PIERI-TYPE FORMULAS FOR MAXIMAL ISOTROPIC
GRASSMANNIANS VIA TRIPLE INTERSECTIONS

FRANK SOTTILE (MADISON)

ABSTRACT. We give an elementary proof of the Pieri-type formula in the
cohomology ring of a Grassmannian of maximal isotropic subspaces of an
orthogonal or symplectic vector space. This proof proceeds by explicitly
computing a triple intersection of Schubert varieties. The multiplicities
(which are powers of 2) in the Pieri-type formula are seen to arise from
the intersection of a collection of quadrics with a linear space.
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INTRODUCTION

We give an elementary geometric proof of Pieri-type formulas in the co-
homology rings of Grassmannians of maximal isotropic subspaces of orthog-
onal or symplectic vector spaces. For this, we explicitly compute a triple
intersection of Schubert varieties, where one is a special Schubert variety.
Previously, Sert6z [16] had studied such triple intersections in orthogonal
Grassmannians, but was unable to determine the intersection multiplicities.

The multiplicities here (0 or powers of 2) arise as the intersection mul-
tiplicity of a linear subspace (defining the special Schubert variety) with a
collection of quadrics and linear subspaces (determined by the other two
Schubert varieties). This is similar to the triple intersection proof of the
classical Pieri formula (cf. [9]) where the multiplicities (0 or 1) count the
points in the intersection of linear subspaces.

These Pieri-type formulas are due to Hiller and Boe [8], who used the
Chevalley formula [2]. Another proof, using the Leibniz formula for di-
vided differences, was given by Pragacz and Ratajski [13]. These formulas
have important geometric applications. Using them Pragacz [12] established
Giambelli-type formulas for the above Grassmanians. This led to a solution
of some classical enumerative problems (see [6] for a summary of this activ-

ity).
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In Section 1, we give the basic definitions, state the Pieri-type formulas,
and give an outline of the proof. In Section 2, we describe the intersection
of two Schubert varieties, which we use in Section 3 to complete the proof.
While we work in the cohomology ring of a complex variety, our arguments
hold for the Chow ring [4] of the same variety defined over any algebraically
closed field not of characteristic 2.

1. THE GRASSMANNIAN OF MAXIMAL ISOTROPIC SUBSPACES

For more details on the geometry and cohomology of these spaces, see [6].
Let U be a complex vector space equipped with a non-degenerate bilinear
form (3, either symmetric or alternating. A subspace H of U is isotropic if the
restriction of 8 to H is identically zero. Isotropic subspaces have dimension
at most half that of U. The Grassmannian of maximal isotropic subspaces
of U is the set of all isotropic subspaces of U of maximal dimension. These
spaces are quite different in the three cases of § alternating, § symmetric
and dimension U odd, or 8 symmetric and dimension U even. In this third
case, the Grassmannian has two connected components, each isomorphic to
the Grassmannian of maximal isotropic subspaces in a generic hyperplane
of U. Indeed, the quadric hypersurface in P?**! contains two families of
n-planes [7]—each a component of the isotropic Grassmannian—and either
family restricts to the family of (n — 1)-planes on the quadric in a generic
hyperplane section.

We thus consider two cases: Either S is symmetric on a vector space V' of
dimension 2n+1 or else [ is alternating on a vector space W of dimension
2n. Write B,, or B(V) for the Grassmannian of maximal isotropic subspaces
of V, and C,, or C(W) for the Grassmannian of maximal isotropic subspaces
of W. The orthogonal group SOs,1C = Aut(V, §) acts transitively on B,
with the stabilizer P, of a point a maximal parabolic subgroup associated
to the short root, hence B, = S09,11C/Fy. Similarly, C, = Sp,,C/Py,
the quotient of the symplectic group by a maximal parabolic subgroup Py
associated to the long root.

Both B,, and C, are smooth complex manifolds of dimension (";rl) While
not isomorphic if n > 1, they have identical decompositions into Schubert
cells. For an integer j, let 7 denote —j. Choose bases {eg, ... ,e,} of V and

{frs..., fa} of W for which
Bene) = {0 s 4 AU = {411 NI

otherwise otherwise

Thus B(e1,e0) = B(f3, f1) = 0 and B(eo, e0) = B(f1, f1) = —B(f1, fr) = 1.

Schubert varieties are determined by sequences

Ui M2 > Ue> > Uy 2T
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whose set of absolute values {|u1,...,|us|} equals {1,2,... ,n}. Let SY,
denote this set of sequences. The Schubert variety X, of B, is

{H € B, | dim(H N {(ey;, ... ,en)) >jfor 1 <j<n}
and the Schubert variety Y, of C,

{H e C,|dim(HN(fy,,..., fa)) > for1 <j<n}
Both X, and Y), have codimension |u| := py+- - -+ ik, where pip, > 0> pye41.
Given A, u € SY,,, we see that

XMDX)\ <~ YHDY)\ = /,LJS)\]forlg_]Sn
Define the Bruhat order on SY, by p < X if p; < A; for 1 < j < n. Note
that u < X if and only if p; < A; for those j with 0 < p;.

Example 1.1. Suppose n = 4. Then X;,77 consists of those H € B, such

that
dlm(Hﬂ <63, 64)) 2 1, dlm(H N <62,63,€4>) 2 2,
and dim(H N {e,...,e4)) > 3.

We also have 3214 < 3214 < 4312 while 3214 and 4123 are incompa-
rable.

Define P, := [X,], the cohomology class Poincaré dual to the funda-
mental cycle of X, in the homology of B,. Likewise set @), := [Y)]. Since
Schubert varieties are closures of cells from a decomposition into (real) even-
dimensional cells, these Schubert classes { Py}, {@»} form bases for integral
cohomology:

H'B, = P-Z and HC, = PQs-Z
A A

Each A € SY,, determines and is determined by its diagram, also denoted
A. The diagram of ) is a left-justified array of |A| boxes with A; boxes in
the jth row, for A; > 0. Thus

3214 +— | and 4213 +—

The Bruhat order corresponds to inclusion of diagrams. Given p < A, let
A/ be their set-theoretic difference. For instance,

1213/32T7 — 77 and 43733277 s (11
Two boxes are connected if they share a vertex or an edge; this defines
components of \/p. We say A/ is a skew rowif Ay > g > Ao > -+ > py
equivalently, if A\/p has at most one box in each column. Thus 4213/3214
is a skew row, but 3214/1234 is not.
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The special Schubert class p, € H*B,, (¢, € H*C,) is the class whose
diagram consists of a single row of length m. Hence, py = P,757. A special
Schubert variety X i (Yx) is the collection of all maximal isotropic subspaces
which meet a fixed isotropic subspace K nontrivially. If dim K =n+1—m,
then [Xk| = pm and [Yk] = ¢. When A/ is a skew row, let §(\/u) count
the components of the diagram A/p and £(A/p) count the components of
A/p which do not meet the first column.

Theorem 1.2 (Pieri-type Formula). For any p € SY,, and 1 <m < n,
1. PN P = 225()\/“)—1 P/\ and
2. Qu-gm = Y 2VMQ,,

both sums over all X with |\ — |u| =m and \/u a skew row.
Example 1.3. For example,
Pyoig-p2 = 2:-Pyyi3 + Pisis and
QR3212° G = 2-Q213 + 2-Qus1o,

as 4213/3214 has two components, one meeting the first column, and
4312/3214 has one component, which does not meet the first column.

Define A° by A := A,y1-;. Let [pt] be the class dual to a point. The
Schubert basis is self-dual with respect to the intersection pairing: If |A| =
| 1], then
ifA=p
otherwise - (1)

PM'P)\C = Qu'QAc = {([]pt]

Define the Schubert variety X}. to be
{H € B, [ dim(H N{em, ... ,ex)) >n+1—jfor 1 <j<n}

This is a translate of X, by an element of SO,,,1C. We similarly define
Y).. For any A, p, X, N X}, is a (dimensionally) proper intersection [11].
This is because if X, and X}, are any Schubert varieties in general position,
then there is a basis for V' such that these varieties and the form S are as
given. The analogous facts hold for the varieties Y}..

To establish Theorem 1.2, it suffices to compute degrees of the zero di-
mensional schemes

X, NX.eNXg and Y, NYNYyg,

where K is a general isotropic (n + 1 — m)-plane and |\| = |u| + m.

We only do the (more difficult) orthogonal case of Theorem 1.2 in full,
and indicate the differences for the symplectic case. We first determine
when X, N X} is non-empty. Let p, A € SY,,. Then H € X, N X}, implies
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dim(H N {ey;,--- ,ex;)) = 1, for every 1 < j < n. Hence pu < A is necessary
for X,, N X}, to be nonempty. In fact, if || = |A[, then

;o (€xr;y---,€n,) fA=p
XuN Xy = { 0 otherwise,
and the intersection is transverse (see Lemma 3.3), which establishes (1).
Suppose ¢ < X in SY,,. For each component d of A/u, let col(d) be the
indices of the columns of d and of the column just to the left of d, which is 0
if d meets the first column. For each component d of A/, define a quadratic

form (,:
By = g xjxy,
n<j<n
|7|€col(d)
where x5, ... , x, are coordinates for V dual to the basis e, . .. , e,. For each

fized point of A/p (j such that A\; = p;), define the linear form «; := oy If
no component meets the first column, then 0 is a fixed point of A/u and we
set o := xg. Let Z,;, be the common zero locus of these forms o; and f;.
In Section 2, we prove:

Lemma 1.4. Suppose p < X\ and H € X, N X}.. Then H C Zy,.
For p < XA € SY,,, let 6(A/u) count the components of /.

Theorem 1.5. Let u, A € SY,, and suppose K is a general isotropic (n +
1 —m)-plane with || +m = |\|. Then

X, NX\NXg

is non-empty only if A/ is a skew row. Moreover, if A\/p is a skew row,
then KN Zy;, consists of 201 gsotropic lines, counted with multiplicity.

Proof. If ¢ counts the fixed points of A\/u and § = §(\/p), then we have
the following equation (Lemma 2.1):

n+1 = ¢+ 8+ #columns of \/p. (2)

Thus, if m = |A| — |u|, then ¢ +§ > n 4+ 1 — m, with equality only when
A/ is a skew row.

For each 0 < 7 < n, there is a unique form among the «;, 8; in which
one of the coordinates z;,z; appear. Thus Z),, is defined in P(V) by g,
the o, and any 6 — 1 of the 8;. Hence Z),, has codimension ¢ +4 — 1 in
the set of isotropic points, a S0y, 1C-orbit. We see that a general isotropic
(n+1—m)-plane K meets Z,, non-trivially only if A\/u is a skew row, as
this intersection is proper [11]. In that case, K N Z,,, (in P(V)) is zero-
dimensional of degree 20~ as it is defined on K by 6 — 1 quadratic forms
and ¢ linear forms. pe=
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Proof of Theorem 1.2. Suppose A, u € SY,, with |A| — [p| =m > 0. Let
K be a general isotropic (n+1 —m)-plane in V. We compute the degree of

X, NXiNXk. (3)

By Theorem 1.5, this is non-empty only if A\/u is a skew row. Suppose
that is the case. Theorem 3.1 asserts that a general isotropic line in Z)/,
is contained in a unique H € X, N X}.. By Theorem 1.5, K N Z,,, is

20 /m=1 isotropic lines (counted with multiplicity), we see that (3) has de-
gree 2°A/W=1 This completes the proof of Theorem 1.2. pe=

Example 1.6. Let n = 4 and m = 2, so that n +1 —m = 3. The local
coordinates for X;,77NX (’ 4213)¢ described in Lemma 3.3 show that, for any
z,z € C, the row span H of the matrix with rows g; and columns e;

‘61 €3 €3 ET‘ 60‘ €1 €9 €3 €4

gl . . . . . . - _-/,C 1
gl - - - - . 1 - .
gz | - - - 1]2z|—-222
gz 1 :
is a generic maximal isotropic subspace in X5,77 N X (’ 1213)" We write -’

in place of the entries of 0. Suppose K is the row span of the matrix with

TOWS v;
Z ‘61 €3 €3 €1 ‘ €9 ‘ €1 €9 €3 €4

ol - 1 - 1]-]- 1 - 1
w|1l 1 - 1]2(-2 1 -1 1
va| - - 1 -] - ]-=1
Then K is an isotropic 3-plane, and the forms
Bo = 2xyr1+ x%
ﬁd = X7%4 + T3T3
Gy = Iy
define the 2 isotropic lines (v;) and (vo) in K. Lastly, for ¢ = 1,2, there is
a unique H; € X5,77N X('421§)c with v; € H;. In these coordinates,

H : x2=2=0 and Hy : z=2=1,
which shows
# (XaoraN X{yp150 N Xic) = 2,
the coefficient of P45 in the product P;577 - p2 of Example 1.3.

In the symplectic case, [ is not a form, oy = zy does not arise, only
components d which do not meet the first column give quadratic forms [y,
and the analysis of Lemma 3.2 (2) in Section 3 is simpler.



PIERI-TYPE FORMULAS FOR MAXIMAL ISOTROPIC GRASSMANNIANS 7

2. THE INTERSECTION OF TWO SCHUBERT VARIETIES

We study the intersection of two Schubert varieties. Theorem 2.3 ex-
presses X, N X). as a product whose factors correspond to components of
A/, and each factor is itself an intersection of two Schubert varieties. These
factors are described in Lemmas 2.4 and 2.5, and in Corollary 2.7.

The first step towards Theorem 2.3 is the following combinatorial lemma.

Lemma 2.1. Let ¢ count the fized points and & the components of \/pu.
Then we have

n+1 = ¢+ 0+ #columns of \/p, (2)

and Aji1 < p; precisely when |p;| is an empty column of A/ pu.

Proof. Let 0 <[ < n. We claim that either / indexes a column of \/u or
else it does not, and in that case, either [ + 1 indexes a column of A/u or
else [ is a fixed point of A\/p. This proves (2) as the numbers [ which do not
index a column but [ 41 does are in bijection with the components of A/ .

The case when [ = 0 is our definition of a fixed point.

Suppose | > 0 is an empty column of A\/u. Then there is no i with
pi < 1 < X Let p; be the part of p with |u;| = . If u; = [, then
tiv1 < pj =1l and so Aj1 < pj =1 as well. Then either p; < A; so [+ 1 1is
a column of A/p or else u; = A; is a fixed point of \/u.

Suppose now that p1; = —I. Let a be the largest index with [ < p,. We
show that A\; = —I, which will complete the proof. First, if a part A; of A
equals [, then we must have p; < | = )\;, contradicting [ being an empty
column of A/u. This shows A\,; < [ and also that there is a part A; of A with
Ai = —L. Since A\, p € SY,,, we must have {1,... I} = {|pas1],---, |15} =
{IAax1l,---,|N|}. This shows that j=a+1=1i. p=

Let dy be the component of A\/x meeting the first column (if any). Define
mutually orthogonal subspaces V,,, V, and V;;, for each component d of A\/u
not meeting the first column (d # dy) as follows:

th = <6uj,€u—j ‘ Hj = )‘j>:

Vo = (eo,er,e; |l € col(dy)),
Vi = (e |l € col(d)),

ViE = e |l € col(d)),

and set V; :=V; @ V. Then

V=V,eViePVa
d#d
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For each fixed point p; = A; of A/u, define the linear form «; := xg. For
each component d of A/, let the quadratic form S, be the restriction of the
form g to V;. Composing with the projection of V' to Vj; gives a quadratic
form (also written ;) on V. If there is no component meeting the first
column, define o := z( and call 0 a fixed point of A\/pu. If d # dy, then
the form S, identifies V' and V, as dual vector spaces. For H C V,, let
H+ C V! be its annihilator.

Lemma 2.2. Let H € X, N X}.. Then
(1) HNV, = {eu; | 1y = A;)-
(2) dim(H N'Vy) = #col(dy) — 1.
(3) For all components d of A/ which do not meet the first column,
dim(HNV}") = #rows of d,
dim(HNV,) = col(d) — #rows of d,

and (HNV;) = HNV .

Proof of Lemma 2.2. Let H € X, N X}.. Suppose ;41 < u; so that |u;]
is an empty column of A/u. Then the definition of Schubert variety implies

H = HN(en,---,ex,,) @ HN ey, -, en)-
Suppose d # dy. If the rows of d are j,... , k, then

HNVS = HnN (e, .. ex)
= HnN{em,...,ex)N{eu, - 6n),

and so has dimension at least k£ — j + 1.

Similarly, if I, ... ,m are the indices ¢ with \; < p;, \; < iz, then HN'V,
has dimension at least m—I+1. Hence % dim Vy = #col(d) = k+m—1—j+2,
as Aj, ... ks ALy - -, A are the columns of d.

Since H is isotropic, dim H; + dim H; < #col(d), which proves the first
part of (3). Moreover, HNV," C (H N Vd_)L as H is isotropic, and equality
follows by counting dimensions.

Similar arguments prove the other statements. p=

For H € X,NX}., define H, := HNV,,, Hy := HNV;, and Hy := HNV,".

Proof of Lemma 1.4. Note that H, C V, is the zero locus of the linear
forms «;, Hop is isotropic in Vj, and, for each component d of \/u not
meeting the first column, H, := H; & H; is isotropic in Vj. It follows from
Lemma 2.2 that the forms ¢, 54 vanish on HSDGBHOEBEB@M0 H,. Dimension-
counting shows that this sum equals H, which proves the lemma. p=
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As the spaces V,, Vj, and the V; are mutually orthogonal, the decomposi-
tion H = H, ® Hy ® .4, Ha is an orthogonal direct sum. Also, X, N X},
is an irreducible variety, as it has an algebraic stratification with a unique
stratum of largest dimension [3].

Theorem 2.3. Suppose A/ is a skew row. With the definitions given above,
the map

{Ho|He X,nX}.} x |[{Hs|HeX,nX}} — XN X}
d+do
defined by
(Ho,... ,Hd,...) — <H¢,,H0,... ,Hd,...>

s an isomorphism of algebraic varieties.

Proof. By the previous discussion, this map is an injection. For surjec-
tivity, note that both sides are irreducible and have the same dimension.
Indeed, dim(X,, N X)) = |A| —|p/|, the number of boxes in A\/u. Lemmas 2.4

and 2.5 show that each factor has dimension equal to the number of boxes
in the corresponding component. pe=

Suppose there is a component dy meeting the first column. Let [ be the
largest column in dy, and define A(0), x(0) € SY; as follows: Let j be the
first row of dy so that [ = A;. Then, since dy is a component, for each
Jj<i<j+1-1,wehave \iy1 > p; and | = f;5,-7. Set

wO) = py > > i
)\(0) = )\j > e > )\j—l—l—l

Define A(0)° by A(0); = A(0);41-p. The following lemma is straightforward.

Lemma 2.4. With the above definitions,

{HO ‘ H E XN ﬂX’c} ~ X“(()) mX;\(O)c
as subvarieties of By ~ B(Vy), and A\(0)/1(0) has a unique component meet-
ing the first column and no fixed points.

We similarly identify {Hy | H € X,NX).} as an intersection X,,4) NX} 4
of Schubert varieties in B,olumns of d = B“ﬁ’ Va)). Let j,...,k be the
rows of d and [,... ,m be the indices ¢ with \; < p;,; A\; < Ty, as in the
proof of Lemma 2.2. Let p = #columns of d and define A(d), u(d) € SY,, as
follows. Set a = pg, and define

pld) == pj—a+1>---> 1 >wta—1>-->p,+a—1
Ad) = Aj—a+1>---> h—-a+1>N+a—-1>---> )\, +a—-1
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Define A(d)¢ by A(d)§ = A(d)p11—;. The following lemma is straightforward.
Lemma 2.5. With these definitions,
{Hy| He X,N X3} = Xy N X

as subvarieties of B, ~ B({eg, Vy)) and A(d)/u(d) has a unique component
not meeting the first column and no non-zero fixed points.

Suppose now that u, A € SY,, where A/u has a unique component d not
meeting the first column and no non-zero fixed points. Suppose A has k

rows. A consequence of Lemma 2.2 is that the map H} — (H, (Hj)ﬂ
gives an isomorphism

{Hf |He X,NnX\.} — X,NX,. (4)
We identify the domain of this map, a subvariety of the (classical) Grass-
mannian G (V) of k-planes in V' := (ey,... ,e,). See [10, 7, 5] for basics
on the Grassmannian. Schubert subvarieties Q,, Q. of G (V') are indexed
by partitions ¢ € Yy, that is, integer sequences o = (o0y,...,0) with
n—k >0y >---> 0, > 0. Foro € Y, define 6¢ € Y by Jj =n—k—0p41-;.
For o, 7 € Y}, define
QT = {H € Gk(v+) | dlm(Hﬂ <ek+1—j+7'j: s 7en>) > j7 1 S] < k}
Qe = {HeG(VT) |dim(HN(e1,...,€40p,,;)) =7 1< <k}

Let A, u € SY,, with p < A, and suppose px > 0 > py.1. Define partitions
o and 7 in Yy (which depend upon A and u) by

7= k> > p—1>0
= /\1—k22/\k—120

Lemma 2.6. Let y < \ € SY,,, and define o,7 € Yi, and k as above. If
He X,NX\., then HOVT = (ey,... ,e,) contains a k-plane L € Q, NQL..

Proof. Suppose first that H € X, satisfies dim(HN(e1 4y, 5. ,€n)) = k.
Since py > 0 > pgy1, we must have that L := H N V™ has dimension £ as
L lies between two spaces

HnN(eu,---ren) € L C HN(e11ppp1r--- 1€n)

each of dimension k. Moreover, L € €, since for 1 < j < k, k+1—j+71; = p;
and LN (ey,,...,eqn) = HN{ey,...,en), which has dimension at least j.
If H € X}, then similar arguments show L € /.. The lemma follows as
such H are dense in X, N X}.. p=
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Corollary 2.7. Suppose A/ has a unique component not meeting the first
column and no non-zero fized points and let o, 7, and k be defined as in
Lemma 2.6. We have:

{Hi |He X, nX\.} = Q. NQ.,
as subvarieties of G(V'™T).

Remark 2.8. The symplectic analogs of Lemma 2.5 and Corollary 2.7,
which are identical save for the necessary replacement of Y for X and C),
for B,, show an interesting connection between the geometry of C(W) and
B(V). Namely, suppose A\/u has no component meeting the first column.
Then the projection map V' — W defined by

N 0 ifi=0
€ fi otherwise

and its left inverse W < V' defined by f; — e; induce isomorphisms

X, NX}e +—= Y, NY.

3. PIERI-TYPE INTERSECTIONS OF SCHUBERT VARIETIES

Let A/u be a skew row and set Zy,,, be the zero locus of the forms «; and
B4 of Section 2. In Section 1, we deduced Theorem 1.2 from the following
theorem.

Theorem 3.1. Let A/ be a skew row, Zy;, be as above, and (v) a general
line in Zy,. Then X, N X\ N X, 48 a singleton.

Proof. Let Q, be the cone of isotropic points in V and Q4 the cone of
isotropic points in Vj for d # dy. These are the zero loci of the forms £, and
B4, respectively. Thus

Inju = H@@QO@@Qd

d#do

and so a general non-zero vector v in Z,,, has the form

v o= Z ajeu; + Vo —|—Zvd,

=X d#do

where a; € C* and vy € Qq, vq4 € Q4 are general vectors.

Thus, if H € X,NX}.NXy,, then vy € Hy and vq € Hy. By Theorem 2.3,
H is determined by H, and the H,, thus it suffices to prove that Hy and the
H, are uniquely determined by the vectors vy, v4. By Lemmas 2.4 and 2.5,
this is just the case of the theorem when \/u has a single component, which
is Lemma 3.2 below. pe=
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Lemma 3.2. Suppose A, u € SY,, where A\/p is a skew row with a unique
component and no non-zero fived points. The Zy;, = Q, the set of isotropic
points in 'V, and

(1) If A/ does not meet the first column and v € Q is a general vector,
then X, N X\ N Xy 48 a singleton.

(2) If A/ meets the first column and v € Q is general, then X, N X}, N
Xy 18 a singleton.

Proof of (1). Recall that V* = (ey,... ,e,) and V™ = {(ex,... ,eq). Let
v € Q be a general vector. Since Q C VTV ,v=v"®v withvt € VT
and v~ € V7. Suppose px > 0 > pyo1. Consider the set

(H* € G,(V*) |[ve H  ® (H*)"} = {H* |v* € H" C (v)*}.

This is a Schubert variety Q’,:(n_kyk) of GV, where h(n — k, k) is the par-
tition of hook shape with a single row of length n — k£ and a single column
of length k.

Under the isomorphisms of (4) and Lemma 2.5, and with the identification
of Corollary 2.7, we see that

XN NX N X(v) ~ N QIUC n Qg(n—k,k)’

where o, T are as defined in the paragraph preceding Lemma 2.6. For p € Y,
let S, := [Q,] be the cohomology class Poincaré dual to the fundamental
cycle of Q, in H*G,V™*. The multiplicity we wish to compute is

deg(ST . Sgc . Sh(n—k,k))- (5)

By the classical Pieri formula (as Spn—k) = Sn—k - S1s-1), We see that (5)
is 1 as o/7 has exactly one box in each diagonal. To see this, note that the
transformation p, A\ — 7,0 takes columns of A\/u to diagonals of /7. pm=

Our proof of Lemma 3.2 (2) uses an explicit system of local coordinates
for X, N X}. in the special case where \/u is a skew row with a unique
component meeting the first column, and the further restriction that a com-
ponent Mg y; of A is 1. We shall see that this is no restriction, as either A or
1¢ must have a part equal to 1, for such A, p.
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Let A/p be as in Lemma 3.2 (2), and suppose Ay = 1. For zg, ..., 2,1

Y2, -+ ,Yn € C, define isotropic vectors g; € V' as follows:
( Aj—1
6)\j + Z Z; €; ] S k
=L B
2
g; = { —2xjes + 2wpey + e1 + Z e J=k+1 . (6)
1=Uk+1
Aj—1
€>\j+Z?ﬁ€z‘ J>k+1
\ =Hy

Lemma 3.3. Let A\, u € SY,, where A/ is a skew row meeting the first
column with no fized points and one part of A equal to 1, say A\py1 = 1. This
forces py, > 0 > pyy1. Define 7,0 € Y, and k as for Lemma 2.6 and also
91,y gy as in (6). Then

(1) For any z1,... ,2,—1 € C, we have {g1,... ,gx) € Q2 NOQ..

(2) For any g, ... ,2n_1 € C with Tg—, ... , 25— # 0, the condition
that H := (g1,...,9n) is isotropic determines a unique H € X, N
Xie.

Moreover, these coordinates parameterize dense subsets of the intersections,
and the intersections are transverse along these subsets.

Proof. Statement 1 is immediate from the definitions. For 2, note that
(g1, .. ,9gn) is isotropic if and only if

B(gi,g;) = 0 for i<k<yj.
Observe that for ¢ < k < 7,

B(9i95) # 0 <= [us N N[N, 755] # 0.
Suppose 5(gi,9;) # 0. If we order the variables o < -+ < zp_1 < yo <
-+« < yn, then the lexicographically leading term of 5(g;, g;) will be

Y if A; € [\, 753,

Yorm  if N € [N, 5], so ps < T < A, or
Yn =Yu, ifi=1, j=n.

Since {2,...,n} ={ Ao, ..., Ak—1, Hk, - - - , B}, €ach y; appears in the lead-
ing term of a unique (g;, g;) with ¢ < k < j, showing there are n — 1 non-
trivial equations £(g;, g;) = 0, and that these determine ys, ... , y, uniquely
in terms of the x; when xy—, ... , 2g— # 0.

These coordinates parameterize an n-dimensional subset of X, N X]..
Since X, N X}, is irreducible of dimension n [3], this subset is dense. To
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complete the proof, observe that the equations 3(g;, g;) = 0 define a reduced
scheme in the set of parameters xg,... ,Tp_1, Y2,--- ,Yn.- I~

Example 3.4. Let A\ =653124 and 4 = 531246 so k = 3. We display
the vectors g; in a matrix

€g €5 €1 €3 €5 €1 | € €1 €y €3 €4 €5 €Cg
|- - - - - - . . . . - oxs 1
G| - - - - - . . . coxg oxg 1
gs| - - - . r1  xo 1
ga| - - - -y 1|2z —2:1:%
95|+ - Ys ys 1 : :
96 |Ys Ys 1 :

Then there are 5 non-zero equations £(g;, g;) = 0 with ¢ < 3 < j:

0 B(gs, g4) Yoo + T
0 = B(93,95) = ys+ 22
0 = B(92,95) = Yas+yszs
0 = B(92.96) = Y5+
0 = B(91,9) = Y6+ YsTs
Solving, we obtain:
Yo = —961/962, Ys = —T2, Ys = —y3x3/$4, Ys = —T4, and Y = —Ys5Ts.

Proof of Lemma 3.2 (2). Suppose A\, u € SY,, where \/u is a skew
row with a single component meeting the first column and no fixed points.
Let v be a general isotropic vector and consider the condition that v € H
for H € X, N X}.. Let 0,7 € Y), be defined as in the paragraph preceding
Lemma 2.6. We first show that there is a unique L € Q2. N Qe with L C H,
and then argue that H is unique.

The conditions on p and A imply that p,, =7 and p; = A\j4q for j < n.
We further suppose that Ay = 1, so that the last row of A\/u has length
1. This is no restriction, as the isomorphism of V' defined by e; — e; sends

X, NX to XN X(’uc)c and one of \/p or /A has last row of length 1.

Let v be a general isotropic vector. Scale v so that its ep-component is
1. Let 2z be its ep-component, then necessarily its e;-component is —222.
Let v~ € V'~ be the projection of v to V. Similarly define v* € V*. Set
v':= v + 2z%, so that B(v™,v') =0 and

v = v +2z(eg — ze1) + 0.



PIERI-TYPE FORMULAS FOR MAXIMAL ISOTROPIC GRASSMANNIANS 15

Let H € X,NX)., and suppose that v € H. In the notation of Lemma 2.6,
let L € Q, N Qe be a k-plane in H NV ™. If H is general, in that

dim(H N {er, ... ,ex,,)) = dim(H N{em,...,e)) = n—k—1,

then (L, e;) is the projection of H to V. As v € H, we have v* € (L, e;).
Since L C v+ NVT = (v7)*, we see that v' € L, and hence

v € L C (v)*

As in the proof of part (1), there is a (necessarily unique) such L € Q. N Qe
if and only if o/7 has a unique box in each diagonal. But this is the case,
as the transformation y, \ — 7,0 takes columns of A\/u (greater than 1)
to diagonals of o /7.

To complete the proof, we use the local coordinates for X, N X}, and
Q, N Qe of Lemma 3.3. Since v is general, we may assume that the k-
plane L € €. N Qyc determined by v € L C (v™)* has non-vanishing
coordinates Zp 1, ---,%m—;, S0 that there is an H € X, N X). in this
system of coordinates with L = HNV*.

Such an H is determined up to a choice of coordinate x,. The requirement
that v € H forces the projection (eg + 2x¢eg) of H to (e, ep) to contain
er + 2zeq, the projection of v to (er, ep). Hence xy = 2z, and it follows that
there is at most one H € X, N X}, with v € H. Let g1,...,g, be the

vectors (6) determined by the coordinates xi, ... ,z,_1 for L with 2o = 2.
We claim v € H := (g1,... , gn)-

Indeed, since v’ € L and v~ € Lt = (gpy1 — 22(€g — 2€1), Gks2, - - - » Gn),
there exist oy, ... ,a, € C with

vT+v = oqgr+ -+ aprr (g — 22(ep — ze1)) + - + A Gn-

We must have o1 = 1, since the e;-component of both v and gxyq is 1. It
follows that

n
v o= Zaigi € H. -
i=1

Remarks. It would be interesting to continue this program to give triple
intersection proofs of Pieri-type formulas in all Grassmannians of classical
groups. This would give new formulas and complement the work of Pragacz
and Ratajski [13, 14, 15]. In general, there are two distinct types of special
Schubert classes and our methods work best with one type. Pragacz and
Ratajski gave Pieri-type formulas in these Grassmannians for the other type.
These explicit methods are similar to those used to prove the Pieri-type
formula for classical flag varieties [17] and for isotropic flag varieties [1].
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