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Abstract. The multiplihedraM, = (M).>1 form a family of polytopes originating in the study of higheate-
gories and homotopy theory. While the multiplihedra may bfamiliar to the algebraic combinatorics community,
it is nestled between two families of polytopes that cetyadme not: the permutahed@, and associahed(y, . The
mapsS, — M, — Y, reveal several new Hopf structures on tree-like objectfietbetween the Hopf algebras
& Sym and Y Sym. We begin their study here, showing th&tSym is a module oveS Sym and a Hopf module
overYSym. An elegant description of the coinvariants ot Sym over) Sym is uncovered via a change of basis—
using Mdbius inversion in posets built on theskeleta ofM, . Our analysis uses the notion of ewterval retractthat
should be of independent interest in poset combinatoricalsd reveals new families of polytopes, and even a new
factorization of a known projection from the associahedrhypercubes.

Résune.Les multipliédresm, = (M., ),>1 forment une famille de polytopes en provenant de I'étudecd¢egories
supérieures et de la théorie de 'homotopie. Tandis geienidtiplihedres sont peu connus dans la communauté de la
combinatoire algébrique, ils sont nichés entre deux lfamies polytopes qui sont bien connus: les permutahédres
&, et les associahedrg@d . Les morphismes, — M, — ), dévoilent plusieurs nouvelles structures de Hopf
sur les arbres binaires entre les algebres de I&af§m et ) Sym. Nous commencgons son étude ici, en démontrant
que M Sym est un module su® Sym et un module de Hopf swSym. Une description élégante des coinvariants
de MSym sur YSym est trouvée par moyen d’'une change de base—en utilisaninuession de Mobius dans
certains posets construits surlksquelette deM, . Notre analyse utilise la notion idterval retract ce devrait étre
intéressante par soi-méme dans la théorie des ensepabtedlement ordonés. Notre analyse donne lieu égaleme
des nouvelles familles des polytopes, et méme une noueelierisation d’'une projection connue des associahédres
aux hypercubes.
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Introduction

In the past 30 years, there has been an explosion of interestnbinatorial Hopf algebras related to
the classical ring of symmetric functions. This is due intpartheir applications in combinatorics and
representation theory, but also in part to a viewpoint esged in the elegant commuting diagram

NSym ——— &Sym

: :

Sym ——— QSym

Namely, much information about an object may be gained byystig how it interacts with its surround-
ings. From this picture, we focus on the right edgefym — QSym. We factor this map through
finer and finer structures (some well-known and some new) tlvigiedge is replaced by a veritable zoo
of Hopf structures. A surprising feature of our results iatthach of these factorizations may be given
geometric meaning—they correspond to successive polyfoptents from permutahedrato hypercubes.

The (known) cast of characters

Let us reacquaint ourselves with some of the characters ahe dlready appeared on stage.

& Sym — the Hopf algebra introduced by Malvenuto and Reutenawirtfilexplain the isomorphism
QSym ~ (N Sym)*. A graded, noncommutative, noncocommutative, self-dugdftdlgebra, with basis
indexed by permutations, it offers a natural setting to jgcacioncommutative character theory [4].

YSym — the (dual of the) Hopf algebra of trees introduced by Loday Ronco [11]. A graded, non-
commutative, noncocommutative Hopf algebra with basisgxed by planar binary trees, it is important
for its connections to the Connes-Kreimer renormalizatiamctedure.

QSym — The Hopf algebra of quasisymmetric functions introducedslessel [9] in his study of-
partitions. A graded, commutative, noncocommutative Hidgébra with basis indexed by compositions,
it holds a special place in the world of combinatorial Hoggfeddras [1].

The new players

In this extended abstract, we study in detail a family of pldbinary trees that we cabi-leveled trees,
which possess two types of internal nodes (circled or ndijest to certain rules. These objects are the
vertices of Stasheff’'s multiplihedra [18], originatingfn his study ofd, categories. The multiplihedra
were given the structure of CW-complexes by lwase and MirfilOhand realized as polytopes later [8].
They persist as important objects of study, among othepreadecause they catalog all possible ways to
multiply objects in the domain and range of a functibrwhen both have nonassociative multiplication
rules. More recently, they have appeared as moduli spacstatie quilted discs” [14].

In Section 2, we define a vector spatéSym with basis indexed by these bi-leveled trees. We give
MSym a module structure fo® Sym by virtue of the factorization

&Sym i» MSym i» YSym

(evident on the level of planar binary trees) and a splittvtSym — &Sym. We also show that
MSym is a Hopf module foy Sym and we give an explicit realization of the fundamental tle@oiof
Hopf modules. That is, we find the coinvariants for this atti@ur proof, sketched in Section 3, rests on
a result about poset maps of independent interest.

We conclude in Section 4 with a massive commuting diagranrtagoing several new families of
planar binary trees—that further factors the map fi&sym to QSym. The remarkable feature of this
diagram is that it comes from polytopes (some of them even) @ successive polytope quotients.
Careful study of the interplay between the algebra and gagmal be carried out in future work.
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1 Basic combinatorial data

1.1 Ordered and planar binary trees

We recall a map- from permutationsS. = | J,, &, to planar binary treey. = (J,, V), that has proven
useful in many contexts [19, 12]. Its behavior is best désttin the reverse direction as follows. Fix a
treet € ),. Then internal nodes of are equipped with a partial order, viewing the root node asimgal.

An ordered treds a planar binary tree, together with a linear extensioheftoset of its nodes. These are
in bijection with permutations, as the nodes are naturalfieked left-to-right by the numbets. . . n.
The mapr takes an ordered tree (permutation) to the unique tree whersial order it extends.

Example 1 The permutation$423, 2413, and3412 share a common image under

) NS Xy NS Yy NS XY
g o \4/ ’ \4/ ’ \4/

There are two right inverses tothat will be useful later. Letin(¢) (respectivelymax(t)) denote
the unique231-avoiding (132-avoiding) permutation mapping tounderr. Loday and Ronco show that
7~1(t) is the intervalmin(t), max(¢)] in the weak Bruhat order on the symmetric group [12, Thm.,2.5]
and thatmin andmax are both order-preserving with respect to the Tamari ordéy,0

1.2 Bi-leveled trees and the multiplihedra

We next describe a family difi-leveled treeintermediate between the ordered and unordered ones. These
trees arrange themselves as vertices ofith&iplihedraM. = J,, M,,, a family of polytopes introduced

by Stasheff in 1970 [18] (though only proven to be polytopesimlater [8]). Stasheff introduced this
family to represent the fundamental structure of a weak fhaetween weak structures, such as weak
n-categories od,, spaces. The vertices @#,, correspond to associations ofobjects, pre- and post-
application off, e.g.,(f(a)f(b))f(c) andf(a)f(bc). This leads to a natural description.dt,, in terms

of “painted binary trees” [5], but we use here the descriptbSaneblidze and Umble [16].

A bi-leveled treés a pair(t, C) with t € Y, andC' C [n] designating some nodesiods lower than the
others (indexing the nodes from left-to-right by. . ., n). Viewing ¢ as a poset with root node maximal,
C'is an increasing order ideal tnwhere the leftmost node is a minimal element. Graphicéllindexes
a collection of nodes af circled according to the rules: (i) the leftmost node isleidcand has no circled
children; (ii) if a node is circled, then its parent node islgd.

Define a mags from &,, to M., as follows. Given a permutatian= o0 - - - o, first represent as
an ordered tree. Next, forget the ordering on the nodes feae#rcling all nodess; with o; > o5.

Example 2 Consider again the permutatioh$23, 2413, and3412 of Example 1. Viewed as ordered
trees, their images undgrare distinct:

NS XS NS XS NS N s
O )N N )

Denote byy the map from bi-leveled trees to trees that forgets whichesate circled. The map
helps define a partial order on bi-leveled trees that extdrel$amari lattice on planar binary trees: say
that the bi-leveled tree precedes the bi-leveled tréén the partial order ifp(s) < ¢(t) and the circled
nodes satisfy’; C C. We call this the weak order on bi-leveled trees. See Figleddw for an example.

The equalityp o 5 = 7 is evident. Remarkably, this factorization

& oM. 2oy,
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FIG. 1: The weak order om,, the bi-leveled trees ofinodes.

extends to the level of face maps between polytopes (seed=Rju Our point of departure was the
observation that it is also a factorization as poset maps.

FIG. 2: § and¢ extend to face (and poset) maps from the permutahedra tatoeiahedra.
The distinguished verticel234, 5(1234), and¢(8(1234)) are indicated.

1.3 Dimension enumeration

Fix a field k£ of characteristic zero and l&Sym = @,,.,&Sym, denote the graded vector space
whosen!” graded piece has the “fundamental” basis. | o an ordered tree i®,, }. Define M Sym and
YSym similarly, replacings,, by M,, and)),,, respectively. We follow convention and say tk&agym,
and YSym, are 1-dimensional. By contrast, we agree thaSym, = {0}. (See [7] for categorical
rationale; briefly, Stasheff'd 1, is already0-dimensional, so\, has no clear significance.)

In Section 2, we give these three vector spaces a varietygebgdic structures. Here we record some
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information about the dimensions of the graded pieces fer taference.

Hilb,(&Sym) = Z nlg™ =14 q+ 2¢% + 6¢° + 24¢* +120¢° - - - (1)
n>0

Hilby(MSym) =Y " Anq" = q+2¢° +6¢° +21¢" +80¢° + - -- @)
n>1

Hilb, (VSym) = Y Cng™ = 1+ q+2¢* +5¢° + 14" +42¢° + - - 3)
n>0

Of course,C,, is then!™ Catalan number. The enumeration of bi-leveled trees isftesdiar: then'”
term satisfiesd,, = C,,_1 + Zz;ll A; A, [17, A121988]. A little generating function arithmetic can
show that the quotient of (2) by (3) expands as a power seitbsnnnegative coefficients,

Hilb, (M Sym)

2 3 4 5
a4 3¢+ 11gt + 445 4 - 4
Hilby (Y Sym) aT4q 4 4 4 ()

We will recover this with a little algebra in Section 2.3. Tpesitivity of the quotient of (1) by (3) is
established by [3, Theorem 7.2].

2 The Hopf module MSym

Let m, 3, and¢ be the maps between the vector spagesym, MSym, and) Sym induced byr, 3,
and¢ on the fundamental bases. That is, for permutatioasd bi-leveled trees we take

T(FU):FT(J) ﬁ(FU):Fﬁ(U) ¢(Ft):F¢(t)

Below, we recall the product and coproduct structures orHibyef algebrasS Sym and) Sym. In [13]
and [11], these were defined in terms of the fundamental ba3eparting from these definitions, rich
structural information was deduced ab@&$ym, YV Sym, and the Hopf algebra mapbetween them in
[2, 3]. This information was revealed via a change of basismffundamental to “monomial’—using
Mobius inversion. We take the same tack below withSym and meet with similar success.

2.1 The Hopf algebras &Sym and Y Sym

Following [3], we define the product and coproduct structuoa SSym and YSym in terms of p-
splittingsandgraftingsof trees. Ap-splitting of a treet with n nodes is a forest (sequence)oft 1
trees withn nodes in total. This sequence is obtained by chogsiegves oft and splitting them (and all
parent branchings) right down to the root. By way of exampdasider the3-splitting below (where the
third leaf is chosen twice and the fifth leaf is chosen once).

N R e e

Denote ap-splitting of ¢ by ¢ AR (to, ..., tp). Thegrafting of a forest(to, t1, ..., t,) Onto a tree wittp
nodes is also best described in pictures; for the foresteabods = 7(213), the tree

W
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is the grafting of(¢o, t1, . .., t,) ontos, denotedto, t1, t2, t3)/s. Splittings and graftings of ordered trees
are similarly defined. One remembers the labels originabigmed to the nodes oin ap-splitting, and
if t hasq nodes, then one increments the labels b ¢ in a grafting(to, t1, t2, t3)/s. See [3] for details.

Definition 3 Fix two ordered or ordinary tregsandt with p andq internal nodes, respectively. We define
the product and coproduct by

Ft . F‘S = Z F(to,tl,...,tp)/s and A(Ft) = Z Fto (9 Ft1 . (5)
t5 (0,1, ot p) t5 (t0,t1)

(In the coproduct for ordered trees, the labelgjiandt; are reduced to be permutations&ff and|t;|.)

2.2 Module and comodule structures

We next modify the structure maps in (5) to givéSym the structure of (lefts.Sym-module and (right)

YSym—Hopf module. Given a bi-leveled trée let b AR (bo, ..., bp) represent any-splitting of the
underlying tree, together with a circling of all nodes inleagcthat were originally circled irb.

Definition 4 (actionof &Sym on MSym) Forw € &. ands € M,, writeb = B(w) and set
Fy-Fs = Z F(bo,bl ..... bp)/s (6)
b5 (bo,b1,..-,bp)

where the circling rules ibo, b1, . . ., b,) /s are as follows: every node originatingsiis circled whenever
|bo| > 0, otherwise, every node originatingén= §(w) is uncircled.

This action may be combined with any sectiondab define a product oM Sym. For example,

Theorem 5 The action&Sym ® MSym — MSym and the productMm Sym ® MSym — MSym
are associative. Moreover, puttingt Symg := k, they make3 into an algebra map that factors.

Unfortunately, no natural coalgebra structure exists\@§ym that makes3 into a Hopf algebra map.

Definition 6 (actionandcoactionof Y Sym on MSym) Givenb € M., letb -, (bo, ..., bp) denote
ap-splitting satisfyingby| > 0. Fors € ), set

Fy,-Fy = Z Flog by, b)) /s and  p(Fy) = Z Fyy @ Fypyy,  (7)
b2 (bo,b1 .. bp) b—Es (bo,br)
where in(bg, b1, . .., b,)/s every node originating im is circled, and inp(b, ) all circles are forgotten.

Example 7 In the fundamental bases #ft Sym and) Sym, the action looks like
D AR S A
while the coaction looks like

p(FV):FV®1+F\§V/®FY+F\?/ ®F\P/ +FY®FV’
P(F\\>>y)*FW®I+FV®FY+FV®F\P/+F\§/®FV+FY®FV.
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The significance of our definition gf will be seen in Corollary 11. Our next result requires onigls
modifications to the original proof thatSym is a Hopf algebra (due to the restrictedplittings).

Theorem 8 The maps : MSym ® YSym — MSym andp : MSym — MSym ® YSym are
associative and coassociative, respectively. They gig€ym the structure ofy Sym—Hopf module.
Thatis,p(Fy « F5) = p(Fy) - A(F).

2.3 Main results
We next introduce “monomial bases” f&rSym, MSym, and) Sym. Givent € M,,, define

My = pu(t,t')Fy,

t<t’

wherep( -, -) is the Mdbius function on the pos#t!,,. Define the monomial bases&fSym and) Sym
similarly (see (13) and (17) in [3]). The coactiprin this basis is particularly nice, but we need a bit more
notation to describe it. Givehe M, ands € ),, lett\s denote the bi-leveled tree @n+ ¢ internal
nodes formed by grafting the root efonto the rightmost leaf of.

Theorem 9 Given a bi-leveled treg, the coactiorp on M, is given byp(M,) = Z My @ M.

t=t'\s

Example 10 Reuvisiting the trees in the previous example, the coactidhé monomial bases looks like

p(M\<//) :M\V®1+MW ® M-,
p(MW) :MW@)MFMV@MYJFMV@M\X

Recall that thecoinvariantsof a Hopf moduleM over a Hopf algebrdd are defined byl <® =
{m € M| p(m)=m® 1}. The fundamental theorem of Hopf modules provides tat- M° @ H.
The monomial basis oM Sym demonstrates this isomorphism explicitly.

Corollary 11 A basis for the coinvariants in the Hopf moduld Sym is given by{Mt whereT

comprises the bi-leveled trees with no uncircled nodes eim tlght branches.

}teT’

This result explains the phenomenon observed in (4). Itpdsallels Corollary 5.3 of [3] to an aston-
ishing degree. There, the right-grafting idea above is @dffior pairs of planar binary trees and used to
describe the coproduct structure)fym in its monomial basis.

3 Towards a proof of the main result

We follow the proof of [3, Theorem 5.1], which uses propertiéthe monomial basis & .Sym developed
in [2] to do the heavy lifting. In [3], the sectigh, ™= &, of 7 is shown to satisfy-(Ma.s)) = M; and
7(M,) = 0if o is not132-avoiding. This was proven using the following result ab@atois connections.

Theorem 12 ([15, Thm. 1]) SupposeP and ) are two posets related by @alois connectioni.e., a
pair of order-preserving mapg : P — @ andy : @ — P such that for anyw € P andt € Q,
p(v) <t <= v < ~(t). Then the Mbbius functiong:p and 11, are related by

Yv € Pandt € Q, Z up(v,w) = Z ug(s,t).

wep—1(1), sey~L(w),
v<w s<t
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There is a twist in our present situation. Specifically, ndo@daonnection exists betweés, and M,,.
On the other hand, we find that no order-preserving mapt. — &. satisfies3(M, ) = M;. Rather,

ﬁ( > Ma>—Mt. (8)

oEBT(t)

This fact is the key ingredient in our proof of Theorem 11.Wsification required modification of the
notion of Galois connection—a relationship between pa$etiswe call arinterval retract(Section 3.2).

3.1 Sections ofthemap g : &. — M.

Bi-leveled treeg are in bijection with pairds, s}, wheres is a planar binary tree, with nodes say, and
s = (s1,...,8p) is a forest (sequence) of planar binary trees. In the bgacti comprises the circled
nodes oft ands; is the binary tree (of uncircled nodes) sitting aboveitfideaf of s. For example,

tw — {S’S}_{W’ (L%LV)}-

A natural choice for a section: M,, — &,, would be to, say, buileénin(s) andmin(s;) for eachi
and splice these permutations together in some way to bwitord on the letter§1,2,...n}. Letmm(¢)
denote the choice giving smaller letters thag,, s, smaller letters thass, ...,s,—1 smaller letters than
sp, ands, smaller letters thas:

LT S - S T - 3
l\2"' 33 Ne: S
mm — mm \ - \ 7 56187243
( ) < 4/ ) 8/

This choice does not induce a poset map. The similarly defiddalso fails (chosing maximal permu-
tations representing ands), butMm has the properties we need:

R
5\ g
Mm _ \ 7 56487231
( ) 8/

We define this map carefully. Givenc ), and any subsef C N of cardinalityn, write ming(¢) for
the image ofin(t) under the unique order-preserving map frprhto .S; definemaxg(¢) similarly.

Definition 13 [The sectiorMm] Let¢ « {s, s} be a bi-leveled tree omnodes withp circled nodes. Write
u = uy---up = ming(s) for [a,b] = {n —p+1,...,n} and writev? = max(q, 5,](si) (1 < i < p),
where the intervalg;, b;] are defined recursively as follows:

ap=1 and b, =a,+|sp| — 1,

aizl—i-maXUSj and b1:a1+|51|—1

7>1

Finally, defineMm(t) by the concatenatioMm(t) = ujvlugv? - - - u,vP.
Remark 14 Alternatively,Mm(t) is the uniquev € 3~*(t) avoiding the pinned patter@31, 3021, and

2031, where the underlined letter is the first letterin The first two patterns fix the embeddingssef
(0 <i < p), the last one makes the letterssinlarger than those in; 1 (1 < i < p).
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The important properties ofim(t) are as follows.
Proposition 15 The section : M,, — &,, given by.(¢) = Mm(t) is an embedding of posets. The map
B: 6, — M, satisfies3(.(t)) = ¢ forall ¢t € M,, andp~(t) C &,, is the intervalmm(t), MM(t)].
3.2 Interval retracts
Letyp: P — Q andy : Q — P be two order-preserving maps between pogetandq. If

VieQ o(y(t)) =t and ¢ '(¢) isaninterval

then we say thap and~ demonstraté® as annterval retractof Q.

Theorem 16 If P and( are two posets related by an interval retrggt, v), then the Mbius functions
pwp andpg are related by

Vs<te® Z pp(v,w) = pg(s,t).

vEp—1(s)
wep—1(t)

The proof of Theorem 16 exploits Hall’'s formula for Mobiugictions. An immediate consequence is
a version of (8) for any? and( related by an interval retract. Verifying th@, Mm) is an interval retract
betweens,, and M., (Proposition 15) amounts to basic combinatorics of the vwedkr onG,,.

4 More families of binary trees and their polytopes

We have so far ignored the algel®®ym of quasisymmetric functions advertised in the introductia
basis for itsn'" graded piece is naturally indexed by compositions dfut may also be indexed by trees
as follows. To a compositiofu,, as, . . .), say(3,2, 1, 4), we associate a sequencdeft-combs

AR E)

i.e., trees witha; leaves and all internal leaves rooted to the rightmost iramad left-pointing. These
may be hung on another tree, a right-comb with right-pomteaves, to establish a bijection between
compositions of: and “combs of combs” with internal nodes:

2 3 3 2 121 _4
(23)<_>\<)y (32)<_>W (1214)<_>K<>y.

To see howQSym and the hypercubes fit into the picture, we briefly revisitriegp 5 of Section 1.2.

We identified bi-leveled trees with paifs, s}, wheres is the tree of circled nodes asd= (so, ..., sp)
is a forest of trees (the uncircled nodes). Under this ifieation, 5 may be viewed as a pair of maps
(r, 7)—with the first factorr making a (planar binary) trees out of the nodes greater thegual too,
and the second factarmaking trees out of the smaller nodes:

\1// \ / \1\// \,” y
\x/\z (1) 3\4/2 (1,7) ]\2 .
I |

See also Figure 3. Two more fundamental mapsyatend-y;, taking trees to (right- or left-) combs, e.g.,

VLW and WLV
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Figure 3 displays several combinations of the mapsg., and~;. The algebrad®Sym corresponds to the
terminal object there—the set denotgd Combs- 1.

The new binary tree—like structures appearing in the fazaton of G Sym — QSym (i.e., those trees
not appearing on the central, vertical axis of Figure 3) dlistudied in upcoming papers. Itis no surprise
that&Sym — QSym factors through so many intermediate structures. Whatngrkable, and what
our binary tree point-of-view reveals, is that each famflyrees in Figure 3 can be arranged into a family
of polytopes. See Figure 4. The (Hopf) algebraic and gedmietiplications of this phenomenon will
also be addressed in future work.
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Fic. 3: A commuting diagram of tree-like objects. The spa€&sym, MSym, YSym
and Q. Sym appear, top to bottom, along the center. The unlabeled ddsteerepresents the
usual map from)Sym to QSym (see [11], Section 4.4). It is incompatible with the given
map(vr,vi) : MSym — QSym.

We explore the Hopf module structures of objects mappindy $gm and Q.Sym in future
work. At least some of these will be full-fledged Hopf algedbte.g., note that there is a bijec-
tion of sets betwee:ﬁ“'é%‘;‘;} and {trees}, the latter indexing the Hopf algebpaSym).
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JG 4

CK (4)

Fic. 4: A commuting diagram of polytopes based on tree-like abjevith 4 nodes, cor-
responding position-wise to Figure 3 (imagegois suppressed). Notation is taken from [6]:
P(4) is the permutohedroryf (4) is the multiplihedron/C(5) is the associahedron, aGé(4)

is the composihedron7 G, is the domain quotient of the permutohedron gfd@, is its range

quotient.
The cellular projections shown include neither the Tonksgemtion nor the Loday Ronco pro-

jection from the associahedron to the hypercube. Howelremtap from the multiplihedron
to the cube passing through the associahedron appears in [5]



