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Abstract

Hilbert proved that a non-negative real quartic form f(z,y,z) is the sum of three squares of quadratic forms.
We give a new proof which shows that if the plane curve @) defined by f is smooth, then f has exactly 8 such
representations, up to equivalence. They correspond to those real 2-torsion points of the Jacobian of () which are
not represented by a conjugation-invariant divisor on Q.

Résumé

Hilbert a démontré qu’une forme réelle non négative f(z,y,z) de degré 4 est la somme de trois carrés de formes
quadratiques. Nous donnons une nouvelle démonstration qui montre que si la courbe plane @ definie par f est
non singuliére, alors f a exactement 8 telles représentations, a equivalence prés. Elles correspondent aux points
de 2- torsion du jacobien de @ qui ne sont pas représentés par un diviseur de () invariant par conjugaison.

1. Introduction

A ternary quartic form is a homogeneous polynomial f(z,y,z) of degree 4 in three variables. If f has
real coefficients, then f is non-negative if f(x,y,z) > 0 for all real z, y, z. Hilbert [5] showed that every
non-negative real ternary quartic form is a sum of three squares of quadratic forms. His proof (see [8], [9]
for modern expositions) was non-constructive: The map
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from triples of real quadratic forms to non-negative quartic forms is surjective, as it is both open and

closed when restricted to the preimage of the (dense) connected set of non-negative quartic forms which

define a smooth complex plane curve. An elementary and constructive approach to Hilbert’s theorem was

recently begun by Pfister [6].

A quadratic representation of a complex ternary quartic form f = f(x,y, ) is an expression

f=r+¢+r (1)

where p, q, r are complex quadratic forms. A representation f = (p')? + (¢')? + (r')? is equivalent to this

if p,q,r and p', ¢',7' have the same linear span in the space of quadratic forms.

Powers and Reznick [7] investigated quadratic representations computationally, using the Gram matrix
method of [1]. In several examples of non-negative real ternary quartics, they always found 63 inequivalent
representations as a sum of three squares of complex quadratic forms; 15 of these were sums or differences
of squares of real forms. We explain these numbers, in particular the number 15, and show that precisely
8 of the 15 are sums of squares.

If the complex plane curve () defined by f = 0 is smooth, it has genus 3, and so the Jacobian J of
@ has 2% — 1 = 63 non-zero 2-torsion points. Coble [2, Chap 1,§14] showed that these are in one-to-one
correspondence with equivalence classes of quadratic representations of f. If f is real, then ) and J
are defined over R. The non-zero 2-torsion points of J(R) correspond to signed quadratic representations
f = £p? £ p3 + p%, where p; are real quadratic forms. If f is also non-negative, the real Lie group J(R)
has two connected components, and hence has 2* — 1 = 15 non-zero 2-torsion points. We use Galois
cohomology to determine which 2-torsion points give rise to sum of squares representations over R.
Theorem 1 Suppose that f(x,y, z) is a non-negative real quartic form which defines a smooth plane curve
Q. Then the inequivalent representations of f as a sum of three squares are in one-to-one correspondence
with the eight 2-torsion points in the non-identity component of J(R), where J is the Jacobian of Q.

We thank C.T.C. Wall, who brought his work to our attention, and the organizers of the RAAG
conference in Rennes in June 2001, where this work began.

2. Quadratic representations of smooth ternary quartics

Let f(x,y,z) be an irreducible quartic form over C, and let @) be the curve f = 0 in the complex
projective plane. Assume that @ is smooth. The Picard group Pic(Q) of @ is the group of Weil divisors
on ), modulo divisors of rational functions. Let J be the Jacobian of ), so that J is the identity component
of Pic(Q). The following proposition is due to Coble [2, Chap 1,§14].

Proposition 1 The non-trivial 2-torsion points of J are in one-to-one correspondence with the equiva-
lence classes of quadratic representations of f.
Proof. Given a quadratic representation (1), consider the map

p: P> 5 P? z (p(z):q(z) 1 r(z)).
The image of @ under ¢ is the conic C' defined by the equation y2 + y? + y2 = 0. Let y be any point in
C, then ¢*(y) is an effective divisor of degree 4 that is not the divisor of a linear form. Indeed, after a

linear change of coordinates we can assume y = (0 : 1:4). A linear form vanishing on ¢*(y) would divide
each conic ap + (g + ir) through ¢*(y), and thus would divide

f=r+(g+ir)(qg—ir),
contradicting the irreducibility of f.

Fix a linear form ¢, then L := div({) is an effective divisor of degree 4 on Q. Let ¢ = [¢*(y) — L]. Since
2y is the divisor of a linear form (the tangent line to C at y), ¢*(2y) is the divisor on @ of a quadratic
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form. Thus 2¢ = 0. Moreover, ¢ # 0 as ¢*(y) is not the divisor of a linear form. The 2-torsion point ¢ of
J depends only upon the map ¢.

Conversely, suppose that ¢ € J(C) is a non-zero 2-torsion point. Let D # D' be effective divisors which
represent the class ( +[L] in Pic(Q). As @ has genus 3, the Riemann-Roch Theorem implies that there is
a pencil of such divisors. Then 2D, 2D" and D + D' are effective divisors of degree 8, and are all linearly
equivalent to 2L, the divisor of a conic. Again from the Riemann-Roch Theorem it follows that there are
quadratic forms g¢g, g1 and g2 such that

div(go) =2D, div(g1) =2D' and div(ge) =D+ D'.
Therefore, the rational function g := goq1 /g3 on @ is constant. Scaling ¢; and go appropriately, we may
assume that ¢ = 1 on ) and also that f = goq1 — ¢3. Diagonalizing the quadratic form goq1 — g3 gives a
quadratic representation for f. This defines the inverse of the previous map. O

3. Quadratic representations of real quartics

Suppose now that f is a non-negative real quartic form defining a smooth real plane curve ) with
complexification Q¢ = @ ®r C. The elements of Pic(Q)) can be identified with those divisor classes in
Pic(Qc) that are represented by a conjugation-invariant divisor. Let J be the Jacobian of Q.

If ( € J(C) is the 2-torsion point corresponding to a signed quadratic representation

f = +p* ¢ £1r?
consisting of real polynomials p, ¢, r, then ¢ = (, i.e., ¢ € J(R).

Conversely, let 0 # ¢ € J(R) with 2¢ = 0, and let L be the divisor on @ of a linear form £. We can
choose an effective divisor D # D on Q¢ representing the class ¢ +[L]. Then 2D, 2D and D + D are each
equivalent to 2L. Let r be a real quadratic form with divisor D + D, and let g be a complex quadratic
form with divisor 2D (both divisors taken on Q¢).

Since D ~ D, there is a rational function h on Q¢ with div(h) = D — D. Let ¢ = hh, a nonzero real
constant on Q. Since div(r) = div(g) +div(h), there is a complex number a # 0 with { = ah on @, which

implies that
2

daf? = L r__nm
99 pP+e
on (), where p and g are the real and imaginary parts of g = p + iq. So the quartic form

u =1’ —cla’(P’ + ¢°)
vanishes identically on ). Since u # 0, f is a constant multiple of u. If ¢ > 0, we get a signed quadratic
representation of f, with both signs + occuring. If ¢ < 0, f must be a positive multiple of u since f is

non-negative, and we get a representation of f as a sum of three squares of real forms.
We now calculate the sign of c. For this we use the well-known exact sequence

0 = Pic(Q) = Pic(Qc)® -% Br(R) — Br(Q).

It arises from the Hochschild-Serre spectral sequence for étale cohomology with coefficients G,,. Here
G = Gal(C/R) acts on Pic(Qc) by conjugation, and Pic(Qc)? is the group of G-invariant divisor classes.
Moreover, Br(R) is the Brauer group of R, which is of order 2, and Br(Q), the Brauer group of @, can be
identified with the subgroup of Br R(Q)) consisting of all Brauer classes which are everywhere unramified.
The map Br(R) — Br(Q) is the restriction map.

It is easy to see that ¢ < 0 if and only if 9({) is the non-trivial class in Br(R).

By a classical theorem of Witt [12], every non-negative rational function on a smooth projective curve
over R is a sum of two squares of rational functions. Since @ is smooth and f is non-negative, this forces
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Q(R) = (). Hence —1 is a sum of two squares in R(Q). This means (—1,—1) = 0 in Br(Q), and hence the
map 0 is surjective.

Since the genus of @ is odd (equal to 3), it follows from a classical theorem of Weichold [11,3] that all
classes in Pic(Qc)“ have even degree, and the real Lie group J(R) has exactly two connected components.
This implies that the sequence

0= J® - J(R) -% Br(R) - 0

is (split) exact. Since J(R)? = (S)3 as a real Lie group, there exist 2 —1 = 15 non-zero 2-torsion classes
in J(R). The 8 that do not lie in J(R)?, or equivalently, which cannot be represented by a conjugation-
invariant divisor on @¢, are precisely those that give rise to sums of squares representations of f. This
completes the proof of Theorem 1.

We close with a few remarks about the singular case. Wall [10] studies quadratic representations of
(possibly singular) complex ternary quartic forms f. If f is irreducible, the non-trivial 2-torsion points
on the generalized Jacobian of the curve @ = {f = 0} again give equivalence classes of quadratic
representations of f. These representations are special in that they have no basepoints.

Quadratic representations with a given base locus B # () are in one-to-one correspondence with all
2-torsion points on the Jacobian of a curve @, which is the image of () under the complete linear series
of quadrics through B. By classifying all possibilities for B one arrives at the number of inequivalent
quadratic representations of f. If the form f is real and non-negative, this classification, together with
arguments from Galois cohomology, gives all inequivalent representations of f as a sum of squares. If f is
reducible, different methods can be applied to complete the picture. This complete analysis will appear
in an unabridged version.
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