permutations of descent
k with shapes (m, 0, . . . , 0) = m and (1m, 0, . . . , 0) = 1m, respectively. These are
the m+ 1-cycles

r[k,m] = (k+m k+m−1 . . . k+2 k+1 k)

c[k,m] = (k−m+1 k−m+2 . . . k−1 k k+1).

3. The Flag Manifold

Let V be an n-dimensional complex vector space. A flag Fq in V is a sequence

{0} = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn−1 ⊂ Fn = V,

of linear subspaces with dimC Fi = i. The set of all flags is a 1
2
n(n−1) dimensional

complex manifold, called the flag manifold and denoted F(V ). Over F(V ), there
is a tautological flag Fq of bundles whose fibre at a point Fq is the flag Fq . Let
−xi be the Chern class of the line bundle Fi/Fi−1. Then the integral cohomology
ring of F(V ) is Hn = Z[x1, . . . , xn]/S, where S is the ideal generated by those
non-constant polynomials which are symmetric in x1, . . . , xn. This description is
due to Borel [5].
Given a subset S ⊂ V , let 〈S〉 be its linear span and for linear subspaces W ⊂ U

let U −W be their set theoretic difference. An ordered basis f1, f2, . . . , fn for V
determines a flag Eq ; set Ei = 〈f1, . . . , fi〉 for 1 ≤ i ≤ n. In this case, write
Eq = 〈f1, . . . , fn〉. A fixed flag Fq gives a decomposition due to Ehresmann [9] of
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F(V ) into affine cells indexed by permutations w of Sn. The cell determined by w
is

X◦
wFq = {Eq = 〈f1, . . . , fn〉 | fi ∈ Fn+1−w(i) − Fn−w(i), 1 ≤ i ≤ n}.

The complex codimension ofX◦
wFq is ℓ(w) and its closure is the Schubert subvariety

XwFq . Thus the cohomology ring of F(V ) has an integral basis given by the
cohomology classes1 [XwFq ], called Schubert classes, of the Schubert subvarieties.
Independently, Bernstein-Gelfand-Gelfand [3] and Demazure [7] related this

description to Borel’s, showing [XwFq ] = ∂w−1w0
[Xw0Fq ]. Later, Lascoux and

Schützenberger [17] defined Schubert polynomials, and since xn−1
1 xn−2

2 · · · xn−1

equals [Xw0Fq ], the class of a point, showed that [XwFq ] = Sw(x1, . . . , xn). We
adopt the convention of writing Sw for the Schubert class [XwFq ]. Since the com-
position

Z[x1, . . . , xn] →֒ Z[x1, . . . , xn+m] ։ Hn+m

is an isomorphism in low degrees, one may deduce identities of Schubert polyno-
mials from product formulas for Schubert classes.
This Schubert basis for cohomology diagonalizes the intersection pairing; If

ℓ(w) + ℓ(v) = dimF(V ) = 1
2
n(n− 1), then

Sw ·Sv =

{

Sw0 if v = w0w
0 otherwise

.

For each k ≤ n = dimV , the set of all k-dimensional subspaces of V is a k(n−k)
dimensional complex manifold, called the Grassmannian of k-planes in V , written
GkV . A fixed flag Fq gives a decomposition of GkV into cells indexed by partitions
λ with k parts, none exceeding n−k. The closure of such a cell is the Schubert
variety

ΩλFq = {H ∈ GkV | dimH
⋂

Fn−k+j−λj
≥ j for 1 ≤ j ≤ k},

whose codimension is λ1+· · ·+λk = |λ|.
The evaluation of a symmetric polynomial in k variables at the Chern roots

x1, . . . , xn of the dual of the tautological k-plane bundle on GkV identifies H∗GkV
with the ring An,k of §2. The classes [ΩλFq ] form a basis for the cohomology ring of
GkV and [ΩλFq ] is sλ(x1, . . . , xk). We will write sλ for the Schubert class [ΩλFq ].
If Y ⊂ V has codimension d, then GkY ⊂ GkV is a Schubert subvariety whose

indexing partition is dk, the partition with k parts each equal to d. It follows that
Ω(n−k)kFq = {Fk}, so s(n−k)k is the class of a point.
The Schubert basis diagonalizes the intersection pairing; For a partition λ, let

λc be the partition (n−k−λk, . . ., n−k−λ1). If |µ|+|λc| = k(n−k), then

sλc · sµ =

{

s(n−k)k if λ = µ
0 otherwise

.

The Schur polynomial sm is the complete symmetric polynomial of degree m in
x1, . . . , xk. The Schur polynomial s1m is the mth elementary symmetric polyno-
mial in x1, . . . , xk. Pieri’s formula is a formula for multiplying Schur polynomials

1Strictly speaking, we mean the classes Poincaré dual to the fundamental cycles in homology.
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by either sm or s1m . For sm, suppose |µ|+ |λc|+m = k(n− k), then

sµ · sλc · sm =

{

s(n−k)k if λ/µ is a skew row of length m
0 otherwise

.

For k ≤ n, the association Eq 7→ Ek defines a map π : F(V ) → GkV . The
functorial map π∗ on cohomology is induced by the inclusion intoHn of polynomials
symmetric in x1, . . . , xk. That is, An,k →֒ Hn. If λ is a partition with k parts and
w the Grassmannian permutation of descent k and shape λ, then π∗sλ = Sw.
Under the Poincaré duality isomorphism between homology and cohomology

groups, the functorial map π∗ on homology induces a a group homomorphism
π∗ on cohomology. While π∗ is not a ring homomorphism, is does satisfy the
projection formula (see Example 8.1.7 of [12]):

π∗(α · π∗β) = (π∗α) · β,

where α is a cohomology class on F(V ) and β is a cohomology class on GkV .

4. Pieri’s Formula for Flag Manifolds

An open problem is to find the analog of the Littlewood-Richardson rule for
Schubert polynomials. That is, determine the structure constants cuw v for the
Schubert basis of the cohomology of flag manifolds, which are defined by the
identity

Sw ·Sv =
∑

u

cuw vSu.

These constants are positive integers as they count the points in a suitable triple
intersection of Schubert subvarieties. They are are known only in some special
cases.
For example, if both w and v are Grassmannian permutations of descent k so

that Sw and Sv are pullbacks of classes from GkV , then the classical Littlewood-
Richardson rule gives a formula for the cwuv’s.
Another case is Monk’s formula, which states:

Sw ·Ssk =
∑

Swta b
,

the sum over all a ≤ k < b with ℓ(wta b) = ℓ(w)+1. We use geometry to generalize
this formula, giving an analog of the classical Pieri’s formula.

Let w, v ∈ Sn. Write w
r[k,m]
−−−→ v if there exist integers a1, b1, . . . , am, bm with

(1) v = wta1 b1 · · · tam bm ,
(2) ai ≤ k < bi and ℓ(wta1 b1 · · · tai bi) = ℓ(w) + i for 1 ≤ i ≤ m, and
(3) the integers b1, b2, . . . , bm are distinct.

Similarly, w
c[k,m]
−−−→ v if we have integers a1, . . . , bm as in (1) and (2) where now

(3)′ the integers a1, a2, . . . , am are distinct.

Our primary result is the following.

Theorem 1. Let w ∈ Sn. Then
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I. For all k and m with k +m ≤ n, we have Sw ·Sr[k,m] =
∑

w
r[k,m]
−−−→v

Sv.

II. For all m ≤ k ≤ n, we have Sw ·Sc[k,m] =
∑

w
c[k,m]
−−−→v

Sv.

Theorem 1 may be alternatively stated in terms of the structure constants cuw v.

Theorem 1′. Let w, v ∈ Sn. Then

I. For all integers k,m with k +m ≤ n, cvw r[k,m] =

{

1 if w
r[k,m]
−−−→ v

0 otherwise
.

II. For all integers k,m with m ≤ k ≤ n, cvw c[k,m] =

{

1 if w
c[k,m]
−−−→ v

0 otherwise
.

We first show the equivalence of parts I and II and then establish part I. An
order <k on Sn is introduced, and we show that cvw r[k,m] is 0 unless w <k v. A
geometric lemma enables us to compute cvw r[k,m] when w <k v.

Lemma 2. Let w0 be the longest permutation in Sn, and k+m ≤ n. Then

(1) w0r[k,m]w0 = c[n−k,m].

(2) Let w, v ∈ Sn. Then w
r[k,m]
−−−→ v if and only if w0ww0

c[n−k,m]
−−−−−→ w0vw0.

(3) The map induced by Sw 7→ Sw0ww0 is an automorphism of Hn.

(4) Statements I and II of Theorem 1′ are equivalent.

This automorphism Sw 7→ Sw0ww0 is the analog of the map sλ(x1, . . . , xk) 7→
sλt(x1, . . . , xn−k) for Grassmannians.

Proof: Statements (1) and (2) are easily verified, as w0(j) = n+ 1− j.
Statement (3) is also immediate, as Sw 7→ Sw0ww0 leaves Monk’s formula in-

variant and Monk’s formula characterizes the algebra of Schubert polynomials.
For (4), suppose k + m ≤ n and w, v ∈ Sn and let w denote w0ww0. The

isomorphism Sv 7→ Sv of (3) shows cvw r[k,m] = cv
w r[k,m]

. Part (1) shows cv
w r[k,m]

=

cvw c[n−k,m]. Then (2) shows the equality of the two statements of Theorem 1′.

Let <k be the transitive closure of the relation given by w <k wta b where
a ≤ k < b and ℓ(w ta b) = ℓ(w)+1. We call <k the k-Bruhat order, in [18] it is the
k-colored Ehresmanoëdre.

Lemma 3. If cvw r[k,m] 6= 0, then w <k v and ℓ(v) = ℓ(w) +m.

Proof: By Monk’s formula, w <k v if and only if Sv appears with a non-zero
(necessarily positive) coefficient when Sw(Stk k+1

)ℓ(v)−ℓ(w) is written as a sum of
Schubert classes.
Since r[k,m] = tk k+1 · tk k+2 · · · tk k+m, Monk’s formula shows that Sr[k,m] is a

summand of (Ssk)
m with coefficient 1. Thus the coefficient of Sv in the expansion

of Sw · (Ssk)
m exceeds that of Sv in Sw ·Sr[k,m]. Hence c

v
w r[k,m] = 0 unless w <k v

and ℓ(v) = ℓ(w) +m.
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In Section 5 we use geometry to prove the following lemma.

Lemma 4. Let w <k v be permutations in Sn. Suppose v = wta1 b1 · · · tam bm,

where ai ≤ k < bi and ℓ(wta1 b1 · · · tai bi) = ℓ(w) + i for 1 ≤ i ≤ m. Let d =
n− k −#{b1, . . . , bm}. Then

(1) There is a cohomology class δ on GkV such that π∗(Sw ·Sw0v) = δ · sdk .

(2) If w
r[k,m]
−−−→ v, then there are partitions λ ⊃ µ where λ/µ is a skew row

of length m whose jth row has length #{i | ai = j} and π∗(Sw · Sw0v) =
sµ · sλc =

∑

ν c
λ
µ νsνc.

We first use this to compute some structure constants. For ν a partition with k
parts, let w(ν) be the Grassmannian permutation of descent k and shape ν.

Theorem 5. Let w, v ∈ Sn and k ≤ n be an integer. Suppose w ≤k v and

ℓ(v) = ℓ(w) + m. Let a1, b1, . . . , am, bm be such that v = wta1 b1 · · · tam bm where

ai ≤ k < bi and ℓ(wta1 b1 · · · tai bi) = ℓ(w) + i for 1 ≤ i ≤ m. Let ν be a partition

with k parts.

(1) If w
r[k,m]
−−−→ v, the structure constant cvww(ν) equals the Littlewood-Richardson

coefficient cλµ ν, where λ/µ is a skew row of length m whose jth row has

length #{i | ai = j}.

(2) If w
c[k,m]
−−−→ v, the structure constant cvww(ν) equals the Littlewood-Richardson

coefficient cλµ ν, where λ/µ is a skew column of length m whose jth column

has length #{i | bi = j}.

Proof: Using the involution Sw 7→ Sw0ww0 , it suffices to prove part (1). Recall
that Sw(ν) = π∗(sν). As Sw0 and s(n−k)k are the classes of points, π∗Sw0 = s(n−k)k .
By the projection formula and part (2) of Lemma 4,

cvww(ν) s(n−k)k = π∗(c
v
ww(ν) Sw0) = π∗(Sw ·Sw0v ·Sw(ν))

= π∗(Sw ·Sw0v) · sν

=

(

∑

κ

cλµκsκc

)

· sν

= cλµν s(n−k)k .

Proof of Theorem 1′: By Lemma 3, we need only show that if w <k v and
ℓ(v)− ℓ(w) = m, then

cvw r[k,m] =

{

1 if w
r[k,m]
−−−→ v

0 otherwise
.

Begin by multiplying the identity Sw · Sr[k,m] =
∑

v cvw r[k,m]Sv by Sw0 v and
use the intersection pairing to obtain

Sw ·Sw0 v ·Sr[k,m] = cvw r[k,m] Sw0 .

Recall that Sr[k,m] = π∗sm(x1, . . . , xk). Apply the map π∗ and then the projection
formula to obtain:

π∗(Sw ·Sw0 v · π
∗sm) = cvw r[k,m] π∗(Sw0)

π∗(Sw ·Sw0 v) · sm = cvw r[k,m] s(n−k)k .
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By part (1) of Lemma 4, there is a cohomology class δ on GkV with

π∗(Sw ·Sw0 v) · sm = δ · sdk · sm

But sdk ·sm = 0 unless d+m ≤ n−k. Since d = n−k−#{b1, . . . , bm} ≥ n−k−m,

we see that cvw r[k,m] = 0 unless m = #{b1, . . . , bm}, which implies w
r[k,m]
−−−→ v.

To complete the proof of Theorem 1′, suppose that w
r[k,m]
−−−→ v. By part (1)

of Theorem 5, cvw r[k,m] = cλµm, where λ/µ a skew row of length m and m =

(m, 0, . . . , 0). But this equals 1 by the classical Pieri’s formula for the Grassman-
nian.

The formulas of Theorem 1 may be formulated as the sum over certain paths
in the k-Bruhat order. We explain this formulation here. A (directed) path in the
k-Bruhat order from w to v is equivalent to a choice of integers a1, b1, . . . , am, bm
with ai ≤ k < bi for 1 ≤ i ≤ m and if w(0) = w and w(i) = w(i−1) · tai bi , then
ℓ(w(i)) = ℓ(w) + i and w(m) = v. Here, the path is

w = w(0) <k w
(1) <k w

(2) <k · · · <k w
(m) = v.

Lemma 6. Let w, v ∈ Sn and k,m be positive integers. Then

(1) w
r[k,m]
−−−→ v if and only if there is a path in the k-Bruhat order of length m

such that

w(1)(a1) < w(2)(a2) < · · · < w(m)(am).

(2) w
c[k,m]
−−−→ v if and only if there is a path in the k-Bruhat order of length m

such that

w(1)(a1) > w(2)(a2) > · · · > w(m)(am).

Furthermore, these paths are unique.

Proof: If w
r[k,m]
−−−→ v, one may show that the set of values {w(i)(ai)} and the set

of transpositions {tai bi} depend only upon w and v, and not on the particular path
chosen from w to v in the k-Bruhat order.
It is also the case that rearranging the set {w(i)(ai)} in order, as in (1), may

be accomplished by interchanging transpositions tai bi and taj bj where ai 6= aj
(necessarily bi 6= bj). Both (1) and the uniqueness of this representation follow
from these observations. Statement (2) follows for similar reasons.

For a path γ in the k-Bruhat order, let end(γ) be the endpoint of γ. We state
a reformulation of Theorem 1.

Corollary 7 (Path formulation of Theorem 1). Let w ∈ Sn.

(1) Sw ·Sr[k,m] =
∑

γ Send(γ), the sum over all paths γ in the k-Bruhat order
which start at w such that

w(1)(a1) < w(2)(a2) < · · · < w(m)(am),

where γ is the path w <k w
(1) <k w

(2) <k · · · <k w
(m).

Equivalently, cvw r[k,m] counts the number of paths γ in the k-Bruhat order
from w to v such that

w(1)(a1) < w(2)(a2) < · · · < w(m)(am).
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(2) Sw ·Sc[k,m] =
∑

γ Send(γ), the sum over all paths γ in the k-Bruhat order
which start at w such that

w(1)(a1) > w(2)(a2) > · · · > w(m)(am),

where γ is the path w <k w
(1) <k w

(2) <k · · · <k w
(m).

Equivalently, cvw r[k,m] counts the number of paths γ in the k-Bruhat order
from w to v such that

w(1)(a1) > w(2)(a2) > · · · > w(m)(am).

This is the form of the conjectures of Bergeron and Billey [2], and it exposes
a link between multiplying Schubert polynomials and paths in the Bruhat order.
Such a link is not unexpected. The Littlewood-Richardson rule for multiplying
Schur functions may be expressed as a sum over certain paths in Young’s lattice of
partitions. A connection between paths in the Bruhat order and the intersection
theory of Schubert varieties is described in [14]. We believe the eventual description
of the structure constants cwuv will be in terms of counting paths of certain types
in the Bruhat order on Sn, and that there will be appropriate generalizations for
the other classical groups. This should yield new enumerative results about the
Bruhat orders on their respective Weyl groups, in the spirit of Corollary 9 below.

Using multiset notation for partitions, (p, 1q−1) is the hook shape partition whose
Young diagram is the union of a row of length p and a column of length q. Define
h[k; p, q] to be the Grassmannian permutation of descent k and shape (p, 1q−1).
Then Sh[k; p,q] = π∗s(p,1q−1). This permutation, h[k; p, q], is the p+ q-cycle

(k−q+1 k−q+2 . . . k−1 k k+p k+p−1 . . . k+1).

Theorem 8. Let q ≤ k and k+p ≤ n be integers. Set m = p+q−1. For w ∈ Sn,

Sw ·Sh[k; p,q] =
∑

Send(γ),

the sum over all paths γ : w <k w
(1) <k w

(2) <k · · · <k w
(m) in the k-Bruhat order

with

w(1)(a1) < · · · < w(p)(ap) and w(p)(ap) > w(p+1)(ap+1) > · · · > w(m)(am).

Alternatively, the sum over those paths γ with

w(1)(a1) > · · · > w(q)(aq) and w(q)(aq) < · · · < w(m)(am).

Setting either p = 1 or q = 1, we recover Theorem 1. If we consider the
coefficient cvw h[k; p,q] of Sv in the product Sw ·Sh[k; p,q], we obtain:

Corollary 9. Let w, v ∈ Sn, and p, q be positive integers where ℓ(v) − ℓ(w) =
p + q − 1 = m. Then the number of paths w <k w(1) <k w(2) <k · · · <k w(m) = v
in the k-Bruhat order from w to v with

w(1)(a1) < · · · < w(p)(ap) and w(p)(ap) > w(p+1)(ap+1) > · · · > w(m)(am)

equals the number of paths with

w(1)(a1) > · · · > w(q)(aq) and w(q)(aq) < · · · < w(m)(am).



PIERI’S FORMULA FOR FLAG MANIFOLDS AND SCHUBERT POLYNOMIALS 11

Proof of Theorem 8: By the classical Pieri’s formula,

sp · s1(q−1) = s(p+1,1q−2) + s(p,1q−1).

Expressing these as Schubert classes on the flag manifold (applying π∗), we have:

Sr[k,p] · Sc[k,q−1] = Sh[k; p+1,q−1] +Sh[k; p,q].

Induction on either p or q (with m fixed) and Corollary 7 completes the proof.

5. Geometry of Intersections

We deduce Lemma 4 by studying certain intersections of Schubert varieties. A
key fact we use is that if XwFq and XvGq intersect generically transversally, then

[XwFq
⋂

XvGq ] = [XwFq ] · [XvGq ] = Sw ·Sv

in the cohomology ring. Flags Fq and Gq are opposite if for 1 ≤ i ≤ n, Fi+Gn−i =
V . The set of pairs of opposite flags form the dense orbit of the general linear
group GL(V ) acting on the space of all pairs of flags. Using this observation and
Kleiman’s Theorem concerning the transversality of a general translate [16], we
conclude that for any w, v ∈ Sn and opposite flags Fq and Gq , XwFq and XvGq

intersect generically transversally.
Deodhar [8] studies the intersection of two Schubert cells X◦

wFq
⋂

X◦
w0v

Gq . He
shows the intersection is non-empty precisely when w ≤ v in the (ordinary) Bruhat
order. In this case, that intersection is decomposed into locally closed subvarieties
Dσ, each isomorphic to (C×)a × C b, where σ runs over certain subexpressions of
reduced words of v, with a and b satisfying ℓ(v)−ℓ(w) = a+2b, and with a unique
index σ′ with b = 0. It follows that XwFq

⋂

Xw0vGq is irreducible with a dense
subset Dσ′ ≃ (C×)ℓ(v)−ℓ(w).
These facts hold for the Schubert subvarieties of GkV as well. Namely, if λ

and µ are any partitions with µ ⊂ λ and Fq and Gq are opposite flags, then
ΩµFq

⋂

ΩλcGq is an irreducible, generically transverse intersection containing a
dense subset isomorphic to (C×)|λ|−|µ|.
Let Fq and Fq ′ be opposite flags in V . Let e1, . . . , en be a basis for V such that

ei generates the one dimensional subspace Fn+1−i

⋂

F ′
i . We deduce Lemma 4 from

the following two results.

Lemma 10. Let w, v ∈ Sn with w <k v and ℓ(v) − ℓ(w) = m. Suppose that

v = wta1 b1 · · · tam bm with ai ≤ k < bi and ℓ(wta1 b1 · · · tai bi) = ℓ(w) + i for 1 ≤
i ≤ m. Let π : F(V ) → GkV be the canonical projection. Define Y = 〈ew(j) | j ≤
k or w(j) 6= v(j)〉. Then Y has codimension d = n− k −#{b1, . . . , bm} and

π(XwFq
⋂

Xw0vFq
′) ⊂ GkY.

Also, if Eq ∈ XwFq
⋂

Xw0vFq
′, then there exist a basis f1, . . . , fn for V with Eq =

〈f1, . . . , fn〉, where, if j > k with w(j) = v(j), then fj = ew(j).

Lemma 11. Let w, v ∈ Sn with w
r[k,m]
−−−→ v and let a1, . . . , bm be as in the state-

ment of Lemma 10. Then there exist opposite flags Gq and Gq

′ and partitions λ ⊃ µ,
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with λ/µ a skew row of length m whose jth row has length #{i | ai = j} such that

π(XwFq
⋂

Xw0vFq
′) = ΩµGq

⋂

ΩλcGq

′,

and the map π|XwFq
⋂

Xw0vFq
′ : XwFq

⋂

Xw0vFq
′ → ΩµGq

⋂

ΩλcGq

′ has degree 1.

Lemma 11 vividly exhibits the connection to the classical Pieri’s formula that
was mentioned in the Introduction. A typical geometric proof of Pieri’s formula
for Grassmannians (see [13, 15]) involves showing a triple intersection of Schubert
varieties

ΩµGq

⋂

ΩλcGq

′
⋂

ΩmGq

′′ (1)

is transverse and consists of a single point, when Gq , Gq

′, and Gq

′′ are in suitably
general position.
One could construct a proof of Theorem 1 along those lines, studying a triple

intersection of Schubert subvarieties

XwGq

⋂

Xw0vGq

′
⋂

Xr[k,m]Gq

′′, (2)

where Gq , Gq

′, and Gq

′′ are in suitably general position. Doing so, one observes that
the geometry of the intersection of (2) is governed entirely by the geometry of an
intersection similar to that in (1). In part, that is because Xr[k,m]Gq

′′ = π−1ΩmGq

′′.
This is the spirit of our method, which may be seen most vividly in Lemmas 14
and 15.

Proof of Lemma 4: Since Fq and Fq ′ are opposite flags, XwFq
⋂

Xw0vFq
′ is a

generically transverse intersection, so in the cohomology ring

[XwFq
⋂

Xw0vFq
′] = [XwFq ] · [Xw0vFq

′] = Sw ·Sw0v.

Let Y be the subspace of Lemma 10. Since π(XwFq
⋂

Xw0vFq
′) ⊂ GkY , the class

π∗(Sw ·Sw0v) is a cohomology class on GkY . However, all such classes are of the
form δ · [GkY ], for some cohomology class δ on GkV . Since d is the codimension
of Y , we have [GkY ] = sdk , establishing part (1) of Lemma 4.

For part (2), suppose further that w
r[k,m]
−−−→ v. If ρ is the restriction of π to

XwFq
⋂

Xw0vFq
′, then

π∗(Sw ·Sw0v) = π∗([XwFq
⋂

Xw0vFq
′]) = deg ρ · [π(XwFq

⋂

Xw0vFq
′)].

By Lemma 11, deg ρ = 1 and π(XwFq
⋂

xw0vFq
′) = ΩµGq

⋂

ΩλcGq

′. Since Gq and
Gq

′ are opposite flags, we have

π∗(Sw ·Sw0v) = 1 · [ΩµGq

⋂

ΩλcGq

′] = [ΩµGq ] · [ΩλcGq

′] = sµ · sλc =
∑

ν

cλµ νsνc .

The last equality follows by the Littlewood-Richardson rule and the identity cλµ ν =

cν
c

µλc .

We deduce Lemma 10 from two additional lemmas. We first make a definition.
Let W ( V be a codimension 1 subspace and let e ∈ V −W so that V = 〈W, e〉.
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For 1 ≤ p ≤ n, define an expanding map ψp : F(W ) → F(V ) as follows

(ψpEq)i =

{

Ei if i < p
〈Ei−1, e〉 if i ≥ p

.

Note that if Eq = 〈f1, . . . , fn−1〉, then ψpEq = 〈f1, . . . , fp−1, e, fp, . . . , fn−1〉.
For w ∈ Sn and 1 ≤ p ≤ n, define w|p ∈ Sn−1 by

w|p(j) =















w(j) if j < p and w(j) < w(p)
w(j+1) if j ≥ p and w(j) < w(p)
w(j)− 1 if j < p and w(j) > w(p)
w(j+1)− 1 if j ≥ p and w(j) > w(p)

.

If we represent permutations as matrices, w|p is obtained by crossing out the pth
row and w(p)th column of the matrix for w.

Lemma 12. Let W ( V and e ∈ V −W with V = 〈W, e〉. Let Gq be a complete

flag in W . For 1 ≤ p ≤ n and w ∈ Sn,

ψp

(

Xw|pGq

)

⊂ Xw

(

ψw0w(p)(Gq)
)

.

Proof: Let Eq ∈ Xw|pGq . ThenW has a basis f1, . . . , fn−1 with Eq = 〈f1, . . . , fn−1〉
and for each 1 ≤ i ≤ n − 1, fi ∈ Gn−w|p(i). Then we necessarily have ψp(Eq) =
〈φ1, . . . , φn〉 = 〈f1, . . . , fp−1, e, fp, . . . , fn−1〉. Noting

(

ψw0w(p)(Gq)
)

n+1−j
=

{

Gn+1−j if j > w(p)
〈e,Gn−j〉 if j ≤ w(p)

,

we see that φi ∈
(

ψw0w(p)(Gq)
)

n+1−w(i)
. Thus ψp

(

Xw|pGq

)

⊂ Xw

(

ψw0w(p)(Gq)
)

.

Lemma 13. Let W ( V and e ∈ V −W with V = 〈W, e〉 and let Gq and Gq

′ be

opposite flags in W . Suppose that w <k v are permutations in Sn and p > k an

integer such that w(p) = v(p). Let w
(j)
0 be the longest permutation in Sj. Then

(1) ℓ(v|p)− ℓ(w|p) = ℓ(v)− ℓ(w) and w|p <k v|p.

(2) ψp

(

Xw|pGq

⋂

X
w

(n−1)
0 (v|p)

Gq

′
)

= Xw

(

ψ
w

(n)
0 w(p)

(Gq)
)

⋂

X
w

(n)
0 v

(

ψv(p)(Gq

′)
)

.

(3) If Eq ∈ Xw

(

ψ
w

(n)
0 w(p)

(Gq)
)

⋂

X
w

(n)
0 v

(

ψv(p)(Gq

′)
)

, then Ep = 〈Ep−1, e〉.

(4) If Fq and Fq ′ are opposite flags in V and Eq ∈ XwFq
⋂

X
w

(n)
0 v

Fq ′, then Ek ⊂

Fn−w(p) + F ′
w(p)−1.

Proof: First recall that ℓ(vta b) = ℓ(v) + 1 if and only if v(a) < v(b) and if
a < j < b, then v(j) is not between v(a) and v(b). Thus if ℓ(vta b) = ℓ(v) + 1 and
p 6∈ {a, b}, we have ℓ(vta b|p) = ℓ(v|p) + 1. Statement (1) follows by induction on
ℓ(v)− ℓ(w).

For (2), since (w
(n)
0 v)|p = w

(n−1)
0 (v|p) and w

(n)
0 w

(n)
0 v = v, Lemma 12 shows

ψp

(

Xw|pGq

⋂

X
w

(n−1)
0 (v|p)

Gq

′
)

⊂ Xw

(

ψ
w

(n)
0 w(p)

(Gq)
)

⋂

X
w

(n)
0 v

(

ψv(p)(Gq

′)
)

.

The flags ψ
w

(n)
0 w(p)

(Gq) and ψv(p)(Gq

′) are opposite flags in V , since Gq and Gq

′ are

opposite flags in W . Then part (1) shows both sides have the same dimension.
Since ψp is injective, they are equal.
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To show (3), let Eq ∈ Xw

(

ψ
w

(n)
0 w(p)

(Gq)
)

⋂

X
w

(n)
0 v

(

ψv(p)(Gq

′)
)

. By (2), there is a

flag Eq

′ ∈ Xw|pGq

⋂

X
w

(n−1)
0 (v|p)

Gq

′ with ψp(Eq

′) = Eq , so Ep = 〈E ′
p−1, e〉 = 〈Ep−1, e〉.

For (4), let W = Fn−w(p) + F ′
v(p)−1 and e any nonzero vector in the one di-

mensional space Fn+1−w(p)

⋂

F ′
v(p). The distinct subspaces in Fq

⋂

W define a

flag Gq , and those in Fq ′
⋂

W define a flag Gq

′. In fact, ψ
w

(n)
0 w(p)

(Gq) = Fq and

ψw(p)(Gq

′) = Fq ′, and Gq and Gq

′ are opposite flags in W . By (2),

ψp

(

Xw|pGq

⋂

X
w

(n−1)
0 (v|p)

Gq

′
)

= XwFq
⋂

X
w

(n)
0 v

Fq ′.

Thus flags in XwFq
⋂

X
w

(n)
0 v

Fq ′ are in the image of ψp. As k < p, (ψpEq)k = Ek ⊂

W , establishing part (4).

Proof of Lemma 10: Let Fq and Fq ′ be opposite flags in V , let w <k v and
let Eq ∈ XwFq

⋂

Xw0vFq
′. Define a basis e1, . . . , en for V by Fn+1−j

⋂

F ′
j = 〈ej〉

for 1 ≤ j ≤ n. Suppose v = wta1 b1 · · · tam bm with ai ≤ k < bi. Let {p1, . . . , pd}
be the complement of {b1, . . . , bm} in {k + 1, . . . , n}. For 1 ≤ i ≤ d, let Yi =
〈e1, . . . , ew(pi)−1, ew(pi)+1, . . . , en〉. Since w(pi) = v(pi) and k < pi, we see that
Yi = Fn−w(pi) + F ′

w(pi)−1, so part (4) of Lemma 13 shows Ek ⊂ Yi. Thus

Ek ⊂
d
⋂

i=1

Yi = 〈ew(j) | j < k or j = bi〉 = Y.

Since w(pi) = v(pi) for 1 ≤ i ≤ d, we have Epi = 〈Epi−1, ew(pi)〉, by part (3)
of Lemma 13. So if Eq = 〈f1, . . . , fn〉, we may assume that fpi = ew(pi) ∈
Fn+1−w(pi)

⋂

F ′
v(pi)

for 1 ≤ i ≤ d, completing the proof.

To prove Lemma 11, we begin by describing an intersection in a Grassmannian.
Recall that ΩλFq = {H ∈ GkV | dimH

⋂

Fk−j+λj
≥ j for 1 ≤ j ≤ k}.

Lemma 14. Suppose that L1, . . . , Lk,M ⊂ V with V = M
⊕

L1

⊕

· · ·
⊕

Lk. Let

rj = dimLj − 1 and m = r1 + · · · + rk. Then there are opposite flags Fq and Fq ′

and partitions λ ⊃ µ with λj − µj = rj and λ/µ a skew row of length m such that

in GkV ,

ΩµFq
⋂

ΩλcFq ′ = {H ∈ GkV | dimH
⋂

Lj = 1 for 1 ≤ j ≤ k}.

Proof: Let µk = 0 and µj = rj+1 + · · · + rk for 1 ≤ j < k and λj = rj + µj for
1 ≤ j ≤ k. Choose a basis e1, . . . , en for V such that

Lj = 〈ek+1−j+µj
, ek+2−j+µj

, . . . , ek+1+rj−j+µj
= ek+1−j+λj

〉

M = 〈em+k+1, . . . , en〉.

Let Fq = 〈en . . . , e1〉 and Fq ′ = 〈e1, . . . , en〉. Then

Fn−k+j−µj
= M

⊕

L1

⊕

· · ·
⊕

Lj

F ′
n−k+(k+1−j)−λc

k+1−j
= F ′

k+1−j+λj
= Lj

⊕

· · ·
⊕

Lk.

If H ∈ ΩµFq
⋂

ΩλcFq ′, then dimH
⋂

Fn−k+j−µj
≥ j for 1 ≤ j ≤ k and

dimH
⋂

F ′
n−k+(k+1−j)−λc

k+1−j
≥ k + 1− j,
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for 1 ≤ j ≤ k. Thus for 1 ≤ j ≤ k,

dimH
⋂

Fn−k+j−µj

⋂

F ′
n−k+(k+1−j)−λc

k+1−j
≥ 1.

But Fn−k+j−µj

⋂

F ′
n−k+(k+1−j)−λc

k+1−j
= Lj, so dimH

⋂

Lj ≥ 1 for 1 ≤ j ≤ k.

Since Lj

⋂

Li = {0} if j 6= i, we see that dimH
⋂

Lj = 1. Thus

ΩµFq
⋂

ΩλcFq ′ ⊂ {H ∈ GkV | dimH
⋂

Lj = 1 for 1 ≤ j ≤ k}.

We show these varieties have the same dimension, establishing their equality: Since
|λ| = |µ| + m, and Fq and Fq ′ are opposite flags, ΩµFq

⋂

ΩλcFq ′ has dimension
m. But the map H 7→ (H

⋂

L1, . . . , H
⋂

Lk) defines an isomorphism between
{H ∈ GkV | dimH

⋂

Lj = 1 for 1 ≤ j ≤ k} and PL1 × · · · × PLk, which has di-
mension

∑

j(dimLj−1) = m. Here, PLj is the projective space of one dimensional
subspaces of Lj.

We relate this to intersections of Schubert varieties in the flag manifold.

Lemma 15. Suppose that w
r[k,m]
−−−→ v and v = wta1 b1 · · · tam bm with ai ≤ k < bi

and ℓ(wta1 b1 · · · tai bi) = ℓ(w) + i for 1 ≤ i ≤ m. Let Fq and Fq ′ be opposite flags in

V and let 〈ei〉 = Fn+1−i

⋂

F ′
i . Define

Lj = 〈ew(j), ew(bi) | ai = j〉

M = 〈ew(p) | k < p and w(p) = v(p)〉.

Then

(1) dimLj = 1 +#{i | ai = j} and V = M
⊕

L1

⊕

· · ·
⊕

Lk.

(2) If Eq ∈ XwFq
⋂

Xw0vFq
′, then dimEk

⋂

Lj = 1 for 1 ≤ j ≤ k.
(3) Let π be the map induced by Eq 7→ Ek. Then

π : XwFq
⋂

Xw0vFq
′ → {H ∈ GkV | dimH

⋂

Lj = 1 for 1 ≤ j ≤ k}

is surjective and of degree 1.

Proof: Part (1) is immediate.
For (2) and (3), note that both {H ∈ GkV | dimH

⋂

Lj = 1 for 1 ≤ j ≤ k}
and XwFq

⋂

Xw0vFq
′ are irreducible and have dimension m. We exhibit an m

dimensional subset of each over which π is an isomorphism.
Let α = (α1, . . . , αm) ∈ (C×)m be an m-tuple of nonzero complex numbers. We

define a basis f1, . . . , fn of V depending upon α as follows.

fj =



































ew(j) +
∑

i : ai=j

αiew(bi) if j ≤ k

ew(j) if j > k and j 6∈ {b1, . . . , bm}
∑

i : ai = aq

w(bi) ≥ w(j)

αiew(bi) if j = bq > k
.
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Let i1 < · · · < is be those integers il with ail = j. Since tai bi lengthens the
permutation wta1 b1 · · · tai−1 bi−1

, we see that

w(j) < w(bi1) < · · · < w(bis)
‖ ‖ ‖

v(bi1) < v(bi2) < · · · < v(j)

Thus the first term in fj is proportional to ew(j). Hence fj ∈ Fn+1−w(j) − Fn−w(j),
and so f1, . . . , fn is a basis of V and the flag Eq(α) = 〈f1, . . . , fn〉 is in XwFq .
Note that f ′

1, . . . , f
′
n is also a basis for Eq(α), where f ′

j is given by

f ′
j =







fj if j ≤ k
fj if j > k and j 6∈ {b1, . . . , bm}
faq − fj if j = bq > k

.

Here, the last term in each f ′
j is proportional to ev(j), so f ′

j ∈ F ′
v(j) = F ′

n+1−w0v(j)
,

showing that Eq(α) ∈ Xw0vFq
′.

Since fj ∈ Lj for 1 ≤ j ≤ k, we have dimEq(α)
⋂

Lj = 1 for 1 ≤ j ≤ k. As
{Eq(α) |α ∈ (C×)m} is a subset of XwFq

⋂

Xw0vFq
′ of dimension m, it is dense.

Thus if Eq ∈ XwFq
⋂

Xw0vFq
′, then dimEk

⋂

Lj = 1 for 1 ≤ j ≤ k.
The set {(Eq(α))k |α ∈ (C×)m} is a dense subset of

{H ∈ GkV | dimH
⋂

Lj = 1 for 1 ≤ j ≤ k} ≃ PL1 × · · · × PLk.

Since π is an isomorphism of this set with {Eq(α) |α ∈ (C×)m}, the map

π : XwFq
⋂

Xw0vFq
′ → {H ∈ GkV | dimH

⋂

Lj = 1 for 1 ≤ j ≤ k}

is surjective of degree 1, proving the lemma.

We note finally that Lemma 11 is an immediate consequence of Lemmas 14
and 15(3).
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6. Examples

In this section we describe two examples, which should serve to illustrate the
results of Section 5. This manuscript differs from the version which will be pub-
lished only by the inclusion of this section, and its mention in the Introduction.

Fix a basis e1, . . . , e7 for C 7. This gives coordinates for vectors in C 7, where
(v1, . . . , v7) corresponds to v1e1+ · · ·+v7e7. Define the opposite flags Fq and Fq ′ by

Fq = 〈e7, e6, e5, e4, e3, e2, e1〉 and Fq ′ = 〈e1, e2, e3, e4, e5, e6, e7〉.

For example, F3 = 〈e7, e6, e5〉 and F ′
4 = 〈e1, e2, e3, e4〉. Let w = 5412763, v =

6524713 and v′ = 7431652 be permutations in S7. (We denote permutations by
the sequence of their values.) Their lengths are 10, 14, and 14, respectively, and
w <4 v and w <3 v

′. We seek to describe the intersections

XwFq
⋂

Xw0vFq
′ and XwFq

⋂

Xw0v′Fq
′.

Rather than describe each in full, we describe a dense subset of each which is
isomorphic to the torus, (C×)4. This suffices for our purposes.
Recall that the Schubert cell X◦

wFq is defined to be

X◦
wFq = {Eq = 〈f1, . . . , f7〉 | fi ∈ F8−w(i) − F7−w(i), 1 ≤ i ≤ 7}.

Using the given coordinates of C 7, we may write a typical element of X◦
wFq in a

unique manner. For each fi ∈ F8−w(i) − F7−w(i), the coordinate 7-tuple for fi has
zeroes in the places 1, . . . , w(i) − 1 and a nonzero coordinate in its w(i)th place,
which we assume to be 1. We may also assume that the w(j)th coordinate of fi
is zero for those j < i with w(j) > w(i), by subtracting a suitable multiple of
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fj. Writing the coordinates of f1, . . . , f7 as rows of an array, we conclude that a
typical flag in X◦

wFq has a unique representation of the following form:

· · · · 1 ∗ ∗
· · · 1 · ∗ ∗
1 ∗ ∗ · · ∗ ∗
· 1 ∗ · · ∗ ∗
· · · · · · 1
· · · · · 1 ·
· · 1 · · · ·

Here, the ith column contains the coefficients of ei, the ·’s represent 0, and the ∗’s
indicate some complex numbers, uniquely determined by the flag. Likewise, flags
in X◦

w0v
Fq ′ and X◦

w0v′
Fq ′ have unique bases of the forms:

∗ ∗ ∗ ∗ ∗ 1 ·
∗ ∗ ∗ ∗ 1 · ·
∗ 1 · · · · ·
∗ · ∗ 1 · · ·
∗ · ∗ · · · 1
1 · · · · · ·
· · 1 · · · ·

∗ ∗ ∗ ∗ ∗ ∗ 1
∗ ∗ ∗ 1 · · ·
∗ ∗ 1 · · · ·
1 · · · · · ·
· ∗ · · ∗ 1 ·
· ∗ · · 1 · ·
· 1 · · · · ·

Let α, β, γ and δ be four nonzero complex numbers. Define bases f1, f2, . . . , f7
and g1, g2, . . . , g7 by the following arrays of coordinates.

f1 = · · · · 1 α ·
f2 = · · · 1 β · ·
f3 = 1 γ · · · · ·
f4 = · 1 · δ · · ·
f5 = · · · · · · 1
f6 = · · · · · α ·
f7 = · · 1 · · · ·

g1 = · · · · 1 α β
g2 = · · · 1 · · ·
g3 = 1 γ δ · · · ·
g4 = · γ δ · · · ·
g5 = · · · · · · β
g6 = · · · · · α β
g7 = · · δ · · · ·

Let Eq = 〈f1, f2, . . . , f7〉 and Eq

′ = 〈g1, g2, . . . , g7〉. Considering the left-most
nonzero entry in each row, we see that both Eq and Eq

′ are in X◦
wFq . To see that

Eq ∈ X◦
w0v

Fq ′ and Eq

′ ∈ X◦
w0v′

Fq ′, note that we could choose

f ′
6 = 1 · · · · · ·

g′4 = 1 · · · · · ·
g′5 = · · · · 1 α ·
g′6 = · · · · 1 · ·
g′7 = 1 γ · · · · ·

Replacing the unprimed vectors by the corresponding primed ones gives alternate
bases for Eq and Eq

′. This shows Eq ∈ X◦
w0v

Fq ′ and Eq

′ ∈ X◦
w0v′

Fq ′.
We use this computation to illustrate Lemmas 10 and 11.

I. First note that for Eq = 〈f1, f2, f3, f4, f5, f6, f7〉 as above,

E3 ⊂ 〈e1, e2, e5, e5, e6〉

= 〈ew(j) | j ≤ k or w(j) 6= v(j)〉

= Y,
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the subspace of Lemma 10. Since this holds for all Eq in a dense subset of
XwFq

⋂

Xw0vFq
′, it holds for all Eq in that intersection.

II. Recall that w = 5412763 and note that 7431652 = v′ = w ·t34 ·t16 ·t37 ·t15, so

w
r[3,4]
−−→ v′, and we are in the situation of Lemma 11. Let µ = (2, 2, 0) and

λ = (4, 2, 2) be partitions. Then λc = (2, 2, 0), and if Eq

′ = Eq

′(α, β, γ, δ) is
a flag in the above form, then

E ′
3(α, β, γ, δ) ∈ ΩµFq

⋂

ΩλcFq ′,

since
f1 ∈ F3 = F7−3+1−µ1

⋂

F ′
7−3+3−λc

3

f2 ∈ 〈e4〉 = F7−3+1−µ2

⋂

F ′
7−3+3−λc

2

f3 ∈ F ′
3 = F7−3+1−µ3

⋂

F ′
7−3+3−λc

1
.

Furthermore, the map π : Eq

′ 7→ E ′
3 is injective for those Eq

′(α, β, γ, δ)
given above. Since that set is dense in XwFq

⋂

Xw0v′Fq
′, and the set of

E ′
3(α, β, γ, δ) is dense in ΩµFq

⋂

ΩλcFq ′, it follows that

π : XwFq
⋂

Xw0v′Fq
′ → ΩµFq

⋂

ΩλcFq ′

is surjective and of degree 1.

Note that the description of XwFq
⋂

Xw0v′Fq
′ in II is consistent with that given

for general w
r[k,m]
−−−→ v′ in the proof of Lemma 15, part (2). This explicit description

is the key to the understanding we gained while trying to establish Theorem 1

Also note that v = w · t16 · t26 · t46 · t36, thus w
c[4,4]

−−−→ v. In I above, we give an
explicit description of the intersection XwFq

⋂

Xw0vFq
′. This may be generalized

to give a similar description whenever w
c[k,m]
−−−→ v, and may be used to estab-

lish Theorem 1 in much the same manner as we used the explicit description of

intersections when w
r[k,m]
−−−→ v.
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