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GENERAL ISOTROPIC FLAGS ARE GENERAL
(FOR GRASSMANNIAN SCHUBERT CALCULUS)

FRANK SOTTILE

ABSTRACT. We show that general isotropic flags for odd-orthogonal and symplectic groups
are general for Schubert calculus on the classical Grassmannian in that Schubert varieties
defined by such flags meet transversally. This strengthens a result of Belkale and Kumar.

Schubert varieties 2;F, in a classical flag manifold G/P are given by a flag F, and a
Schubert condition I [3]. By Kleiman’s Transversality Theorem [4], if the flags El, ... ES
are general, then any corresponding Schubert varieties intersect (generically) transversally in
that they meet transversally along a Zariski dense open subset of every component of their
intersection.

Oftentimes we do not have the luxury of general flags, yet need to show that the Schubert
varieties meet transversally. It is often sufficient for their intersection to be proper (has the
expected dimension or is empty). Belkale and Kumar [1] needed such a case where G was
either Sp(2n) or SO(2n+1), the flags F, were isotropic flags, and G/P was an isotropic
Grassmannian which is naturally a subset of a classical Grassmannian Gr.

Proposition 1 (Belkale and Kumar [1]). The intersection Ni_, Qs EL in Gr is proper when
El ... E: are general isotropic flags and I',... I* are Schubert conditions for Sp(2n) or
SO(2n+1)

We show that the intersection is in fact transverse.

Theorem 2. The intersection Ni_, Qi E:

i in Gr is transverse when El,... E$ are general
isotropic flags for Sp(2n) or SO(2n+1).

We use a case for Gr where the flags are not general, yet the corresponding Schubert
varieties meet transversally. Let fi(¢),..., fi(f) be a basis for the space of polynomials of
degree less than m. These define a rational normal curve v: C — C™ by

vt (i), @)
(We use column vectors and (---)7 denotes transpose.) For each t € C and i = 1,...,m,
the i-plane osculating 7 at ~(t) is the linear span of (t),v'(t), ...,y Y(t). These osculating
planes form the osculating flag E4(t). An intersection of Schubert varieties for Gr given by
osculating flags consists of those linear series on P! with at least some prescribed ramification.
Eisenbud and Harris [2] showed that this intersection is proper.

Proposition 3. The intersection N:_Qi Eq(t;) in Gr is proper if ty, ... ts € C are distinct.
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This result is elementary—the codimension of the Schubert variety Q;F,.(t) is the order
of vanishing at ¢ of the Wronskian of a general linear series in Q;F,(t). Considerably less
elementary is the following result of Mukhin, Tarasov, and Varchenko [6, Corollary 6.3].

Proposition 4. The intersection N;_QiE4(t;) in Gr is transverse if ti,...,ts € R are
distinct.

Mukhin, Tarasov, and Varchenko proved this when the intersection is zero-dimensional,
but the full statement follows from their result via a standard argument. Suppose that an
intersection of Schubert varieties as in Proposition 4 has dimension r(> 0) and let Z be
any of its components. Let ¢ be the codimension 1 Schubert condition, so that €, E, is a
hypersurface in Gr. Let uq,...,u, € R be distinct from ¢4,...,t,. Then the intersection

(5) mjSE.(ti) N OQLE.(UZ-)

is zero-dimensional and therefore transverse. Since €2, F, meets every curve in Gr, the inter-
section Z NNI_ 2, Eq(u;) is non-empty. Thus the intersection of Proposition 4 was transverse
along Z, for otherwise the intersection (5) would not be transverse at points of Z.

Let (, ) be a non-degenerate alternating form on C** whose matrix ((e;, ¢;)); =1
respect to the standard ordered basis eq, ..., eq, is

(0)

where J is the anti-diagonal matrix (1,...,1) of size n. The symplectic group Sp(2n) is the
group of linear transformations of C*" which preserve (, ). In this ordered basis

12 m grtl g2 $2n—1 T
6 t) = (1, t, =, ., —, — e (D)
(6) () ( "2l ) (nt2)l (1) (2n—1)!>

is a rational normal curve whose osculating flag is isotropic in that Es,_;(t) annihilates E;(t)
for ¢ < 2n. We leave this as an exercise for the reader.

Similarly, let (, ) be a non-degenerate symmetric form on C***! whose matrix is the anti-
diagonal matrix (1, ..., 1) of size 2n+ 1. The special orthogonal group SO(2n+1) is the group
of linear transformations of C?*"*! of determinant 1 which preserve (, ). Then

t2 " tn—i—l tn+2 th )T

(7) y(t) = (1,t, CERREE H’_(n+1)!’ o) (_1)n(2—n>!

is a rational normal curve whose osculating flag is isotropic in that Es,y1_;(t) annihilates
E;(t) for i < 2n.

Since it is an open condition on s-tuples of isotropic flags that Schubert varieties in Gr
meet properly or meet transversally, Proposition 1 and Theorem 2 follow from Propositions 3
and 4, respectively. These rational normal curves (6) and (7) were introduced in [9] to study
the analog of the Shapiro conjecture [8] for flag varieties for Sp(2n) and SO(2n+1), and the
proof of the Shapiro conjecture [5] motivated Proposition 4.

These special osculating flags are better understood in terms of Lie theory. Let G be a
semisimple complex Lie group with Lie algebra g. The adjoint action of G' on the nilpotent
elements of g has finitely many orbits, with dense orbit consisting of principal nilpotent
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elements of g. Write exp: g — G for the exponential map. For a principal nilpotent n € g,
{exp(tn) | t € C} is the corresponding 1-parameter subgroup of G. It is natural to consider
Schubert varieties defined by translates of a fixed flag by elements exp(tn).

The matrix n € sl,, with entries 1,2,...,m—1 below its diagonal is principal nilpotent.
Dale Peterson observed that the action of exp(tn) on the standard coordinate flag gives the
osculating flag F,(t) to the rational normal curve v(t) := (1,¢,¢%,...,t™ )T, The osculating
flags to (6) and (7) also arise from exponentiating principal nilpotents in sp,, and §09,1,
respectively. These nilpotents have entries 1,...,1,—1,...,—1 below their diagonals with
n 1s. We obtain flags osculating a rational normal curve because principal nilpotents are
mapped to principal nilpotents under the inclusions sp,,, — sly, and §05,11 — slo,41.

This is not the case for the even orthogonal groups, which explains their exclusion from
Theorem 2. A principal nilpotent for sos, is the 2n x 2n matrix » with 1 in positions 7, i+1
and —1 in positions 2n—i,2n—i+1 for ¢ = 1,...,n (it has 1,...,1,0,—1,..., —1 below its
diagonal) and also 1 in position n—1,n+1 and —1 in position n,n+2. As n**~1 =0, it is not
a principal nilpotent for sly,, whose principal nilpotents N have N?"~1 £ (.

We point out a further limitation of this method. Proposition 3 becomes false if we replace
a classical Grassmannian G7r by a general type A flag variety. Indeed, in the 8-dimensional
manifold of flags {F; C F3; C C°} consisting of a 1-dimensional subspace lying in a 3-
dimensional subspace in C?, the Schubert variety Q39514 F, has codimension 5 and the Schubert
variety 221435 Fs has codimension 2. Consequently, if F,, ., and E. are general flags, then

Qso514 L6 N Q21435 E, N Q21435 E7

is empty for dimension reasons. If however, F,, F., and E! osculate a rational normal curve,
then the intersection is non-empty. This is shown in Section 3.3.6 of [7].
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