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THE SPECTRAL EDGES CONJECTURE VIA CORNERS
M. FAUST AND F. SOTTILE

ABSTRACT. The Spectral Edges Conjecture is a well-known and widely believed conjecture
in the theory of discrete periodic operators. It states that the extrema of the dispersion
relation are isolated, non-degenerate, and occur in a single band. We present two infinite
families of periodic graphs which satisfy the Spectral Edges Conjecture. For each, every
extremum of the dispersion relation is a corner point (point of symmetry). In fact, each
spectral band function is a perfect Morse function. We also give a construction that increases
dimension, while preserving that each spectral band function is a perfect Morse function.

INTRODUCTION

A periodic graph is a discrete model of a crystal. In this setting, evolution equations
governing electron transport become operators on the graph. Floquet theory [17] realizes
the spectrum of a periodic operator as images of spectral band functions, defined either on a
Brillouin zone or a compact torus. The union of their graphs is the dispersion relation. The
structure of the band edges is of interest in mathematical physics; it is widely assumed that
for generic operators, above the band edges, critical points of the corresponding band function
are nondegenerate. This Spectral Edges Conjecture [18, Conj. 5.25] holds in dimension 1 [21],
§XIII.16], but can fail for Schrodinger operators [I3] in higher dimensions.

We give two families of periodic graphs-infinitely many in every dimension—for which the
Spectral Edges Conjecture holds for each graph. For this, we show that the spectral band
functions have the significantly stronger property of being perfect Morse functions. We also
give a construction that increases the dimension, while preserving nondegeneracy of spectral
edges. We use algebraic methods, as Floquet theory transforms analytic questions in spectral
theory into algebraic questions. Algebraic aspects of periodic operators are developed in the
survey [23], and have been invaluable in recent results [9] 12} 14 [19].

In Section Pl we show that if the dispersion polynomial is sufficiently sparse, then the
spectral edges conjecture holds. In Section Bl we identify a structure of the graph I' which
implies that the spectral edges conjecture holds for discrete periodic Schrodinger operators.
Finally, in Section ] we give a construction of a Z4*!-periodic graph from a Z?-periodic graph
which preserves the degeneracy /nondegeneracy of critical points of spectral band functions.

These results use algebra and global arguments and are distinct from, but related to those
in [3], which uses analysis to give a local criterion for a local extremum of a spectral band
function to be a global extremum. They give this for graphs which are minimally connected,
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similar to the graphs we consider in Section Bl The graphs in Section Pl are not necessarily
minimally connected in that sense (e.g. Example [Z7). As the spectral band functions we
study are perfect Morse functions, local extrema are global extrema, as in [3]. Finally, both
papers consider critical points at points of symmetry, called corner points.

1. BACKGROUND

Let R, C, T, C*, and Z be, respectively, the real numbers, complex numbers, the unit
complex numbers, the nonzero complex numbers, and the integers. We let d > 0 be a
positive integer, which may be called dimension, and e, ...,e; € Z% C R? be the standard
basis vectors. We sketch some background on periodic graph operators and Floquet theory.
For more, see any of [2], 4], [15] [16] 17, 23].

Let ' be a graph equipped with a free cocompact action of Z¢. That is, Z% has finitely
many orbits on the vertices V and edges £ of I'. Write the action of a € Z% on v € V as a+v.
Let W C V be a collection of orbit representatives, called a fundamental domain.

A labeling of T is a pair of Z%periodic functions V:V — R and E: £ —+ R. We write
(', V, E) for the resulting labeled periodic graph. These are the data for a discrete periodic
operator on I'. We let H := V 4+ Ag be the sum of the multiplication operator V' and a
weighted adjacency operator Ag acting on complex-valued functions on V. Given a function
f:V — C, the value of Hf at a vertex v € V is

(1) (Hf)(v) = V(0)f(w)+ D E(w,u)f(u).

(v,u)e€

For the constant function E: & — {1}, H is the discrete periodic Schridinger operator. By
cocompactness, H is a bounded operator on the Hilbert space ¢5()) of square-summable
functions on V. As V and E are real-valued, it is self-adjoint and has real spectrum o(H).

Floquet theory describes the interaction of the spectrum with the representations of Z<,
leading to the dispersion relation between the energy A and quasi-momenta & € RY. A
Floquet function with quasi-momentum k is a function g on V satisfying

glatv) = e¥™V=kag(y) foralla € Z* andv e V.

As the topology of the compact torus T? plays a role, we change variables. Set z := e2™V~1k ¢

T, which we call a Floquet multiplier. Then e2™V-1ka — o .— 2t zyt, where z =
(21, ..., 24), and quasi-periodicity of g becomes
(2) gla+v) = 2%g(v), forallv €V andac Z.

A Floquet function g with multiplier z is determined by its values on the fundamental domain
W. On such a function, the operator H becomes

(3) (Hg)(v) = V()g(v) + Y E(v,atu)z"g(u),
(v,atu)e€

where u,v € W and a € Z%. Thus, H acts as multiplication by a |[W| x |W| matrix H(z).
The spectrum o, (H) of H(z) consists of the roots of its characteristic polynomial.
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By Floquet theory the spectrum o(H) is the union of these eigenvalues o, (H),

(4) oH) = |Jo.(H) = {AeR|3zeT! st. det(H(z) — A) =0}
z€Td
This expression for the spectrum leads to the following interpretation.
Treating the coordinates of z = (z1,...,24) € T? as indeterminates, H(z) becomes a
|W| x |W| matrix with Laurent polynomial entries. The entry in row v and column w is
(5) V(v)byu + Z E(v,a+u)z* € R[F,..., 23],
(v,atu)e€

We call this matrix H(z) of Laurent polynomials the Floquet matrix and refer to its charac-
teristic polynomial D(z, \) := det(H (z) — A) as the dispersion polynomial.

The dispersion relation, DR, is the subset of T¢ x R defined by the vanishing of the
dispersion polynomial. That is,

DR = {(z,\) € T*xR| D(z,\) = 0}.

By (@), its projection to R (the A\ axis) is the spectrum of H. By periodicity, if (v,a+u)

is an edge of ', then so is (u, —a+wv). Thus, () implies that H(z)T = H(z™!), and for

z € T H(z) is hermitian so it has |W| real eigenvalues. Thus, the dispersion relation

consists of |IW| branches, each of which is the graph of a spectral band function. Figure [II
T 3m

shows three dispersion relations for d = 2, each drawn over [—%, 2F]?, which is a Brillouin

<>
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FIGURE 1. Three dispersion relations for graphs with d = 2 and |W| =2, 3,4.

zone, equivalently, a fundamental domain for the torus T2. The image in R of each spectral
band function is a spectral band. These may overlap, as in the middle dispersion relation.
In what follows, generic means on the complement of a proper algebraic subset of R™ or
C™. A generic set in particular is open and dense. The set of parameters for I' forms a finite-
dimensional vector space whose dimension is the number of orbits of Z? on VUE. The spectral
edges conjecture for a graph I' states that, for a generic choice of V' and E, the extrema of
the dispersion relation are isolated, nondegenerate, and each occurs on a single spectral band
function. The conjecture was first made for discrete periodic Schrodinger operators and was
believed to be true for any connected graph; however, the conjecture was disproven in [13].
An example of this is shown on the left in Figure [Il each spectral band function has a curve
of critical points. Although the conjecture fails for Schrédinger operators, it remains open
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for discrete periodic operators. It is also of interest to understand for which graphs the
conjecture holds for Schrédinger operators.

The most extreme example of non-isolated critical points is when a spectral band function
is a constant, \g, so that D(z, A\g) = 0. Equivalently, when H has eigenvectors with eigenvalue
Ao, necessarily of infinite multiplicity [23, § 3.4.1]. When this occurs, the dispersion relation
has a flat band. Figure 2 shows the Z2-periodic Lieb lattice, with two dispersion relations

F1GURE 2. The Lieb lattice and two of its dispersion relations.

for operators on it. The one on the left has a flat band. The main result of [§] is that for a
given graph, the set of parameters for which the dispersion relation has a flat band lies in a
proper algebraic subset. This is strengthened in [7].

We present two families of Z?-periodic graphs, each having infinitely many members for
every d > 0, such that every graph in each family satisfies the spectral edges conjecture.
Graphs in the first family satisfy the conjecture for discrete periodic operators, while those
in the second family satisfy the conjecture for discrete periodic Schrédinger operators.

For graphs in these two families, we establish the spectral edges conjecture via a stronger
result, the critical point conjecture. This was formulated in [6] and studied in [I1]. For this,
we complexify, extending our variables from T? x R to (C*)? x C. The complexification of
the dispersion relation is the Bloch variety,

BV = {(z,\) € (C*)¢x C | D(2,\) =0}

A point (z,\) € (C*)? x C is a critical point (of the function X on the Bloch variety) if it is
a solution to the system of polynomial equations, called the critical point equations

oD oD

(6) D(z,\) = 6—21(z,)\) = ... = 8_251(2’>\> = 0.

Solutions are points (z,A) on the Bloch variety where the gradient of the function A van-
ishes. These include all non-smooth points of the Bloch variety and every extremum of a
spectral band function is a critical point. The critical point conjecture states that for generic
parameters (V) F), every critical point (z, Ag) of the Bloch variety is smooth and isolated.
Equivalently, the Jacobian matrix of the critical point equations (@) is invertible at (x, Ao).
We relate this to the spectral edges conjecture.

Theorem 1.1. The critical point conjecture implies the spectral edges conjecture.
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Proof. Suppose that the critical point conjecture holds for a particular graph. Let V', E be
parameters for operators on I' such that all critical points are smooth and isolated, and let
(x, A\g) be an extremum of a spectral band function. Then it is a critical point and thus an
isolated solution to the critical point equations (@) with invertible Jacobian. By [I1), Lem.
5.1], the Hessian matrix at (z, Ag) is invertible, so that it is a nondegenerate extremum.

It remains to show that each extremum occurs on a single spectral band function, for generic
parameters. We argue that this holds when the values of the potential V' are distinct and the
edge parameters E are sufficiently small, which implies that this holds for general parameters.
Suppose that the potential values V(v) for v € W are distinct, and let E: £ — R* be any
of nonzero periodic function. For ¢ > 0, define E;: &€ — R* by E;(u,v) := t - E(u,v), for
(u,v) € £. Then the dispersion polynomial for parameters (V, E;) has the form

Di(z\) = [J(Vw) =X\ + t-F(z,\ 1),
veW
for some polynomial F', which is a Laurent polynomial in z and an ordinary polynomial
in A and t. When ¢ = 0, the dispersion relation consists of |W| isolated flat bands. Each
is the graph of a spectral band function that is constant and equal to a potential value.
By continuity, there exists ¢ > 0 so that if 0 < ¢ < ¢, the images of the spectral band
functions remain disjoint, which implies that each extremum occurs for a single spectral
band function. OJ

The second half of the proof is well-known folklore. Another bit of folkloreﬂ, which we give
for completeness, is that there are at least 2¢|W| critical points, counted with multiplicity.
These are critical points which occur at points of symmetry or corner points, where z; = £1
for each i € [d], equivalently, where 22 = 1.

A function f: M — R on a compact manifold M is Morse [20] if all of its critical points
are nondegenerate. The Morse inequality implies that the sum of the Betti numbers of M is
a lower bound for the number of critical points. When these two quantities are equal, f is a
perfect Morse function.

Lemma 1.2. Every point (2,\) on the Bloch variety with z*> = 1 is critical. If the critical
points are isolated, then there are at least 24|W| critical points, counting multiplicity.

If there are exactly 2¢|W| critical points, each nondegenerate, then they all occur at the
corner points and every spectral band function is a perfect Morse function.

Proof. As D(z,\) = D(z71,\), we have

oD B _,0D
a_Zi(Zl’”.’Zi’”.’Zd) = =% 827;

When z; = £1, this implies that 0D /0z; = —0D/0z; = 0. This implies the first statement.
For the second, there are 2¢|W| points, counted with multiplicity, on the Bloch variety with
2% = 1. The multiplicity of a critical point, as a point on the Bloch variety, is a lower bound
for its multiplicity as a critical point, e.g. as a solution to the critical point equations ({@l).
This is because the multiplicity of a point (z, Ag) on the Bloch variety is the dimension of

R e N TR E

IFor example, see page 4 of [I].
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the quotient of the ring C[z%, \] localized at (x, \g) by the ideal generated by D and all of its
partial derivatives, while for the multiplicity of a solution to (@), we use the ideal generated
by D and only its partial derivatives with respect to the z-variables.

For the third statement, observe that each spectral band function is a continuous function
f: T4 — R. If its critical points are nondegenerate, then by the Morse inequality,

the number of critical points of f > 2¢ = sum of Betti numbers of T%.

As there are |IW| spectral band functions, we must have equality for every spectral band
function, which implies that each is a perfect Morse function. O

The unifying theme of the two families we will discuss is that general operators in these
families have critical points only at the corner points, all critical points are nondegenerate,
and each spectral band function is a perfect Morse function.

Finding these families was surprising to us for the following reason. The characteristic
matrix H(z) — A is a map from the (d+1)-dimensional space (C*)? x C to the space My of
|W| x |W| matrices. The Bloch variety is the inverse image of the determinant hypersurface,
Det C My,. Since the singular locus of Det has codimension 4 in My, we expect that when
d > 3, the Bloch variety will have singularities, which are non-isolated when d > 3. Any
singularity is a critical point. As observed in the proof of Lemma [I.2] an isolated singularity
has multiplicity greater than 1 as a critical point.

Thus, when d > 2, we expect that there are degenerate critical points. While working
on [10], we discovered a family of Z>-periodic graphs whose spectral band functions were
perfect Morse functions, and realized how to generalize that to all d.

2. MINIMALLY SPARSE GRAPHS

If a Z?-periodic graph I is connected, then the exponents o of z which occur in its Floquet
matrix H(z) span Z%, and we expect that this also holds for its dispersion polynomial D(z, \).
A polynomial D(z, \) is minimally sparse if the only monomials in z which occur are ziﬂ. A
Z%periodic graph I' is minimally sparse if for generic parameters, its dispersion polynomial
is minimally sparse.

Below is a generic labeling of Lieb lattice and its dispersion polynomial, where u, v, and
w are values of the potential at eponymous vertices, showing that it is minimally sparse.

) i (A—u)(A —=v)(A —w)
d| [fo e TAEHPEAEHE) +u(ad 4 ) +wlbt+ )
u \'Z) i - bd(21+21_1)<)\—w) — ac(22+22_1)()\—1})‘
c

2.1. Coordinate Projections. The construction of the Floquet matrix from a labeled pe-
riodic graph may be reversed. While explained in [23], § 3.1.2], we sketch that here.
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Definition-Construction 2.1. Suppose that H(z) is an m xm matrix whose entries are Laurent
polynomials in z = (21,..., z.), and which has the symmetry H(z)" = H(27'). Let W be
a set with m elements vy, ..., v, with v; corresponding to the ith row/column of H(z). Set
V :=7" x W, which carries a natural action of Z",

for o € Z" and (B,v) € Z" x W, a+ (B,v) = (a+ B,v).
We define a Z"-periodic potential V': V — R. For (8,v) € Z" x W, set
V(B,v) := constant term of H(z),, .

All other terms in H(z) give labeled periodic edges as follows. For v,u € W, if cz® is a term
in the entry H(z),., and we do not have v = u and o = 0, then we have an orbit of edges

(7) (B,v) ~ (@+pu)  for BeZ’,

with common label ¢. As H(z)T = H(z7'), there will be a corresponding term ¢z~ in the
entry H(z),,. The resulting orbit of edges,

(B,u) ~ (—a+p,v) for B € Z",

with label ¢ is just a reparametrization of (7).

Let € be the set of the edges (7)) for terms cz® in H(z) that are not constants in diagonal
entries and let £: & — R be the constructed Z"-periodic function. Let I' = (V, &) be the
Z-periodic graph with labels V, E. o

The point of this is the following proposition, whose proof we leave to the reader.

Proposition 2.2. IfT' = (V, &) with Z"-periodic functions V:V — R and E: £ — R are
constructed following Definition-Construction[21] from a matriz H(z) of Laurent polynomials
satisfying H(z)T = H(z7'), then H(z) is the Floquet matriz of the labeled graph (T, V, E).

We use Definition-Construction [Z.I] to obtain a labeled periodic graph whose Floquet ma-
trix is obtained from a given Floquet matrix after substituting 1 for some of its variables.

Definition 2.3. Let (I',V, E) be a labeled Z?-periodic graph with Floquet matrix H(z). Let
I={i; <---<i,} CId] be r indices of coordinates, and for each j € [d] \ I, let ¢; € {£1}
be a choice of sign. For z = (z1,...,2,) € T" define ((z) € T? by its coordinates

Cilier
(8) C(2); = {; ;fi'gz;.e

Set H'(z) := H(((z)). Informally, we set z; = ¢; for j & I and then relabel the remaining
variables z1, ..., z,.

As 5]-_1 = ¢, we have H'(2)" = H'(z7"). Let (I, V', E’) be the labeled Z"-periodic graph
constructed from H’'(z) in Definition-Construction 211 We call (I, V', E’) a coordinate
projection of (I, V, E). Tt is possible to define this directly from (I, V, E). We omit the
details as they are not needed, but note that if any entry (v, w) of H'(z) vanishes, then there
is no edge between any two translates of v and w in I". o
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Theorem 2.4. Let (I',V,E) be a Z%-periodic labeled graph whose dispersion polynomial
D(z,\) is minimally sparse. Then one of the following holds: (1) The dispersion relation
has a flat band, (2) the dispersion relation of a coordinate projection has a flat band, or (3)
the only critical points of the dispersion relation are the corner points.

Remark 2.5. A main result of [7] is that if the potential is generic, then having a coordinate
projection with a flat band is equivalent to I having a bounded connected component. ¢

Proof of Theorem[2.4 As D(z,)) is minimally sparse and D(z,\) = D(27!, \), we have
d
(9) D(z,A) = ho(A) + > (zi+ 27 (N
i=0
for some polynomials hy(A),. .., hq(N). The Bloch variety has a flat band at A = A if and
only if A\g is a common root of every h;. Let us suppose this not the case.
Suppose that (z, Ag) is a critical point of the Bloch variety and that z is not a corner point.

From the formula (@), for each i = 1, ..., d, we obtain
oD

Then for each i € [d], either 7 = 1 or else h;(A\g) = 0.
Let I C [d] be the set of indices such that 27 # 1 and thus h;(A\g) = 0. For j & I, set
g; = x; € {1}. Using (@) and that h;(Ao) = 0 for ¢ € I, we have

(10) 0 = D(z,%) = ho(Xo) + D 2eh;(Xo).

For z € T, define ((z) € T? by (). Set H'(z) := H(({(z)), the Floquet matrix for the
coordinate projection (I", V', E’) of (T, V, E) arising from I,¢. Is dispersion polynomial is

D'(z,A) = det(H'(z) = A) = det(H(C(2)) =A) = D(¢(2),A).
The Bloch variety for D’(z, A) has a flat band at A = \g. Indeed,

d
D'(z, M) = D(((2),X0) = ho(Xo) + Z(C(Z)z +¢(2)7 hi(Xo)
i=1
= ho()\o) + ZQijhj()\o) = 0,
J¢l
as for 1 € I, h;(Ag) = 0. The last equality is (I0). This completes the proof. O

Corollary 2.6. A connected minimally sparse graph satisfies the spectral edge conjecture.

Proof. For any connected graph I', [8, Theorem 1.1] states that the set of parameters such
that the Bloch variety has a flat band lie in a proper algebraic subset. A Z?periodic graph
I" has finitely many (in fact 3¢ — 2¢ — 1) distinct coordinate projections. It follows that there
is a dense Zariski-open subset Ur of the space of parameters (V) E') for I" such that neither T’
nor any of its coordinate projections has a flat band.
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Suppose that I" is minimally sparse. By Theorem 2.4 for (V, E') € Ur the critical points of
the Bloch variety occur only at the corner points. Let (x, Ag) be such a corner critical point.
We claim that it is a nondegenerate critical point. By (), we have

82D 0 ifi#],
825823 (-177>\0) N { sz_ghz()\()) if 4 :j

Thus, the Hessian matrix at (z, \g) is diagonal, and its determinant vanishes if and only if
hi(Xo) = 0 for some i € [d].

Suppose that h;(Ag) = 0. Consider the coordinate projection given by I = {i} and ¢; = x;
for 7 # i. As in the proof of Theorem 2.4l this coordinate projection has a flat band,
contradicting that(V, E') € Ur. Thus, all critical points are are nondegenerate, which implies
the spectral edges conjecture, by Theorem [l O

By Theorem 2.4 when a dispersion polynomial is minimally sparse and a non-corner point
is critical, then it lies on a flat band in a coordinate projection. There are several possible
configurations for this as the following example shows.

Example 2.7. Figure Bl shows a Z?-periodic graph and a general labeling in a neighborhood

S 5

/\ —e1+v !

o f— ¢ /’\d\
/\ /\/\ —e1+u © b } ¢ E e1+u
/>

et |

1 © —extu

N
N

FIGURE 3. A Z2-periodic minimally sparse graph.

of a fundamental domain. We write v and v for the values of the potential at eponymous
vertices. It is minimally sparse, as may be seen from its dispersion polynomial

N — AMutv) —a® — d* +uwv + (21 + 27D (A — bv — ad) + (2 + 25 1) (ch — cv).

Figure [ shows three of its Bloch varieties with their parameter values (u,v,a,b, ¢, d). In
the first image, the only critical points are at the corner points. The middle image has a
1-dimensional line of critical points on its first spectral band function, while the third has
lines of critical points on both band functions, but in different directions. o

2.2. Periodic flower graphs. Both the Lieb lattice and the graph of Example 2.7 are
periodic flower graphs. Every periodic flower graph is minimally sparse and there are infinitely
many in every dimension d.

Let S be a finite connected graph with a distinguished vertex, v and let P,..., P, be
disjoint cycles of possibly varying lengths which may include loops consisting of one vertex
and one edge. Given these, attach each cycle P; to S by identifying one of its vertices with
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(3,0, 3,2,2,1)

FIGURE 4. Three Bloch varieties with their parameters.

u, obtaining a flower graph, F. Its petals are the cycles P;. Observe that the petals P; and
S only meet at the vertex u and that F' is connected. We show some flower graphs

AL ¢ e

Let F' be a flower graph with petals P;,..., P, where ¢ > d. An annotation of F is a
surjection f: [¢] — {e1,...,eq} onto the standard generators of Z? and in each petal P; a
choice of a distinguished oriented edge a; — b;.

We construct a Z?-periodic graph from an annotated flower graph F: Start with the Z9-
periodic disconnected graph Z¢ x F', which we alter as follows. On each copy (o, F') of F, for
each petal P; remove the distinguished edge a; — b; and replace it by an edge from vertex a;
in (o, F) to vertex b; in (o + f(i), F), the translate by f(i). This gives a Z%-periodic flower
graph I'r which is connected as f is a surjection.

Example 2.8. We show annotations for the last three flower graphs given above.

e
€9 €2 L el
€2
€1
€2
€1

The Lieb lattice is the periodic graph constructed from the first, while the second gives the
graph of Figure Bl The graph for the third is displayed to its right. o

Let FF = (W, K) be a flower graph with vertices W, edges K and distinguished vertex
u € W. Write L for the set of petals P; of F' that are loops, consisting of a single edge P; at
u. A labeling of F' is a pair of real-valued functions, V: W — R and E: K — R. Given a
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labeling, the weighted adjacency matrix M of F' has rows and columns indexed by W. For
v,w € W, the entry M, ,, of M is given by the following rule,
E(v,w) ifv+#w,
V(v) ifv=w#u,
V(u)+ > E(P) ifv=w=u

P,eL

M, =

Theorem 2.9. A periodic flower graph I'r is minimally sparse.

Proof. Observe that each vertex of F' represents a unique Z?-orbit of vertices of I'r, and the
same for each edge of F'. Thus, a labeling of I'r gives a labeling of F' and vice-versa. The

Floquet matrix H(z) of I'r may be constructed directly from the weighted adjacency matrix
M of F. Indeed, the entry H(2),,, of H(z) is

(11) V() + Y (20 +21) BB,

PeL
and if v,w € W with (v, w) # (u,u), then
zppE(v,w)  if v = w is the directed edge in petal P,
(12) H(2)pw = z;é)E(v, w)  if w — v is the directed edge in petal P;,
M, 4 otherwise.

The generic dispersion polynomial det(H (z)—A) is minimally sparse. Let the values of V/
and of E be indeterminates (variables). Note that det(H(z)—A\) is obtained by replacing
each occurrence of V(v) in det H(z) with V(v)—A. Thus, it suffices to show that det H(z) is
minimally sparse; that the only monomials in the z; are single variables or their inverses.

Writing Sy, for the symmetric group on the set W, we have

detH(z) = > + [[HE)orw = Y H(2)x.

weSw veW weSw

The summand H(z), is non-zero if and only if each entry H(z), () for v € W is nonzero.
When v = 7(v), so that v is a fixed point of 7, then H(z),, is either the constant V' (v) or else
the sum (1), when v = u = 7(u). All other non-zero factors H(2), (v of H(z)x correspond
to edges of I’ that are not among the loops L at u.

If H(z), is non-zero and (v, 7(v)) with v # m(v) is an edge in a petal P, then every other
edge in P occurs as (w, 7(w)). That is, the vertices of P form a cycle in 7. This includes the
distinguished vertex u. This precludes any other edge of any other petal corresponding to a
factor of H(z),, as well as the entry H(z),,. Similarly, if H(z),, is a factor of H(z),, then
none of its factors correspond to edges of petals P that are not loops in L.

These observations show that each summand H(z), has at most one factor that involves
any variable z;. As this factor is an entry in H(z), (II) and (I2]) imply that the generic
dispersion polynomial is minimally sparse, and completes the proof. O

Theorem 2.10. The spectral edges conjecture holds for Schrédinger operators on a Z.°-
periodic flower graph U'r if and only if no petal of F' is a 2-cycle.
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Proof. Fixing all edge weights E to be 1 while allowing arbitrary potentials gives the family
of Schrodinger operators on I'rp. As ' is connected, generic Schrodinger operators on I'r do
not have flat bands, by the main result of [7]. We show the dichotomy:

(1) If the flower graph F has a petal which is a 2-cycle, then I'r has a coordinate projection
whose resulting graph has bounded connected components.
(2) If no petal of F is a 2-cycle, then every coordinate projection is connected.

The theorem follows by Theorem [2.4] and the main result of [7] as explained in Remark 2.5

For (1), suppose without loss of generality that the petal P; of F' is a 2-cycle with vertices
w and w (u is the distinguished vertex of F'), that u — w is the distinguished edge, and that
f(1) = e4. The only edges in I'r involving translations of w are (w,u) and (u,eq + w) (and
translations). In the Floquet matrix H(z) the (u,w) entry is 1 + z; and the (w,u) entry
is 1+ z;'. Under the coordinate projection with I = [d—1] and g4 = —1, the substitution
C(z) @) sets zg = —1. Thus, in H'(z) = H({(z)) the entries in positions (u,w) and (w,u)
become zero, and so w and its translates are bounded connected components in I".

For (2), observe that each variable z; either occurs in the diagonal entry H(z),, in the
Floquet matrix as z; + z; ' (if the corresponding petal is a loop) or in an entry H(z),., as z;
(or 2;') when v — w (or w — v) is the distinguished edge in a petal P; with f(j) = i. In
either case, if we set z; to be 1 or —1 in a coordinate projection ((z), then the corresponding
entry in H'(z) = H(((z)) does not vanish and the graph I'% remains connected. O

Remark 2.11. This proof provides a general template for deciding the spectral edges conjec-
ture for a minimally sparse graph I' for a fixed choice E of edge weights: Determine whether
or not there is a coordinate projection IV with bounded connected components. These occur
only if the nonzero entries of H(z) which become zero in H'(z) = H(((z)) correspond to
edges whose removal creates a bounded component. (That is, after reordering the rows and
columns, H'(z) is block-diagonal with one block constant in the z;.) ©

3. IsTHMUS-CONNECTED GRAPHS

We prove the spectral edges conjecture for another class of graphs that differ from mini-
mally sparse graphs, but similarly have few edges between translates of fundamental domains.

Definition 3.1. A connected graph G with an induced path whose initial and final edges are
cut edges has an isthmus. These arise from a construction. Let A be a connected graph
with a vertices v1_q,V9_q, ..., vy, I be a path of length m with vertices (in order) vy, ..., vy,
and let B be a connected graph with b vertices v,,,11,...,Vnsp. Then the isthmus graph G
is obtained from the disjoint union A U I L B by adding cut edges (vg,v1) and (v, Upi1).
Either A or B may be empty, in which case a or b is zero and one or both new cut edges
are not needed. The isthmus and any new cut edges form an induced path in G. We display
three isthmus graphs, indicating their components (A, I, B) and parameters (a,m,b).

w P <
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From an isthmus graph G = (A, I, B) and a function f: [d] — {vi,...,v,}, we construct
a Z%periodic isthmus-connected graph I': Begin with the disconnected Z%periodic graph
Z% x G. For each o € Z¢ and j € [d] add an edge between («, f(j)) and (o + €;, f(5)). Here
are three Z*-periodic isthmus-connected graphs constructed from the graphs of (I3)).

al4l4] NNN A

o @4 Ay NI
4% 4\34% NN N

1 1 ™

The first is a decoration of the square lattice, as studied by Schenker and Aizenman [22]. o

Theorem 3.2. Let I' be a periodic isthmus-connected graph. Fix nonzero edge weights. If
the potentials are generic as in Definition3.4], then the only critical points of the Bloch variety
occur at the corner points, and all are nondegenerate.

The spectral edges conjecture holds for I' and for Schrodinger operators on T.

We first make some definitions and clarify what is meant by generic.

Definition 3.3. Let I" be a periodic isthmus-connected graph as in Definition 3.1}, with Floquet
matrix H(z). This has rows and columns indexed by integers from 1—a to m+b, correspond-
ing to the vertices of the underlying isthmus graph G. For each index 1—a < s < m+b, let
Us(z, A) be the principal minor of the characteristic matrix H(z) — A formed by its rows and
columns with indices less than s, and let Ls(z, A) be the co-principal minor formed by its
rows and columns greater than s.

Define Py(z,\) := detUs(z,\), Qs(z,\) := det Ly(z, ), and set Pi_, = Quip = 1.

Observe that if r < 1 or s > m, then no Floquet parameter appears in either P, or Q),. <

If v+ € T¢ is a corner point, then P,(x,\) is a polynomial of degree s+a—1 in A whose
coefficients are polynomials in the potentials V' (v;) for i < s and weights of edges between
vertices v; with ¢ < s. Similarly, Qs(z, A) has degree m + b — s in A whose coefficients are
polynomials in parameters that only involve vertices v; with s < 4. Thus, when r < s, the
polynomials P.(z, ) and Q(x, ) have no parameters (V, E) in common.

Definition 3.4. Parameters (V, E) for a Z?-periodic isthmus-connected graph are generic if

(1) No edge weight vanishes.

(2) For every corner point # € T¢ and every pair of indices 1 < r < s < m, the poly-
nomials P,(z, ) and Qs(z, A) have no common roots. Moreover, these polynomials
have no roots in common with D(z, \). o
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Remark 3.5. For any corner point x € T? and indices 1 <7 < s < m, P.(z,\) and Q,(z, \)
are monic polynomials in A and have no parameters from (V, E) in common. As & [[/_} V(v;)
occurs as a term in P,.(x,0) and + H:’:S'il V(v;) occurs as a term in Qs(x,0), the Sylvester
resultant [5, p. 154] of P.(z, A) and Q(z, A) is a nonzero polynomial in the parameters (V, E).
Similarly, as D(x, \) involves parameters V (v,) and V(vy) its resultant with either P,(x,\)
or Qs(z, A) is nonzero. Thus, for any choice of non-zero edge weights, the set of potential
values which are generic is nonempty and dense in R™+o+0, o

The Floquet matrix of a periodic isthmus-connected graph is highly structured. Writing V;
for V(v;), here is a Floquet matrix for the Schrédinger operator on the middle graph in (I4)).

Ve 1 1
1 Vo, 1 :
1 1 W 1
1 ‘/1+22+Z2_1 1 .
. 1 Vs 1 .
1 Vs+z+27t] 1 - -
: 1 Vi 1 1
. 1 Vs
1 -V

The upper left 3 x 3 block is the weighted adjacency matrix for A (a triangle), the middle
block is the triadiagonal adjacency matrix for the isthmus, and the lower right block is for
B. The 1’s outside of the diagonal blocks are from the cut edges (vg,v;) and (vs3,vy).

Proof of Theorem[3.2. Let I" be a periodic isthmus graph with nonzero edge weights and a
generic potential. Write ¢, for the weight of the edge (v,,v,11), for r = 0,...,m and for
j € [d], write E; for the weight of the edge between the vertex f(j) and its translates by =*e;.
By construction, each Floquet parameter z; occurs in the Floquet matrix H(z) as Ej(zj—l—zj’l)
and only in the diagonal entry of H(z) corresponding to the isthmus vertex f(7).

In the vicinity of the rth row, the characteristic matrix H(z) — A has the form,

Ur(z,\) Cr_1 0 0
(15) 0 ¢y |H(2)pr —A| ¢ 0O
0 0 cr L.(z,\)

Expanding the determinant (IH]) along the rth row shows that
(16) +D(z,A) = Cz—lpr—lQr — P (H(2)ry —NQr + CEPrQr-&-l 5

where if a = 0, then ¢ = P_; = 0 and if b = 0, then ¢,, = Qr1 = 0. If f(j) = r, so that
z; occurs in H(z),, as Ej(z; + zj_l), then none of P,_1, P.,Q,, or Q)41 depend upon z;. A
consequence of ([I6]) is that (up to a sign)

oD
(17) a_zj(z’ A) = (1= 272)EjPy(2, M) Q) (2, A)

where Pf(;j)(z, A) and Qy(;)(z, A) depend only upon those z; with f(i) # f(j).
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Suppose now that (z, ) is a critical point of the Bloch variety. From (I7), for every
j € [d], either 25 = 1 or else Pygy(x, \o)Qy(j) (2, Ao) = 0. We prove a lemma about this.

Lemma 3.6. If (x,\o) is a critical point and x5 # 1, then Py)(x, \o) = Q(j)(, Ao) = 0.

Proof. Define r by f(j) = v,. As 0D/0z;(x, o) = 0, by (7)), one of P, or @, vanishes at
(x, Ag). Suppose that only one vanishes. Without loss of generality, suppose that P,(x, \g) =
0 and Q. (z, Ag) # 0. Then from (I4),

0 = D(l’,)\o) = cfflpr,l(x, )\0)627"<$,/\0>.

Thus, P._1(x,A\¢) = 0. To continue this downward induction, note that the principal minor
U, has the following structure

Ur—2 Cr—3 0
Ur - Cr—3 H(z)r—l,r—l — A Cr—2
0 Cr_9 H(z)pr — A

Expanding along the last row gives £P, = (H(z),, — A\)Pr_1 — ¢*_4P._5. Evaluating at the
critical point (z, A\g) gives P._o(x, Ag) = 0.

We may continue in this fashion until we arrive at Py(x, A\g) = 0, which contradicts that
the potentials are generic. Had we assumed P,.(z, \g) # 0 and Q,.(x, A\g) = 0, then an upward
induction would arrive at the contradiction @,,(x, Ag) = 0. O

We return to the proof of Theorem B2l Let (x, A\g) be a critical point such that z is not a
corner point. Let r be the minimal index with x? # 1 and v, = f(j) and let s be the maximal
such index. By Lemma B0, P,(x,\g) = Qs(x,\g) = 0. Then any Floquet parameters in P,
or Qs are specialized to £1 in P.(z, A\) and Q4(x, \). Therefore, if 2* is any corner point such

that if 27 = 1, then 27 = z; and we have

Pr<x*7)‘) = Pr(xa)‘) and QS(I*;)‘) = Qs<x7)‘)

Thus, P.(z*, A) = Qs(2*, Ao) = 0 and r < s, which is a contradiction to the potential V'
being generic. This shows that critical points only occur at the corner points.
We complete the proof by showing that each such corner critical point is nondegenerate.

Differentiating (7)) gives

0*D 3

W('Z’ A) = 227 E; Py (2, M) Q) (2, M),

j

as the remaining factors are independent of z;. On the other hand, if ¢ # j, then

(18) D ) = (=1 = 5z )
0202 J ’ T
for some polynomial h, which is nonzero only if z; occurs in the remaining factors ().
Evaluating (I8)) at the critical point (z, Ag), the mixed partial derivatives vanish. Hence
the Hessian matrix is diagonal with entries £25; P (2, Ao)Q(j)(x, Ao). As the potential is
generic and D(x, \g) = 0, no diagonal entry vanishes. Thus, (z, \¢) is nondegenerate. O
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4. PARALLEL EXTENSIONS

Let a be a nonzero real number, and write Z, for the infinite path with vertices from Z
and with an edge labeled a between n and n+1, for n € Z.

Let I" be a Z%periodic labeled graph. The product I', := Z, x I is a parallel extension of I'.
It inherits its labeling from Z, and I'.

FExample 4.1. Consider the Z-periodic graph I', shown with a labeling and Floquet matrix.

! i bw u d+ex™ b
(19) J\/\A ce; FAN e d+ex v c
i J —l4vi w0 [l+4u b ¢ w

______________

The only term in det H(z) involving z is w(d + ex)(d + ex™') = w(dex™ + d* + €* + dex).
Thus, I' is minimally supported. Here is its parallel extension I', and Floquet matrix. Its
vertical edges have label a and the remaining edges inherit their labels from (I9).

A u+ ay + ay~? d+ex! b
)_§_< - d+ ex v+ay+ay ! c

b c w+ ay + ay !

The product of diagonal entries includes monomials y™ for n = —3, ..., 3, showing that the
parallel extension is not minimally supported, and that the monomials in the dispersion
polynomial are quite different from those that arise from isthmus-connected graphs. o

Example [ ] illustrates the general construction of the Floquet matrix H,(z) for ', from
the Floquet matrix H(z) of I':

add a(zq11 + 2;},) to each diagonal entry of H(z).
Consequently, the dispersion polynomial D, of T, is
(20) Do(z1,. .y 2, a1, ) = D(z1,..2a, 1t — a(Zar1 + 2701))

where D is the dispersion polynomial of T'.
For a # 0, define the map 7,: T¢"! x R — T? x R by

71-CL(Zla .. 'azdazd-f—la N) = (Zla s Rd lu’ - a(zd-i-l + Zd_jl)> .

This has fibres isomorphic to T.

Theorem 4.2. Suppose that ' is a labeled Z3-periodic graph and let Ty with a # 0 be a
parallel extension of I'. Write BV and BV, for their Bloch varieties. We have

(1) BV, = ' (BV).
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(2) If (x, p) is a critical point of BV,, then w,(x, p) is a critical point of BV.

(3) If (z, \) is a nondegenerate critical point of BV, then the critical points of BV, in
the fiber 7,1 (z, \) are (z,+1, X\ + 2a).

(4) If (z, \) is a degenerate critical point of BV, then the fiber 7, '(z, \) consists of
degenerate critical points.

We deduce that parallel extension preserves the property of spectral band functions being
perfect Morse functions.

Corollary 4.3. If every spectral band function of a labeled graph T is a perfect Morse func-
tion, then every spectral band function of a parallel extension of T is a perfect Morse function.

Proof of Theorem[4.3 The first claim is a consequence of (20). That formula also implies
that if i < d and (z, u) € T4 x R, then

oD, )
azi (.I‘, :U’> - a_zi(ﬂ-a(xa M)) .

The second claim follows.

Define A(zg41, p) := gt — a(zaz1 + 25,,). We compute
en PP OPEAG) 0D O OB )

&zdﬂ (9zd+1 oA\ 8zd+1 oA

If (z,A) is a critical point of BV, then (2, za41, A + a(za41 + 25,,)) is a critical point of BV,
if is it a zero of D,/0z411. By @), we have dD/OX - a(z;7 — 1) = 0.

If (z,)) is a nondegenerate critical point, then by [II, Lem. 5.1], dD/OX # 0. Thus,
2,0 = 1, proving (3).

For (4), as (z,A) is degenerate, 0D/OX = 0, again by [11 Lem. 5.1]. Then (2I)) implies
that 0D,/ON(z, zat1, A + a(zar1 + 27}4)) = 0, which completes the proof. O
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