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CONVEX HULLS OF ORBITS AND ORIENTATIONS OF A MOVING

PROTEIN DOMAIN

MARCO LONGINETTI, LUCA SGHERI, AND FRANK SOTTILE

Abstract. We study the facial structure and Carathéodory number of the convex hull
of an orbit of the group of rotations in R

3 acting on the space of pairs of anisotropic
symmetric 3× 3 tensors. This is motivated by the problem of determining the structure
of some proteins in aqueous solution.

Introduction

The most aesthetically appealing polytopes arise as convex hulls of orbits of finite groups
acting on a vector space. These include the platonic and Archimedean solids and their
higher-dimensional generalizations, such as the regular polytopes [7]. In contrast, the
analogous objects for compact Lie groups have not attracted much study. We investigate
convex hulls of orbits of the group SO(3) in a particular 10-dimensional representation.
Our motivation comes from an algorithm to understand the fold of some proteins.

Certain proteins, such as calmodulin [3], consist of two rigid domains connected via
a region that is flexible in aqueous solution (i.e. under physiological conditions), and
the problem is to determine the relative position and orientation of these two domains.
Calmodulin, as many other proteins, incorporates metal ions into its structure. When
a paramagnetic ion is substituted, it interacts with the magnetic field of dipoles within
the protein via its magnetic susceptibility tensor χ. Part of this interaction, the residual
dipolar coupling, may be inferred from nuclear magnetic resonance data and depends
solely upon the relative orientation of the two domains. When the relative orientation of
the two domains is not constant, we infer the mean magnetic susceptibility tensor χ from
these data.

We model this relative orientation by a probability measure p on the group SO(3) of
rotations of R

3. Then χ is the average with respect to p of rotations of χ. Recovering p
from χ is an ill-posed inverse problem. Nevertheless, χ contains useful information about
p. Gardner, Longinetti, and Sgheri [10] gave an algorithm to determine the maximum
probability of a given relative orientation of the two domains. Since χ lies in the convex
hull V of the orbit of χ under the group of rotations of R

3, it admits a representation
χ =

∑

j pjRj.χ, where the sum is finite,
∑

j pj = 1 with pj ≥ 0, Rj is a rotation in R
3,

and Rj.χ is the action of Rj on the tensor χ. The minimal number of summands needed
to represent any point χ in V is the Carathéodory number of V .
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It is often possible to substitute a different metal ion into the protein with a different
susceptibility tensor χ′. Repeating the measurements gives a second mean tensor χ′ which
is the average of rotations of χ′ with respect to the measure p. Combining this with χ
gives more information about p. Longinetti, Luchinat, Parigi, and Sgheri [12] adapted the
algorithm of [10] when there are two or more metal ions and showed how this can be used
to better understand the structure of calmodulin. Their algorithm uses some knowledge
of the convex hull V 1,2 of the orbit of the pair (χ, χ′) under the group of rotations.

We study the Carathéodory number and facets of V 1,2. When χ and χ′ are linearly
independent, V has dimension 10. We call a subgroup of SO(3) which stabilizes a line in
R

3 a coaxial group, and a face of V 1,2 which is stabilized by a such a subgroup a coaxial

face. Our main result is the following.

Theorem 5.6. Faces of V 1,2 have dimension at most 6. The coaxial faces of V 1,2 form

a three-dimensional family whose union is a nine-dimensional subset of the boundary of

V 1,2 if and only if χ and χ′ have distinct eigenvectors. In that case, almost all coaxial

faces have dimension 6, have Carathéodory number 4, and are facets of V 1,2.

Our main result implies that the Carathéodory number of V 1,2 is at most 8. This is an
advance over [10], where it was bounded between 4 and 10 inclusive.

We are unable to show that the boundary of V 1,2 is the union of coaxial faces when χ
and χ′ have distinct eigenvectors, but conjecture that this is the case. As a consequence
of our main result, we also conjecture that the Carathéodory number of V 1,2 is at most 5.

Given any number N of tensors (χ1, . . . , χN) we may define the convex hull V 1,...,N . In
Section 3.2 we prove that dimV 1,...,N is five times the dimension of the span of (χ1, . . . , χN).
In the text, we will omit the superscripts from our notation for the convex hull.

Magnetic susceptibility tensors are 3 × 3 symmetric trace zero matrices and form a
five-dimensional irreducible representation of the group SO(3) of rotations in R

3. More
generally, one could study the convex hulls of orbits of compact groups. We were surprised
to find that very little is known about such convex bodies, particularly their Carathéodory
numbers and facets. We hope that our work will stimulate a more thorough study of
convex hulls of orbits of compact groups.

In Section 1, we describe the motivation for this work from protein structure. In
Section 2 we discuss group actions and in Section 3 convex hulls of orbits. In Section 4
we complete the analysis of [10] in the case of one metal ion. In Section 5 we analyze the
case of two metal ions and deduce Theorem 5.6.

1. Application to protein structure

Proteins are large biological molecules synthesized by living organisms. The genome
of an organism contains the chemical formulae for its proteins. Currently, hundreds of
organisms (including man) have had their genomes mapped, and such chemical formulae
are readily available. An important step toward inferring the biological function of a
protein from its chemical formula is to determine its thhree-dimensional structure, or its
fold.

About one third of all proteins incorporate metal ions into their structures. The fold of
these proteins may be inferred from nuclear magnetic resonance, which can measure the
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interactions between paramagnetic metal ions and dipoles within the protein. The main
quantities that can be measured are the pseudo contact shifts (PCS) [1] and the residual
dipolar coupling (RDC) [17]. In this paper we deal only with the RDC.

The residual dipolar coupling between a paramagnetic ion and a dipole formed by atoms
a and b within the protein depends upon the vector displacement r from the atom a to
the atom b and the magnetic susceptibility tensor χ of the metal ion, which is a 3 × 3
symmetric matrix. The RDC interaction has the following vector formula

(1.1) δ :=
C

‖r‖5
rT χr − C

3‖r‖3
Trace(χ) .

Here, C is a constant and ‖r‖ is the length of the vector r. This depends only upon the
relative orientation of the dipole and metal ion, and so the RDC data may be used to
infer this relative orientation.

Writing χ = χ0 + 1
3
Trace(χ)I3, where I3 is the 3 × 3 identity matrix and χ0 is the

trace-free or anisotropic part of χ, this formula becomes

δ =
C

‖r‖5
rT χ0r .

We assume henceforth that χ = χ0 is anisotropic.
The fold of the protein is usually unique, in the sense that small variations of the shape

are allowed. There are proteins, however, that exhibit large variations of shape under
particular conditions. A widely studied example is calmodulin, which has two rigid do-
mains, called the N-terminal and C-terminal domains, connected by a short flexible linker.
The N- and C-terminal domains are assumed to be rigid bodies with known structures.
Figure 1, obtained with Molmol [11], shows calmodulin in two different orientations.
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Figure 1. Two orientations of calmodulin

The binding site of the metal ion in calmodulin belongs to the N-terminal domain.
The measured RDC of pairs of atoms belonging to the N-terminal domain can be used
to obtain a good estimate of χ. The measured RDC of pairs of atoms belonging to the
C-terminal domain can be used to study the relative orientation of the two domains.

Let us model the relative orientation of the N- and C-terminal domains with a rotation
R. Then there is an unknown probability measure p on the set SO(3) of rotations such
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that the mean RDC δ of the pair of atoms a, b in the C-terminal domain is given by

(1.2) δ =
C

‖r‖5

∫

SO(3)

(Rr)T χ(Rr) dp(R) =
C

‖r‖5
rT χr ,

where the mean magnetic susceptibility tensor χ is

(1.3) χ =

∫

SO3

RT χR dp(R) .

This tensor χ can be estimated from the RDC of several dipole pairs in the C-terminal
domain. The experimental measures show that in terms of difference of eigenvalues, χ is
between 5 and 20 times smaller than χ [2]. This indicates that p is not a point mass, that
is, the C-terminal domain moves with respect to the N-terminal domain.

The availability of N distinct mean susceptibility tensors χk with respect to different
metal ions k = 1, . . . , N increases the information about p for N up to 5; see for instance
[14] and [12, Theorem 3.2]. However, even the exact knowledge of five mean tensors χk

(i.e. 25 real numbers) does not allow the exact reconstruction of the probability measure
p.

An approach to extract information from the mean tensors is to define pmax(R) as the
maximal fraction of time that the C-terminal can stay in a particular orientation R, yet
still produce the measured mean tensors. Orientations with a large pmax agree with what
are thought to be the most-favored orientations of the C-terminal [12].

The calculation of pmax can be performed geometrically if only RDC is considered [12].
In the combined PCS+RDC case more information is added [4], however the calculation
of pmax can only be performed numerically. For the convergence and efficiency of the
algorithm, the minimal number of orientations needed to reconstruct any admissible set
of mean tensors χk should be used. Experience suggests that adding the PCS data does
not increase the actual number of orientations needed [4], so the Carathéodory number
for the RDC case may be used as a basis for the numerical minimization.

2. Group actions and anisotropic tensors

We first recall some basics about representations of compact groups, then consider the
action of the group SO(3) of rotations in R

3 on the five-dimensional space of anisotropic
3 × 3 symmetric tensors, and finally investigate the coaxial subgroups of SO(3).

2.1. Representations of compact groups. This material may be found in the book
by Bröcker and tom Dieck [5, Ch. II]. Let G be a compact group, such as SO(3). A
representation of G is a finite-dimensional vector space W on which G acts by linear
transformations. That is, we have a group homomorphism ρ : G → GL(W ), where GL(W )
is the group of invertible linear transformations on W . For g ∈ G and w ∈ W , write g.w
for ρ(g)(w).

A representation W of G is irreducible if its only G-invariant subspaces are {0} and
W . Every representation of G decomposes as the direct sum of irreducible representations
which is unique in the following way. Given a representation W of G and a positive integer
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l, let W l be the l-fold direct sum of W ,

W l = W ⊕ W ⊕ · · · ⊕ W
︸ ︷︷ ︸

l

.

Elements g of G act diagonally on elements w = (w1, . . . , wl) of W l, g.w = (g.w1, . . . , g.wl).
Suppose that W1,W2, . . . is the list of irreducible representations of G. If U is a represen-
tation of G then there exist unique integers l1, l2, . . . such that

U ≃ W l1
1 ⊕ W l2

2 ⊕ W l3
3 ⊕ · · · ,

as representations of G. If Ui is the subrepresentation of U mapped to the summand
W li

i under this isomorphism, then Ui does not depend on any choices and is called the
isotypical component of U corresponding to Wi. If li > 0, then we say that U contains

Wi. Furthermore, if U ′ ⊂ U is a subrepresentation, then the ith isotypical component of
U ′ is U ′ ∩ Ui, which is also the image of U ′ under the projection to Ui.

Haar measure is a G-invariant measure µ on G with 1 =
∫

G
dµ(g). Given a linear

function L : W → R, where W is a representation of G, we may average L over orbits of
G to get a new linear function L′, defined by

L′(x) :=

∫

G

L(g.x)dµ(g) .

Since L′ is constant on orbits of G, it is G-invariant. This association L 7→ L′ is called
the Reynolds operator. It is an important tool for analyzing G-representations.

Another key tool is Schur’s lemma. A linear map ϕ : W → U between representations
of G is a G-map if for all w ∈ W and g ∈ G, we have g.ϕ(w) = ϕ(g.w). Let HomG(W,U)
be the space of G-maps. A division algebra is a finite-dimensional associative algebra in
that every non-zero element is invertible.

Schur’s Lemma. If W 6≃ U are irreducible representations of G, then HomG(W,U) = 0
and HomG(W,W ) is a division algebra which contains R.

Proof. Let ϕ : W → U be a G-map. Then the kernel of ϕ is a subrepresentation of W and
so it is either 0 or W , and the image of ϕ, which is a subrepresentation of U , is either 0
or U . Examining the possibilities leads to the conclusions. ¤

There are exactly three division algebras which contain R: The real numbers R, the
complex numbers C, and the quaternions H. An irreducible representation W of G has
real, complex, or quaternionic type, depending on EndG(W ) := HomG(W,W ).

Example 2.1. Consider the group SO(2) of rotations of R
2,

SO(2) =

{

Rθ :=

(
cos θ − sin θ
sin θ cos θ

)

| θ ∈ [0, 2π)

}

.

EndSO(2)(R
2) consists of those 2 × 2 matrices M such that MRθ = RθM , and so

EndSO(2)(R
2) = R

(
1 0
0 1

)

+ R

(
−1 0

0 1

)

.

This is isomorphic to C (we send
„

−1 0
0 1

«

to
√
−1), so this representation of SO(2) has

complex type. It is the defining representation U1 of SO(2). If we identify R
2 with C and
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SO(2) with the circle group S1 := {eiθ | 0 ≤ θ < 2π}, then the action is scalar multipli-
cation by elements of S1. For any positive integer k > 0, let Uk be the representation of
S1 on C (identified with R

2) where z ∈ S1 acts as multiplication by zk. These all have
complex type.

Example 2.2. The orthogonal group O(2) contains SO(2) as well as the cosets of reflec-
tions

SO(2) ·
(

0 −1
1 0

)

=

{

Rθ ·
(
−1 0

0 1

)

| θ ∈ [0, 2π)

}

.

The defining representation U1 of O(2) on R
2 has real type, as

(
−1 0

0 1

)

·
(

0 −1
1 0

)

=

(
0 1
1 0

)

6=
(

0 −1
−1 0

)

=

(
0 −1
1 0

)

·
(
−1 0

0 1

)

,

and so EndO(2)(R
2) = R ·

„

1 0

0 1

«

≃ R.

In the trivial representation U0 = R of O(2), elements act as multiplication by 1. For
a positive integer k, define the map ϕk : O(2) → O(2) ⊂ GL(2, R) by ϕk(Rθ) = Rkθ and

ϕk

„

−1 0
0 1

«

=
„

−1 0
0 1

«

. This defines the representation Uk of O(2), which has real type.

Restricting to SO(2) gives its representation Uk of complex type.

2.2. Rotations of anisotropic tensors. Let e1 = (1, 0, 0)T , e2 = (0, 1, 0)T , and e3 =
(0, 0, 1)T be the standard basis of R

3.
The special orthogonal group SO(3) is the group of rotations in R

3. It consists of 3× 3
real orthogonal matrices with determinant 1,

SO(3) :=
{
R ∈ R

3×3 | RRT = 1 and detR = 1
}

.

Let R ∈ SO(3), and let TRSO(3) be the tangent space to SO(3) at the matrix R. Let I
be the identity matrix, then TISO(3) is the space so3 of skew symmetric 3 × 3 matrices,
which is the Lie algebra of SO(3). That is,

TISO(3) = I + so3 .

Elements R ∈ SO(3) act on 3× 3 symmetric matrices (tensors) χ by conjugation, R.χ :=
RχRT †. This preserves the trace of χ, and so SO(3) acts on the space W of anisotropic

(trace-zero) tensors, a five-dimensional irreducible real representation. We introduce some
useful coordinates for W . A point (v, w, x, y, z) ∈ R

5 corresponds to

(2.3) χ(v, w, x, y, z) :=





v 0 0
0 −v

2
0

0 0 −v
2



 +





0 w x
w 0 0
x 0 0



 +





0 0 0
0 y z
0 z −y



 .

Observe that e1 is an eigenvector for χ(v, w, x, y, z) if and only if w = x = 0, e2 is an
eigenvector if and only if w = z = 0, and e3 is an eigenvector if and only if x = z = 0.

†This left action (if R,S ∈ SO(3), then R(S.χ) = RS.χ) is equivalent to the implied action in (1.3).
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2.3. Coaxial subgroups. The coaxial subgroup Qe is the set of rotations fixing a line
in R

3 with direction e. It is isomorphic to the orthogonal group O(2). Its identity
component Q+

e is isomorphic to SO(2) and consists of rotations about the axis e, while
the other component Q−

e consists of reflections in axes orthogonal to e. For example, let

(2.4) Re1,θ :=





1 0 0
0 cos θ − sin θ
0 sin θ cos θ



 and Re3,π :=





−1 0 0
0 −1 0
0 0 1



 .

If we fix f perpendicular to e and let θ run over all angles, then Re,θ and Re,θRf,π give all
elements of Qe.

We consider the action of a coaxial subgroup Qe on W . For this, suppose that e = e1

and let Re1,θ act on χ(v, w, x, y, z). This gives the tensor χ(v′, w′, x′, y′, z′), where

v′ = v ,
(

w′

x′

)

=

(
cos θ − sin θ
sin θ cos θ

)(
w
x

)

= Rθ

(
w
x

)

, and

(
y′

z′

)

=

(
cos 2θ − sin 2θ
sin 2θ cos 2θ

) (
y
z

)

= R2θ

(
y
z

)

.

Thus Re1,θ acts trivially on the coordinate v, by rotation through the angle θ on the
vector (w, x)T , and by rotation through 2θ on the vector (y, z)T . Note that Re3,π sends
χ(v, w, x, y, z) to χ(v, w,−x, y,−z). Thus, if we restrict the action of SO(3) on W to
Qe1

≃ O(2), then it decomposes as a sum of irreducible representations

(2.5) W = U0 ⊕ U1 ⊕ U2 .

This decomposition corresponds to the coordinates (2.3). Projection to the trivial submod-
ule U0 = R is, up to a scalar multiple, the unique Qe-invariant linear function L : W → R.

3. Convex hulls of orbits

Let O be an orbit of a compact group G in a representation W of G. The convex hull

V of O is all points of W which are convex combinations of elements of O,

λ1v1 + λ2v2 + · · · + λnvn ,

where v1, . . . , vn ∈ O, and the non-negative numbers λi have sum 1. The set V is a
compact convex set, hence a convex body.

3.1. Faces and Carathéodory number of V . A face F of V is the subset of its bound-
ary where some linear function L achieves its maximum on V ,

F := {v ∈ V | L(v) ≥ L(u) for all u ∈ V } .

We say that L supports F and also that the hyperplane L(x) = L(F ) supports F . (Here,
L(F ) is a constant.) The tangent spaces to O of its points lying in F are contained in
any hyperplane supporting F . Such a tangent space TvO at the point v is

v + g.v ,

where the action of the Lie algebra g is the derivative of the action of G. The face F is
proper if F 6= V . When V is full-dimensional so that dim V = dim W , this is equivalent
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to L 6= 0. A facet is a maximal face and a vertex is a minimal face. Vertices are not a
convex combination of other points of V .

Lemma 3.1. The vertices of V are exactly the points of O.

Proof. The vertices of V are a subset of O := G.x. Let g.x ∈ O and suppose that it is a
convex combination of vertices,

g.x = λ1g1.x + λ2g2.x + · · · + λngn.x .

Multiplying by g1g
−1 expresses the vertex g1.x as a convex combination of points of O.

Thus n = 1 and g.x = g1.x is a vertex. ¤

When V has dimension d, Carathéodory’s Theorem [6], see e.g. [16, Theorem 1.1.4],
implies that any point x of V is a convex combination of at most d+1 vertices. The
Carathéodory number of V is the minimum number n such that any point x ∈ V is a convex
combination of at most n vertices. For example, a ball in R

d has Carathéodory number 2,
while a d-simplex has Carathéodory number d+1. Fenchel [9], see e.g. [15, Theorem 1.4],
showed that the Carathéodory number is at most d when the set of vertices is connected.
More useful for us is a recursive bound, which is immediate from the observation that any
point of V is the convex combination of any vertex and some boundary point.

Lemma 3.2. The Carathéodory number of a convex body V is at most one more than the

maximal Carathéodory number of its facets.

Suppose that S is a closed (hence compact) subgroup of G that stabilizes a face F of
V , that is s.F = F for all s ∈ S.

Lemma 3.3. When F is proper, there is a non-zero S-invariant linear function on W ,

and W contains the trivial representation of S.

Proof. Let L : W → R be any linear function supporting F with L(F ) = ℓ. Let L′ be the
image of L under the Reynolds operator for S. For u ∈ F , we have L′(u) = ℓ, as F is
S-stable and L′(u) is the average of L over the orbit of S through u.

Suppose that w ∈ V \ F . Then L(w) < L(u) = ℓ and L(s.w) is bounded away from
ℓ as S.w is compact and disjoint from F . In particular, this implies that L′(w) < L′(u),
which shows that the S-invariant linear function L′ supports F and that L′ 6= 0. Such an
S-invariant linear function must factor through the trivial isotypical component of W as
a representation of S. This completes the proof. ¤

3.2. The dimension of V . If w = (w1, . . . , wl) ∈ W l, then we write d(w) for the dimen-
sion of the linear span of the components w1, . . . , wl of w in W .

Lemma 3.4. Suppose that W is an irreducible representation of a group G having real

type. If w ∈ W l, then the linear span U of the orbit G.w in W l is isomorphic to W d(w).

Proof. Write k := d(w). We may assume that w1, . . . , wk form a basis for the linear span
of w1, . . . , wl. Let A = (αij) ∈ Matl×k(R) be the matrix which writes the components

of w in terms of this basis, wi =
∑k

j=1 αi,jwj for i = 1, . . . , l. For each i = 1, . . . , l, let
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ϕi : U → W be the projection to the ith coordinate. Since ϕi(g.w) = g.wi, we have

(3.5) ϕi =
k∑

j=1

αi,jϕj for i = 1, . . . , l .

This matrix A defines a G-map A : W k → W l by

(3.6) A : (w1, . . . , wk) 7−→
(

∑

j

α1,jwj,
∑

j

α2,jwj, . . . ,
∑

j

αl,jwj

)

.

Composing the map ψ := (ϕ1, . . . , ϕk) : U → W k with A : W k → W l gives the identity
map on U : By (3.5), for w ∈ U , we have

w = (ϕ1(w), ϕ2(w), . . . , ϕl(w)) .

We show that the map (3.6) is injective and thus ψ is an isomorphism. A linear map
L : W → R induces maps Lk : W k → R

k and Ll : W l → R
l, which commute with A. If

0 6= w ∈ W k, then there is some linear map L : W → R with Lk(w) 6= 0. Since A has full
rank k, A(Lk(w)) 6= 0. But this implies that A(w) 6= 0, as A(Lk(w)) = Ll(A(w)). ¤

Lemma 3.7. Suppose that W = W l1
1 ⊕· · ·⊕W lm

m is the decomposition of a representation

W of G into isotypical pieces, each of which has real type. Let w = (w1, . . . , wm) ∈ W ,

where wi is the component of w in W li
i . Then the dimension of the convex hull V of the

orbit G.w is
∑

Wi 6=R

d(wi) · dim Wi .

If W does not contain the trivial representation, then 0 lies in V .

Proof. If W contains the trivial representation, assume that it is W1. Since g.(w −w1) =
g.w−w1, we see that the orbits G.w and G.(w−w1) are isomorphic, and the same is true
for their convex hulls. Thus it is no loss to suppose that w1 = 0, which is equivalent to
assuming that W does not contain the trivial representation.

The linear span U of the orbit G.w is the direct sum of its projections to the isotypical
components W li

i of W . Each projection is the linear span of G.wi, which by Lemma 3.4

is isomorphic to W
d(wi)
i . Thus U has dimension

∑

i d(wi) dim Wi. We may replace W by
this linear span, and therefore assume that the orbit G.w spans W .

The convex hull of G.w lacks full dimension only if it lies in some hyperplane H not
containing the origin. Suppose that this is not the case and let B be the convex hull of
G.w and the origin. Then V is a proper G-stable face of B and so by Lemma 3.3 W
contains the trivial representation, which is a contradiction.

If 0 6∈ V , then there is some linear function L which is bounded above 0 on V . But
then the image L′ of L under the Reynolds operator is non-zero on V . This implies that
L′ 6= 0, and so W contains the trivial representation, a contradiction. ¤

Example 3.8. Lemmas 3.4 and 3.7 do not hold if the representation W has complex
type. For example, let G = SO(2) and W = U l

k with k, l ≥ 1. Identifying W with C
l

and SO(2) with the circle group S1, elements z ∈ S1 act on C
l as scalar multiplication
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by zk. Thus the linear span SO(2).w for w ∈ U l
k is a complex line, and therefore has real

dimension 2, and not 4 as Lemma 3.4 predicts for general w ∈ W when l, k ≥ 1.
In particular, if W = U1 ⊕ U2

2 , and w ∈ W is general, then the linear span of G.w has
complex dimension 2 and thus real dimension 4.

4. One metal ion

Let W be the space of symmetric 3×3 anisotropic tensors, a five-dimensional irreducible
representation of SO(3) of real type. For each unit vector e ∈ R

3, there is a linear function

(4.1) Le : W ∋ χ 7−→ 〈e, χe〉 = eT χe ∈ R .

If e is an eigenvector of χ, then Le(χ) is its eigenvalue. In general, Le(χ) lies between
the maximum and minimum eigenvalues of χ. Note that Le is Qe-invariant. By the
decomposition (2.5) of W into irreducible Qe representations, any Qe-invariant linear
function is a scalar multiple of Le.

As a matrix, a tensor in W has real eigenvalues and its eigenvectors form an orthonormal
basis for R

3. Fix a non-zero anisotropic tensor χ ∈ W with maximum eigenvalue M > 0
and minimum eigenvalue m < 0. The intermediate eigenvalue of χ is −M − m, and we
have −M

2
≥ m ≥ −2M . The orbit O of χ under SO(3) consists of the anisotropic tensors

with maximal eigenvalue M and minimal eigenvalue m. It is a manifold whose dimension
we determine.

Proposition 4.2. The orbit Oχ is three-dimensional unless χ has an eigenvalue of mul-

tiplicity 2, in which case it is two-dimensional.

Proof. The dimension of O is equal to the dimension of any of its tangent spaces. Since

O =
{
RχRT | R ∈ SO(3)

}
,

the tangent space TξO at a point ξ ∈ O is the affine space

(4.3) ξ +
{
rξ + ξrT | r ∈ so3

}
.

Indeed, consider the action in ξ of an element I+r of the tangent space TISO(3) = I+so3:

(I + r)ξ(I + r)T = ξ + rξ + ξrT + rξrT .

Discarding the term which is quadratic in so3 gives (4.3).
It suffices to determine the tangent space to O at the point χ. We may suppose that χ

is diagonal, and let r be a general element of so3,

χ =





M 0 0
0 −M − m 0
0 0 m



 and r =





0 −a −b
a 0 −c
b c 0



 ,

where a, b, c ∈ R. Let α := M + m
2
, β := M − m, and γ := −m − M

2
. Then β > 0 and

α, γ ≥ 0 with α = 0 only when the eigenvalue m has multiplicity 2 and γ = 0 only when
the eigenvalue M has multiplicity 2. We see that TχO is the affine subspace of W

(4.4) ξ +





0 2aα bβ
2aα 0 2cγ
bβ 2cγ 0



 ,
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where a, b, c ∈ R. This is three-dimensional unless either α = 0 or γ = 0. ¤

Let V be the convex hull of the orbit O of χ ∈ W . By Lemma 3.4, this is a five-
dimensional convex body.

Lemma 4.5. If χ ∈ V and e ∈ R
3 is a unit vector, then we have

(4.6) m ≤ Le(χ) ≤ M .

In fact, V is the set of symmetric anisotropic tensors satisfying (4.6) [10, Theorem 3.3].

Proof. Le(χ) lies between the maximum and minimum eigenvalues of χ. Thus the in-
equality (4.6) holds for χ in the orbit of χ. Since a general element of V is a convex
combination of tensors in the orbit of χ, we deduce (4.6). ¤

A coaxial face of V is a face that is stabilized by some coaxial subgroup Qe. By
Lemma 3.3, a coaxial face stabilized by Qe is supported by a non-trivial Qe-invariant
linear function. As we noted earlier, this linear function is necessarily a scalar multiple of
Le. By the inequality (4.6), there are two possibilities for such a coaxial face,

(4.7)
FM

e := {χ ∈ V | Le(χ) = M} and

Fm
e := {χ ∈ V | Le(χ) = m} .

The coaxial face FM
e consists of tensors χ ∈ V having e as an eigenvector with eigenvalue

M and tensors in Fm
e have e as an eigenvector with eigenvalue m.

We now describe the facets of V and determine its Carathéodory number. As in the
proof of Proposition 4.2, set α := M + m

2
≥ 0 and γ := −m − M

2
≥ 0.

Lemma 4.8. The boundary of V is the union of coaxial faces (4.7) where e ranges over

all unit vectors in R
3. A nonempty intersection of two coaxial faces lies in the orbit of

SO(3). Each face FM
e is a circle of radius γ and each face Fm

e is a circle of radius α.

When χ has a repeated eigenvalue so that either α or γ vanishes, then the corresponding

coaxial face degenerates to a point.

A consequence of Lemma 4.8 is that the coaxial faces are maximal faces, and are
therefore facets.

Proof. By Theorem 3.3 of [10], V is the set of anisotropic tensors whose eigenvalues lie
in the interval [m,M ], and so its boundary consists of tensors χ either having maximal
eigenvalue M or having minimal eigenvalue m. This shows that the boundary of V consists
of coaxial faces, which are thus the facets of V .

We show that the intersection of two coaxial faces lies in the orbit of χ. Suppose
that χ lies on two different coaxial faces. If these are FM

e and Fm
f , then e and f are

eigenvectors of χ with eigenvalues M and m, respectively. The third eigenvalue of χ is
−M −m, and so χ lies in the orbit of χ. If the two faces have the form FM

e and FM
f with

e and f linearly independent, then the eigenvalue M of χ has multiplicity 2 and its third
(smallest) eigenvalue is −2M . Since χ ∈ V , this smallest eigenvalue is bounded below
by m; as m ≥ −2M , we see that m = −2M and so again χ lies in the orbit of χ. The
argument is similar if the two faces are Fm

e and Fm
f .

The coaxial face FM
e of V consists of tensors χ ∈ V having e as an eigenvector with

eigenvalue M . Since each point of the boundary of FM
e lies in some other coaxial face,
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this boundary lies in the orbit of χ and is necessary an orbit of Qe. We need only
consider the case when χ ∈ FM

e so that this boundary is Qe.χ. Suppose that e = e1 and
χ = χ(M, 0, 0, γ, 0), in the coordinates (2.3). Here, γ = −M

2
− m ≥ 0. As in Section 2.3,

elements of Qe act on χ by rotation of the vector (γ, 0) formed by the last two coordinates,
and thus FM

e1
is a circle of radius γ, which degenerates to a point if γ = 0.

We omit the similar arguments for Fm
e . ¤

Theorem 4.9. If zero is not an eigenvalue of χ, then V has Carathéodory number 3, and

when zero is an eigenvalue, V has Carathéodory number 2.

When zero is not an eigenvalue of χ, this is the main result about V from [10].

Proof. First suppose that zero is not an eigenvalue of χ. Every facet has Carathéodory
number 2, as it is a circle. So by Lemma 3.2, V has Carathéodory number either 2 or 3.
By Lemma 3.7, 0 lies in V . If V has Carathéodory number 2 then there exist λ ∈ [0, 1]
and R,S ∈ SO(3) with 0 = λR.χ + (1 − λ)S.χ. Multiplying by R−1, this becomes
0 = λχ + (1 − λ)R.χ, for a different rotation R ∈ SO(3), and so

(4.10) −λχ = (1 − λ)R.χ .

Suppose that χ is diagonal. Then (4.10) implies that R.χ is also diagonal.
If M 6= −m so that 0 is not an eigenvalue of χ, then one of the diagonal matrices −λχ

and (1 − λ)R.χ has two positive entries and the other has two negative entries, which is
a contradiction. Thus if 0 is not an eigenvalue of χ, then V has Carathéodory number 3.

Now we assume that 0 is an eigenvalue of χ. We will show that the image of the map
[0, 1]×SO(3)×SO(3) → V which takes (λ,R, S) to λR.χ+(1−λ)S.χ meets each SO(3)-
orbit in V and is therefore surjective. They key point is that two tensors are in the same
orbit if and only if they have the same characteristic polynomial.

The characteristic polynomial of a trace-zero matrix χ with eigenvalues s, t,−s − t is

x3 − x(st + t2 + s2) + (s2t + st2) .

The constant term is − det(χ), while the coefficient −α of x is the sum of the pairwise
products of eigenvalues, which is an invariant of the matrix.

Scaling χ, we may assume that its eigenvalues are 1, 0, and −1, so that V consists of
tensors χ ∈ W with eigenvalues s, t,−s − t lying in the interval [−1, 1]. The set of such
pairs (s, t) are the points of the hexagon of Figure 2. The three lines through the origin
t = s, t = −s/2, and t = 2s divide the hexagon into six quadrilaterals and permutations
of the eigenvalues permute these quadrilaterals. We leave it to the reader to check that
(s, t) 7→ (α, det) is a one-to-one mapping of each quadrilateral onto the region shown in
Figure 2, which is

(4.11) X :=
{
(α, det) ∈ R

2 | 27det2 ≤ 4α3 and α ≤ 1 − | det |
}

,

and is bounded by the curves det = 1 − α, det = α − 1, and 27 det2 = 4α3.
Consider matrices of the form χ(λ, θ, τ) := λR(θ).χ + (1 − λ)S(τ).χ, where

R(θ) :=





cos θ sin θ 0
− sin θ cos θ 0

0 0 1



 and S(τ) :=





cos τ 0 sin τ
0 1 0

− sin τ 0 cos τ



 .
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1

1

−1

−1

t = s
t = −2s

t = −s

2

(3
4
, 1

4
)

(3
4
,−1

4
)

det = α − 1

det = 1 − α

27 det2 = 4α3

6

¡
¡µ

1
4

−1
4

1

α

det

Figure 2. Eigenvalues and invariants of tensors in V .

The invariants (α, det) of χ(λ, θ, τ) are
(
1 − λ(1 − λ)(4 sin2 τ + sin2 θ − 2 sin2 τ sin2 θ), λ(1 − λ) sin2 θ(1 − 2λ sin2 τ)

)
.

If we let u = sin2 θ and v = sin2 τ , then the set of invariants of χ(λ, θ, τ) for all (λ, θ, τ)
are the image of the unit cube [0, 1]3 under the map

f : (λ, u, v) 7−→ (1 − λ(1 − λ)(4v + u − 2uv), λ(1 − λ)u(1 − 2λv)) .

We show that the image of f includes that part of X (4.11) where det ≥ 0. This will
complete the proof, as replacing χ by −χ = S(π

2
).χ ∈ V in our definition of f changes

the sign of the determinant and does not change the invariant α.
Figure 3 shows subsets of the faces v = 1 and u = 1 of the cube which include the

(λ − λ2)u = 2(1 − 2λ)2

λ

u

1
3

1
2

1
Face v = 1

2(λ − λ2)v = −(1 − λ − 2λ2)

λ

v

1
3

1
2

1
Face u = 1

Figure 3. Subsets of faces of the cube

segments λ = 1/3 and have boundaries the indicated curves. The map f is one-to-one on
the interior of each region, and the images cover that part of X with det ≥ 0, meeting

only along the curve det =
√

4
27

(α − 1
4
)(α − 1)2 for 1

3
≤ α ≤ 1, as shown in Figure 4. The

line 3 det = (α − 1
9
), which is tangent to the boundary curve 27 det2 = 4α3 at the point

(1
3
, 2

27
), is the image of the lines λ = 1

3
in Figure 3. This completes the proof. ¤

Finally, we identify the hyperplanes supporting facets of V . By Lemma 4.8, the faces
FM

e and Fm
e are two-dimensional, unless χ has an eigenvalue with multiplicity 2, and in

that case exactly one face is degenerate.
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1
4

1

(1
3
, 2

27
)

(3
4
, 1

4
)

det =
√

4
27

(α − 1
4
)(α − 1)2

6

det

α

Figure 4. Image of subsets of Figure 3

Proposition 4.12. The facets FM
e and Fm

e have a unique supporting linear function,

unless they are degenerate.

Proof. It suffices to determine the hyperplanes supporting faces which contain χ. Any
hyperplane supporting the vertex χ contains the the tangent space TχO at χ to the orbit
O through χ. Choose coordinates so that χ = χ(M, 0, 0, γ, 0) is diagonal (γ = −M

2
− m)

so that χ ∈ FM
e1

∩ Fm
e3

. Recall that TχO (4.4) is the affine 3-plane in W

χ(M, ∗, ∗, γ, ∗) ,

where ∗ represents an arbitrary real number. If (x1, . . . , x5) are the coordinates (2.3),
then hyperplanes containing TχO have equation

∑

i cixi = c, where

(4.13) c2 = c3 = c5 = 0, and c1M + c4γ = c .

If γ 6= 0, then FM
e1

is nondegenerate and contains the additional point

Re1, π
2

= χ(M, 0, 0, 0, γ) =





M 0 0
0 −M

2
γ

0 γ −M
2



 ,

which imposes the further condition c1M = c on a support hyperplane to FM
e1

. Thus
c1 = c/M and c4 = 0. Setting c = M so that c1 = 1, we see that the support hyperplane
to FM

e1
is defined by x1 = M , which is Le1

(χ) = M .
If ν = M + m

2
6= 0, then Fm

e3
is nondegenerate and it contains the point





−m
2

ν 0
ν −m

2
0

0 0 m



 = χ(−m
2
, ν, 0,−3m

4
, 0) ,

and so a support hyperplane to Fm
e3

must satisfy (4.13) and also −c1
m
2
− c4

3m
4

= d.
Subtracting these equations and dividing by ν, we see that c1 = 2c4, and so

x1 + 2x4 = −2m ,

is the support hyperplane to Fm
e3

. Note that x1 + 2x4 is −2Le3
(χ). ¤
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5. Two Metals

Let χ1, χ2 ∈ W be linearly independent anisotropic tensors and set χ := (χ1, χ2) ∈ W 2.
By Lemma 3.7, the convex hull V of the orbit O := SO(3).χ is a 2 · 5 = 10-dimensional
convex body containing the origin. Its boundary is nine-dimensional.

We study the facial structure of V ⊂ W 2. One tool will be a family of SO(3)-equivariant
maps πα : W 2 → W . We first determine the dimension of the orbit, show that the
maximum dimension of a facet is 6, and then define coaxial faces. Our main result is that
coaxial faces are facets if χ1 and χ2 have distinct eigenvectors. In that case, almost all
coaxial faces have dimension 6 and Carathéodory number 4. We are unable to rule out
the existence of other facets, but we conjecture that there are no other facets.

Let Span(χ) ⊂ W be the two-dimensional subspace of W spanned by χ1 and χ2.
The structure of V depends only on Span(χ). Indeed, if χ′

1, χ
′
2 ∈ Span(χ) are linearly

independent, then there is a 2 × 2 invertible matrix A = (aij) such that

χ′
1 = a11χ1 + a12χ2 χ′

2 = a21χ1 + a22χ2 .

This induces an SO(3)-isomorphism W 2 ∼−→ W 2:

W 2 ∋ (w1, w2) 7−→ (a11w1 + a12w2, a21w1 + a22w2) ∈ W 2

which sends V to the convex hull of the orbit of (χ′
1, χ

′
2). This is nothing more than a

change of coordinates on W 2.
Any non-zero vector α = (α1, α2) ∈ R

2 gives an SO(3)-map

(5.1) πα : W 2 −→ W

defined by πα(w1, w2) := α1w1 + α2w2. Write wα for πα(w). In particular, χα := πα(χ) ∈
Span(χ). Set Vα ⊂ W to be the convex hull of the orbit Oα := SO(3).χα. Since
πα(SO(3).χ) = SO(3).χα, we have πα(Oχ) = Oα and Vα = πα(V ). We compute the
dimension of the orbit Oχ.

Theorem 5.2. dimOχ = 3.

Proof. We will show that dimOα = 3 for some α ∈ R
2. As πα(Oχ) = Oα, this implies

dimOχ ≥ 3. Since dim SO(3) = 3, we have dimOχ ≤ 3 and so dimOχ = 3.
By Proposition 4.2, the dimension of Oα is 3 if and only if χα has distinct eigenvalues.

If either χ1 or χ2, say χ1, has distinct eigenvalues, then dimO(1,0) = 3 and we are done.
Suppose the contrary, that neither χ1 nor χ2 has distinct eigenvalues. That is, for each
i = 1, 2, χi has a two-dimensional eigenspace with eigenvalue αi. Since 0 cannot be a
repeated eigenvalue, neither α1 nor α2 is zero. These eigenspaces must meet, so χ1 and χ2

share an eigenvector, which is an eigenvector for the nonzero tensor χα := α2χ1 − α1χ2 ∈
Span(χ) with eigenvalue 0. But then χα has distinct eigenvalues and so dimOα = 3. ¤

Lemma 5.3. The maximum dimension of a proper face of V is 6.

Proof. Let F be a proper face of V and let S ⊂ SO(3) its stabilizer subgroup,

S = {g ∈ SO(3) | g.F ⊂ F} .

This is a closed, proper subgroup, and thus either has dimension 1 (in which case it is a
coaxial subgroup Qe or a rotation subgroup Q+

e ), or it is finite and has dimension zero.
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Let F ◦ be the relative interior of F , those points of F which do not lie in any other face
of V of the same or smaller dimension. If g.F ◦ ∩ F ◦ 6= ∅ then g.F = F , and so g ∈ S.

Let ∂V be the boundary of V and consider the map f : SO(3) × F ◦ → ∂V defined by

f : (g, v) 7−→ g.v .

This map is not 1-1: Suppose that g.v = h.w, for g, h ∈ SO(3) and v, w ∈ F ◦. Then
h−1g.v = w and so h−1g.F ◦ ∩ F ◦ 6= ∅, which implies that s := h−1g ∈ S. Then s.v = w.

This calculation shows that the fibers of f have the form
{
(gs−1, sv) | s ∈ S

}
, for g ∈ SO(3) and x ∈ F ◦ .

Thus we have the dimension calculation

dim ∂V ≥ dim SO(3) + dim F ◦ − dim S .

Since dim ∂V = 9 and dim SO(3) = 3, this gives

(5.4) 6 + dim S ≥ dim F .

If S is finite, then dim F ≤ 6. If S has dimension 1 so that it is either Qe or Q+
e for some

e, then F could have dimension up to 7. By (2.5), W 2 = R
2⊕U2

1 ⊕U2
2 as a representation

of S. If S = Qe, then Lemma 3.7 implies that F has even dimension, and if S = Q+
e , then

Example 3.8 implies that F has dimension 0, 2, or 4, which completes the proof. ¤

5.1. Coaxial faces. A coaxial face of V is a face that is stabilized by some coaxial
subgroup, Qe. By Lemma 3.3, such a face is supported by a Qe-invariant linear function,
which must factor through the projection to the trivial isotypical component of W 2, by
Schur’s Lemma. Since this component is R

2 (2.5), L is the pullback of a linear map

R
2 ∋ (M1,M2) 7−→ α1M1 + α2M2 ∈ R .

Up to a scalar, this is the composition of the Qe-invariant linear function Le (4.1) on W
with πα, which is the map Le,α defined by

Le,α(w) := Le(wα) = 〈e, wαe〉 .

Suppose now that e is a unit vector. For each non-zero α ∈ R
2, define

Mα := maximum eigenvalue of χα , and

mα := minimum eigenvalue of χα .

If χ ∈ V , then χα ∈ Vα, and so by Lemma 4.5 we have

(5.5) Mα ≥ Le,α(χ) ≥ mα ,

with equality only when e is an eigenvector of χα having eigenvalue Mα or mα. Thus
coaxial faces are the faces of V defined by equality in (5.5).

For e ∈ R
3 a unit vector and 0 6= α ∈ R

2, define the coaxial face

Fe,α := {χ ∈ V | Le,α(χ) = Mα} .

If χ ∈ Fe,α, then e is an eigenvector of χα with eigenvector Mα. As in Section 4, each
coaxial face Fe,α is the convex hull of an orbit Qe.χ

′, for some χ′ ∈ O.
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Theorem 5.6. Faces of V have dimension at most 6. The coaxial faces of V form a

three-dimensional family whose union is a nine-dimensional subset of the boundary of V
if and only if χ1 and χ2 have distinct eigenvectors. When this happens, almost all coaxial

faces have dimension 6, have Carathéodory number 4, and are facets of V .

If the boundary of V is the union of the coaxial faces, then Lemma 3.2 implies that
the Carathéodory number of V is at most 5, and we conjecture this is the case. If there
are faces of dimension 6 that are not coaxial, then Carathéodory’s Theorem implies that
their Carathéodory number is at most 7. Then Lemma 3.2 implies the following corollary
of Theorem 5.6.

Corollary 5.7. The Carathéodory number of V is at most 8.

By almost all in the statement of Theorem 5.6, we mean in the algebraic sense: Except
for those α ∈ R

2 lying in finitely many half-rays in R
2, Fe,α has dimension 6 when χ1 and

χ2 have distinct eigenvectors. The proof of Theorem 5.6 is done in the series of lemmas
below.

Remark 5.8. The condition that the magnetic susceptibility tensors χ1 and χ2 have
distinct eigenvectors has already been considered in protein folding. It implies that RDC
measurements from the two ions are sufficient to remove the symmetry property of the
RDC [13].

Since M−α = −mα, there is no need for two types of coaxial faces as in Section 4. Since
if r > 0 then Mrα = rMα and Le = L−e, we have

Fe,α = F−e,α = Fe,rα

if r > 0. Thus we may assume that α lies on the unit circle S1 in R
2. We also only need

to consider the unit vector e up to multiplication by ±1, that is, as a point in the real
projective plane, RP

2, which is a two-dimensional manifold.

Lemma 5.9. The coaxial faces Fe,α form a three-dimensional family parameterized by

RP
2 × S1. For each α ∈ S1, any two coaxial faces Fe,α and Fe′,α are isomorphic.

Since the boundary of V is nine-dimensional and it has a three-dimensional family of
coaxial faces, we see again that the maximum dimension of a coaxial face is 6.

Proof. Suppose that e ∈ R
3 is an eigenvector for χα with maximal eigenvalue Mα. Then

χ ∈ Fe,α and Fe,α is the convex hull of the orbit Qe.χ. If R ∈ SO(3), then

R.Qe.χ = RQeR
T .R.χ = QRe.(R.χ) .

But (R.χ)α is an anisotropic tensor having eigenvector Re with eigenvalue Mα. Therefore
FRe,α is the convex hull of QRe.(R.χ) = R.Qe.χ, and thus equals R.Fe,α. ¤

We now determine the dimension of the coaxial faces. By Lemma 5.9, we need only
study one coaxial face Fe,α for each α ∈ S1. We compute the dimension of the affine span
of an orbit Qe.χ, where e is an eigenvector of χα. This is the dimension of a coaxial face
when the eigenvalue associated to e is a maximal eigenvalue of χα. Since this dimension
is the rank of a matrix, those entries are algebraic functions of α. Thus that for all but
finitely many α, this rank will be constant and it will be smaller for α in that finite set.
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Let α ∈ S1 and suppose that χα, χ′ ∈ Span(χ) are linearly independent, and let e be
a unit eigenvector of χα. The decomposition (2.5) of W into Qe-isotypical components
induces a decompostion of the tensors χα and χ′ into their components in R ⊕ U1 ⊕ U2,

χα = Mα ⊕ 0 ⊕ yα and χ′ = M ′ ⊕ x′ ⊕ y′ .

The U1-component of χα is 0, because e is an eigenvalue of χα. Let d1 ∈ {0, 1} be
the dimension of the linear span of x′ in U1 and d2 ∈ {0, 1, 2} be the dimension of the
linear span of yα, y′ in U2. By Lemma 3.7, the dimension of the convex hull of Qe.χ is
d1 · dim U1 + d2 · dim U2, which implies the following lemma.

Lemma 5.10. The coaxial face Fe,α has dimension 2(d1 + d2).

Thus again a coaxial face has dimension at most 6.

Lemma 5.11. If χ1 and χ2 have a common eigenvector, then coaxial faces have dimension

2 or 4.

Proof. Fix α ∈ S1 and let f be a common eigenvector of χ1 and χ2. Then it is an
eigenvector of any χα. Let χ′ be another tensor in Span(χ) which is not proportional to
χα. Suppose that e = e1 is an eigenvector of χα, that f ∈ {e1, e2, e3}, and write χα and
χ′ in the coordinates (2.3),

χα = (Mα, 0, 0, y, z) and χ′ = (M ′, w′, x′, y′, z′) .

Note that (w′, x′) ∈ U1 and (y, z), (y′, z′) ∈ U2.
If f = e1, then (w′, x′) = (0, 0), and so d1 = 0. If f = e2 or e3, then z = z′ = 0 and so

d2 = 1. In either case, d1 + d2 < 3 and so the coaxial face Fe,α has dimension 2 or 4. ¤

Lemma 5.12. If χ1 and χ2 do not have a common eigenvector, then there is a coaxial

face with dimension 6.

Proof. Suppose that e = e1 and e1, e2, e3 is an ordered basis of eigenvectors of χ1 with the
eigenvalue of e maximal. Write χ1 and χ2 in the coordinates (2.3),

χ1 = χ(M1, 0, 0, γ, 0) χ2 = χ(M2, w, x, y, z) .

The dimension of the coaxial face Fe1,(1,0) is 6 if and only if (w, x) 6= (0, 0) and
(γ, 0), (y, z) ∈ U2 are linearly independent. Suppose that dimF < 6. We cannot have
(w, x) = (0, 0) for then e1 is a common eigenvector of χ1 and χ2, a contradiction. Thus
the vectors (γ, 0), (y, z) are dependent.

If γ = 0, then χ1 has a repeated smallest eigenvalue with eigenspace spanned by e2 and
e3. Changing the last two coordinates, we may assume that z = 0. We cannot also have
either w = 0 or x = 0 for then χ1 and χ2 have either e2 or e3 as a common eigenvector.
If y = 0, then −xe2 + we3 is a common eigenvector, so y 6= 0 and Fe1,(1,0) has dimension
4. In the coordinates (2.3) with respect to the ordered basis e3, e2, e1, −χ1 and χ2 are

−χ1 = χ(M1

2
, 0, 0, 3M1

4
, 0) and χ2 = χ(−M2

2
− y, 0, x, −3M2

4
+ y

2
, w) .

Since w, x 6= 0, the affine span of Qe3
.χ has dimension 6. Since M1

2
is the maximal

eigenvalue of −χ1 with eigenvector e3, this shows that Fe3,(−1,0) has dimension 6.
The third possibility is that z = 0. But then the same arguments as in the previous

paragraph show that coaxial face Fe3,(−1,0) has dimension 6. ¤
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5.2. Structure and Carathéodory number of a coaxial facet. Suppose that F is a
coaxial face of dimension 6. We may assume that F is the convex hull of the orbit Qe.χ
and that F spans the representation U1 ⊕ U2

2 . This Qe-orbit is the union of two orbits
of its identity component Q+

e (≃ SO(2)). Call them O+ and O−. By Example 3.8, each
orbit spans a subrepresentation of U1 ⊕ U2

2 isomorphic to U1 ⊕ U2. Set

F± := convex hull of O± and W± := linear span of O± ≃ U1 ⊕ U2 .

Proposition 5.13. The faces F± each have dimension 4 and Carathéodory number 3.
Points on their boundary are the convex hull of one or two vertices, while points in their

relative interiors are the convex hull of three vertices.

Proof. As in Example 3.8, we identify Q+
e ≃ SO(2) with the circle group S1 and U1, U2

with C. Then z ∈ S1 acts on U1 as scalar multiplication by z and on U2 as scalar
multiplication by z2 and F± has dimension 4.

Let (u, v)T ∈ C
2 ≃ U1 ⊕ U2 be the point corresponding to χ. Then

O+ =
{
(eiθu, e2iθv) | 0 ≤ θ < 2π

}
,

and its convex hull is
{( n∑

j=1

λje
iθju,

n∑

j=1

λje
2iθjv

)

|
∑

j

λj = 1, 0 ≤ θ1, . . . , θn < 2π
}

.

But this is B.(u, v)T , where B is the set of 2 × 2 diagonal matrices whose entries are

(5.14)
( n∑

j=1

λje
iθj ,

n∑

j=1

λje
2iθj

)

where
∑

j

λj = 1 and 0 ≤ θ1, . . . , θn < 2π .

Thus F+ (and also F−) is isomorphic to B.
Curto and Fialkow [8] characterized the points of B. Let (a, b) be a point of B (5.14)

and p the corresponding measure on S1,

p(eiθ) =

{
λj if θ = θj ,
0 otherwise .

Set γij :=
∫

S1 zizjdp(z) for 0 ≤ i, j with i + j ≤ 2 and form the moment matrix

M :=





γ00 γ01 γ10

γ10 γ11 γ20

γ01 γ02 γ11



 =





1 a a
a 1 b
a b 1



 .

Proposition 5.15 (Curto and Fialkow [8]). The points (a, b) ∈ B are exactly the points

(a, b) ∈ C
2 such that M is positive semi-definite. The rank of M is the minimum number

of summands needed to represent the point (a, b) (5.14).

In particular, this implies that each body F± has Carathéodory number 3.
By Proposition 5.15,

B =
{
(a, b) ∈ C

2 | 1 − |a|2 ≥ 0, 1 − |b|2 ≥ 0, 1 + a2b + a2b − 2|a|2 − |b|2 ≥ 0
}

.

If 1 − |a|2 = 0 then a ∈ S1 and so n = 1 in (5.14). If 1 − |b|2 = 0, then b ∈ S1 and either
n = 1 in (5.14) or n = 2 with |θ1−θ2| = π. Thus if M has rank 3, then |a| < 1 and |b| < 1,



20 MARCO LONGINETTI, LUCA SGHERI, AND FRANK SOTTILE

and so (a, b) lies in the interior of B as the inequalities are strict. This implies that points
on the boundary of B are the convex hull of one or two vertices and this completes the
proof of Proposition 5.13. ¤

Now we complete the proof of Theorem 5.6, showing that the coaxial facet F has
Carathéodory number 4. The coaxial face F is the convex hull of F+ and F−. Let v ∈ F .
We suppose that v 6∈ F+ ∪F−, for otherwise v is the convex combination of at most three
vertices. Then there exist v± ∈ F± and λ ∈ (0, 1) such that

v = λv+ + (1 − λ)v− .

If both v+ and v− lie on the boundary of their respective subfaces, then each is a convex
combination of at most 2 vertices, and v is a convex combination of at most 4 vertices.

Suppose instead that v+ lies in the relative interior of F+. The linear span of v and
W− has dimension 5 in the six-dimensional space U1 ⊕ U2

2 and therefore it meets W+

in a three-dimensional affine subspace U+. Similarly the span of v and W+ meets W−

in a three-dimensional subspace U−. Observe that both U+ and U− contain the two-
dimensional linear subspace W+ ∩ W− = U1 so that their span has dimension 4.

Consider the cone over U− ∩ F− with vertex v. Removing v, this has two components.
One meets F−. Let C be the component that does not meet F−, and let C+ := C ∩ U+.
This is a convex set which contains v+ and thus meets the relative interior of B+ :=
U+ ∩ F+. Points v′ ∈ C+ ∩ B+ are exactly those points of F+ for which there exists a
point v′′ ∈ F− such that v is a convex combination of v′ and v′′. There are two possibilities.

(1) The boundary of C+ meets the boundary of B+.
(2) Either the boundary of C+ is a subset of B+ or vice-versa.

In the first case, let v′ be a point common to the two boundaries. Then v′ lies on
the boundary of B+ and v′′ lies on the boundary of B−. But these are subsets of the
boundaries of F±, and so v is the convex combination of at most 4 vertices.

In the second case, suppose that the boundary of B+ is a subset of C+. Since B+ is the
intersection F+ with a hyperplane, its boundary must contain a vertex of F+, as the set
of vertices of F+ is a connected one-dimensional set whose convex hull is F+. Suppose
that v′ ∈ B+ is a vertex of F+. Since v′′ ∈ F− is a convex combination of three vertices
of F−, we see that v is a convex combination of 1+3=4 vertices. If the boundary of C+

is a subset of B+, then we may choose the point v′ in the boundary of C+ so that the
corresponding point v′′ is a a vertex of F−. Again, v is the convex combination of 3+1 = 4
vertices. ¤

We thank Ivano Bertini, Claudio Luchinat and Giacomo Parigi of the Center for Mag-
netic Resonance of the University of Florence for suggesting and discussing with us this
interesting problem.
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vol. 54, AMS, 1965.

[16] R. Schneider, The Brunn-Minkowski theory, Cambridge University Press, Cambridge, 1993.
[17] J.R. Tolman, J.M. Flanagan, M.A. Kennedy, and J.H. Prestegard, Nuclear magnetic dipole inter-

actions in field-oriented proteins: information for structure determination in solution, Proc. Natl.
Acad. Sci. USA 92 (1995), 9279–9283.

Dipartimento ingegneria agraria e forestale, Università degli Studi di Firenze, Piaz-
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