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1. Introduction

In geometric modeling of curves and surfaces, the overall shape of an individual patch is
intuitively governed by the placement of control points, and a patch may be finely tuned
by altering the weights of the basis functions—large weights pull the patch towards the
corresponding control points. The control points also have a global meaning as the patch
lies within the convex hull of the control points, for any choice of weights.

This convex hull is often indicated by drawing some edges between the control points.
The rational bicubic tensor product patches in Figure 1 have the same weights but different
control points, and the same 3 × 3 quadrilateral grid of edges drawn between the control
points. Unlike the control points or their convex hulls, there is no canonical choice of these

Figure 1. Two rational bicubic patches.

edges. We paraphrase a question posed to us by Carl de Boor and Ron Goldman: What
is the significance for modeling of such control structures (control points plus edges)?

We provide an answer to this question. These control structures, the triangles, quadrilat-
erals, and other shapes implied by these edges, encode limiting positions of the patch when
the weights assume extreme values. By Theorems 5.1 and 5.2, the only possible limiting
positions of a patch are the control structures arising from regular decompositions (see
Section 4) of the points indexing its basis functions and control points, and any such regu-
lar control structure is the limiting position of some sequence of patches. Our results rely
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upon a construction in computational algebraic geometry called a toric degeneration [7,
Ch. 8.3.1].

While our primary interest is to explain the meaning of control nets for the classical
rational tensor product patches and rational Bézier triangles, we work in the generality of
Krasauskas’ toric Bézier patches [11, 12]. The reason for this is simple—any polygon may
arise in a regular decomposition of the points underlying a classical patch. On the left below
is a regular decomposition of the points in the 2 × 2 grid underlying a biquadratic patch
and on the right is a degenerate patch, which consists of four triangles and Krasauskas’s
double pillow. The pillow corresponds to the central quadrilateral in the 2× 2 grid, with
the ‘free’ internal control point corresponding to the center point of the grid.

(1)

While our primary interest is in surface patches, our definitions and arguments make
sense in any dimension. Our discussion will concern surface patches but the proofs are
given for patches of any dimension.

2. Bézier patches and control nets

We define rational Bézier curves and surfaces and tensor product patches in a form that
is convenient for our discussion, and then describe their control nets. Our presentation
differs from the standard formulation [5] in that the degree is encoded by the domain. This
linear reparametrization does not affect the resulting curve or surface. Write R≥ for the
nonnegative real numbers and R> for the positive real numbers.

Let d be a positive integer. For each i = 0, . . . , d define the Bernstein polynomial βi;d(x),

βi;d(x) := xi(d− x)d−i .

(Substituting x = dy and multiplying by
(

d

i

)

d−d for normalization, this becomes the usual
Bernstein polynomial. This nonstandard presentation, omitting the binomial coefficients,
stresses the separate role of functions and weights.) Given weights w0, . . . , wd ∈ R> and
control points b0, . . . ,bd ∈ R

n (n = 2, 3), we have the parameterized rational Bézier curve

F (x) :=

∑d

i=0 wibiβi;d(x)
∑d

i=0 wiβi;d(x)
: [0, d] −→ R

n .

Our domain is [0, d] rather than [0, 1], for this is the natural convention for toric patches.
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The control polygon of the curve is the union of segments b0,b1, . . . ,bd−1,bd. Here are
two rational cubic Bézier planar curves with their control polygons.

(2)

b2

b1

b0 b3

b1

b2

b0 b3

There are two standard ways to extend this to surfaces. The most straightforward gives
rational tensor product patches. Let c, d be positive integers and for each i = 0, . . . , c and
j = 0, . . . , d let w(i,j) ∈ R> and b(i,j) ∈ R

3 be a weight and a control point. The associated
rational tensor product patch of bidegree (c, d) is the image of the map [0, c]× [0, d]→ R

3,

F (x, y) :=

∑c

i=0

∑d

j=0 w(i,j)b(i,j)βi;c(x)βj;d(y)
∑c

i=0

∑d

j=0 w(i,j)βi;c(x)βj;d(y)
.

Triangular Bézier patches are another extension. Set

d := {(x, y) ∈ R
2 | 0 ≤ x, y and x+ y ≤ d}

and set A := d ∩ Z
2, the points with integer coordinates (lattice points) in the triangle

d . For (i, j) ∈ A, we have the bivariate Bernstein polynomial

β(i,j);d(x, y) := xiyj(d− x− y)d−i−j .

Given weights w = {w(i,j) | (i, j) ∈ A} and control points B = {b(i,j) | (i, j) ∈ A}, the
associated triangular rational Bézier patch is the image of the map d → R

3,

F (x, y) :=:

∑

(i,j)∈A w(i,j)b(i,j)β(i,j);d(x, y)
∑

(i,j)∈A w(i,j)β(i,j);d(x, y)
.

The control points of a Bézier curve are naturally connected in sequence to give the
control polygon, which is a piecewise linear caricature of the curve. For a surface patch
there are however many ways to interpolate the control points by edges to form a control
net. There also may not be a way to fill in these edges with polygons to form a polytope.
Even when this is possible, the significance of this structure for the shape of the patch is
not evident, except in special cases. For example, if the control points are the graph of a
convex function over the lattice points, then the patch is convex [3, 4]. For such control
points, the obvious net consists of the upward-pointing facets of the convex hull of the
graph. This is the net of the bicubic patches in Figure 1.

3. Toric patches and toric varieties

Krasauskas’s toric patches [11] are a natural extension of rational Bézier triangles and
rational tensor product patches to arbitrary polygons whose vertices have integer coor-
dinates, called lattice polygons. They are based on toric varieties [1, 6] from algebraic
geometry which get their name as they are natural compactifications of algebraic tori
(C∗)n, where C

∗ := C \ {0}. They are naturally associated to lattice polygons (and in
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higher dimensions, lattice polytopes), and the positive real part [6, Ch. 4] [14] of a toric
variety is canonically identified with the corresponding polygon/polytope.

Toric patches begin with a finite set A ⊂ Z
2 of (integer) lattice points. The convex hull

of A is the set of all convex combinations
∑

a∈A

paa where pa ≥ 0 and 1 =
∑

a∈A

pa

of points of A, which is a lattice polygon and is written ∆A. To each edge e of ∆A, there
is a valid inequality he(x, y) ≥ 0 on ∆A, where he(x, y) is a linear polynomial with integer
coefficients having no common integer factors that vanishes on the edge e. For example, if
A = d ∩ Z

2, then ∆A = d and the inequalities are

x ≥ 0, y ≥ 0, and d−x−y ≥ 0.

Let E be the set of edges of the polygon ∆A. To each lattice point a ∈ A, define the toric
basis function βa,A : ∆A → R to be

βa,A(x, y) :=
∏

e∈E

he(x, y)
he(a).

This is strictly positive in the interior of ∆A. If a lies on an edge e of ∆A, then βa,A is
strictly positive on the relative interior of e, and if a is a vertex, then βa,A(a) > 0. In
particular the toric basis functions have no common zeroes in ∆A.

Observe that the toric basis functions for A = [0, c] × [0, d] ∩ Z
2 and A = d ∩ Z

2

are equal to the Bernstein polynomials βi;c(x)βj;d(y) and β(i,j);d(x, y) underlying the tensor
product and triangular Bézier patches.

Toric patch also require weights and control points. Let #A be the number of points in
A. Let RA

> be R
#A
> with coordinates (za ∈ R> | a ∈ A) indexed by elements of A. A toric

Bézier patch of shape A is given by a collection of positive weights w = (wa | a ∈ A) ∈ R
A
>

and control points B = {ba | a ∈ A} ⊂ R
3. These define a map ∆A → R

3,

(3) FA,w,B(x, y) :=

∑

a∈A wabaβa,A(x, y)
∑

a∈A waβa,A(x, y)
.

Since the toric basis functions are nonnegative on ∆A and have no common zeroes, this
denominator is strictly positive on ∆A. Write YA,w,B for the image of ∆A under the map
F , which is a toric Bézier patch of shape A.

The map F : ∆A → R
3 admits a factorization

(4) F : ∆A
βA−−−→ A w·

−−→ A πB−−→ R
3 ,

where A ⊂ R
A is the standard simplex of dimension #A − 1, the map βA is given by

the toric basis functions βa,A, the map w· is (essentially) coordinatewise multiplication by
the weights w, and the map πB is a projection given by the control points B. The purpose
of this factorization is to clarify the role of the weights in a toric patch by isolating their
effect. The image βA(∆A) ⊂

A is a standard toric variety XA. Acting on this by the
map w· gives a translated toric variety XA,w, which we call a lift of the patch YA,w,B as
its image under the projection πB is YA,w,B. We use results on the limiting position of the
translates XA,w as the weights are allowed to vary, which are called toric degenerations.
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We make this precise. Let RA
≥ be R

#A
≥ with coordinates (za ∈ R≥ | a ∈ A) indexed by

elements of A. The standard simplex
A := {z ∈ R

A
≥ |

∑

a∈A za = 1}

is the convex hull of the standard basis in R
A. It has homogeneous coordinates,

(5) [za | a ∈ A] :=
1

∑

a∈A za
(za | a ∈ A) .

Geometrically, [za | a ∈ A] ∈
A is the unique point where the ray R> · (za | a ∈ A)

meets the simplex A.
Let βA : ∆A →

A be the map βA(x, y) = [βa,A(x, y) | a ∈ A] Given weights w ∈ R
A
>,

we have the map w· : A → A defined by

w · [za | a ∈ A] = [waza | a ∈ A] .

Lastly, given control points B, define the linear map πB : R
A → R

3 by

πB(z) :=
∑

a∈A

baza .

The image of the simplex A under πB is the convex hull of the control points B, and by
these definitons, the map F in (3) defining the toric Bézier patch is the composition (4).

We call YA,w,B a toric patch because the image βA(∆A) is a toric variety, which we now
explain. Elements a of Z2 are exponents of monomials,

a = (a, b) ←→ xayb ,

which we will write as xa. The points of A define a map ϕA : R2
> →

A by

ϕA(x, y) := [xa | a ∈ A] .

The closure in A of the image of ϕA is the toric variety XA. We have the following result
of Krasauskas [11].

Proposition 3.1. The image of ∆A under the map βA is the toric variety XA.

Toric patches share with rational Bézier patches the following recursive structure. If a
is a vertex of ∆A, then ba = FA,w,B(a) is a point in the patch. If e is the edge between two
vertices of ∆A, then the restriction FA,w,B|e of FA,w,B to e is the 1-dimensional toric patch
given by the points of A lying on e and the corresponding weights, which is a rational
Bézier curve. For example, the edges of the rational bicubic patches in Figure 1 are all
rational cubic Bézier curves.

4. Regular polyhedral decompositions

We recall the definitions of regular (or coherent) polyhedral subdivisions from geometric
combinatorics, which were introduced in [7, § 7.2]. Because subdivision has a different
meaning in modeling, we instead use the term decomposition. Let A ⊂ R

2 be a finite set
and suppose that λ : A → R is a function. We use λ to lift the points of A into R

3. Let
Pλ be the convex hull of the lifted points,

Pλ = conv{(a, λ(a)) | a ∈ A} ⊂ R
3.
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Each face of Pλ has an outward pointing normal vector, and its upper facets are those
whose normal has positive last coordinate. If we project these upper facets back to R

2,
they cover the polygon ∆A and are the facets of the regular polyhedral decomposition Tλ
of ∆A induced by λ. (Lower facets also induce a regular polyhedral subdivision, which
equals T−λ, and so it is no loss of generality to work with upper facets.)

The edges and vertices of Tλ are the images of the edges and vertices lying on upper
facets. Here are the upper facets and regular polyhedral decompositions given by two
different lifting functions for the points A underlying a biquadratic tensor product patch.

More generally, a polyhedral decomposition of ∆A is a collection T of polygons, line
segments, and points of A, whose union is ∆A, where any edge, vertex, or endpoint of
a segment also lies in T , and any two elements of T are either disjoint or their intersection
is an element of T . A decomposition T is regular if it is induced from a lifting function.

A decomposition S of the configuration A of points is a collection S of subsets of A
called faces. The convex hulls of these faces are required to be the polygons, line segments,
and vertices of a polyhedral decomposition T (S) of ∆A. In particular, the intersection of
any face with the convex hull ∆F of another face F of S is either empty, a vertex of ∆F ,
or the points of F lying in some edge of ∆F . A face F is a facet, edge, or vertex of S as
its convex hull ∆F is a polygon, line segment, or vertex. The decomposition S is regular
if the polyhedral decomposition T (S) is regular.

Below are two different lifting functions that induce the same regular polyhedral de-
composition of the 2 × 2 square underlying a biquadratic patch, but different regular
decompositions of A.

The center point of A does not lie in any face of the decomposition on the right as its lift
does not lie on any upper facet.
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5. Regular control surfaces

Regular control surfaces are possible limiting positions of patches. Let A ⊂ Z
2 be a

finite set, w ∈ R
A
> be weights and B = {ba | a ∈ A} be control points for a toric patch

YA,w,B of shape A.
Suppose that we have a decomposition S of A. We may use the weights w and control

points B indexed by elements of a facet F as weights and control points for a toric patch
of shape F , written YF ,w|F ,B|F . In fact, this can be done for any face of S. The union

YA,w,B(S) :=
⋃

F∈S

YF ,w|F ,B|F ,

of these patches is the control surface induced by the decomposition S. As the domain of
a patch of shape F is the convex hull ∆F of F and faces of toric patches are again toric
patches, the control surface of a patch induced by a decomposition is naturally a C0 spline
surface. A control surface YA,w,B(S) is regular if the decomposition S is regular.

Here are the control surfaces of the bicubic patches from Figure 1.

These control surfaces are regular as they are induced by the 3× 3 grid below, which is a
regular decomposition.

Here is an irregular decomposition of the 3 × 3 grid and the corresponding irregular
control surface.

(6) A

CB -

o p q r

A
BHHHHj

C
�
��

6

6

6

o p q r
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We show that regular control surfaces are exactly the possible limits of toric patches
when the control points B are fixed but the weights w are allowed to vary. In particular,
the irregular control surface (6) cannot be the limit of toric Bézier patches.

Let λ : A → R be a lifting function. We use this and a given set of weights w = {wa ∈
R> | a ∈ A} to get a set of weights which depends upon a parameter, wλ(t) := {t

λ(a)wa |
a ∈ A}. These weights are used to define a toric degeneration of the patch,

FA,w,B,λ(x; t) :=

∑

a∈A tλ(a)wabaβa(x)
∑

a∈A tλ(a)waβa(x)
.

Let Sλ be the regular decomposition of A induced by λ. Our first main result is that
the regular control surface YA,w,B(Sλ) induced by Sλ is the limit of the patches YA,w,B,λ(t)
parameterized by FA,w,B,λ(x; t) as t→∞.

This limit is with respect to the Hausdorff distance between two subsets of R3. Two
subsets X and Y of R3 are within Hausdorff distance ǫ if for every point x of X there is
some point y of Y within a distance ǫ of x, and vice-versa. With this notion of distance,
we have the following result.

Theorem 5.1. lim
t→∞

YA,w,B,λ(t) = YA,w,B(Sλ).

That is, for every ǫ > 0 there is a number M such that if t ≥ M , then the patch
YA,w,B,λ(t) and the regular control surface YA,w,B(Sλ) are within Hausdorff distance ǫ.

We illustrate Theorem 5.1 on a bicubic patch. On the left below are the weights of
a bicubic patch, in the center are the values of a lifting function, and the corresponding
regular decomposition is on the right.

1 3 3 1

3 9 9 3

3 9 9 3

1 3 3 1

0 2 2 0

1 1 1 1

1 2 2 1

0 1 1 0.5

The two lighter points, (1, 2) and (2, 2), lie in no face of the decomposition. Figure 2 shows
the toric degeneration of this bicubic patch at values t = 1 and t = 6, and the regular
control surface, all with the indicated control points.

Figure 2. Toric degeneration of a rational tensor product patch of bidegree (3, 3).

We outline the prove of Theorem 5.1 below. The key idea is the factorization (4) of the
map FA,w,B,λ(x; t) through the simplex A. This factorization allows us to study the limit
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in Theorem 5.1 by considering the effect of the family of weights wλ(t) on the toric variety
XA in A. Using equations for XA, we can show the limit as t → ∞ of the translated
toric variety XA,wλ(t) is a regular control surface in R

A whose projection to R3 is the regular
control surface YA,w,B(Sλ).

Figure 3 illustrates this lift, showing a toric degeneration of a rational cubic Bézier curve,
together with the corresponding degeneration of the curve XA,w in the simplex A. Here,
the weights are wλ(t) = (1, 3t2, 3t2, 1). That is, the control points b0 and b3 have weight
1, while the internal control points b1 and b2 have weights 3t2.

t = 1

πB

?

t = 3

πB

?

t = 9

πB

?

Figure 3. Toric degenerations of a rational cubic Bézier curve.

By Theorem 5.1, every regular control surface is the limit of the corresponding patch
under a toric degeneration. Our second main result is a converse: If a space Y is the limit
of patches of shape A with control points B, but differing weights, then Y is a regular
control surface of shape A and control points B.

Theorem 5.2. Let A ⊂ Z
2 be a finite set and B = {ba | a ∈ A} ⊂ R

3 a set of control

points. If Y ⊂ R
3 is a set for which there is a sequence w1, w2, . . . of weights so that

lim
i→∞

YA,wi,B = Y .

then there is a lifting function λ : A → R and a weight w ∈ R
A
> such that Y = YA,w,B(Sλ),

a regular control surface.

To prove Theorem 5.2, we consider the sequence of translated toric varieties XA,wi ⊂
A. We show how work of Kapranov, Sturmfels, and Zelevinsky [9, 10] implies that the

set of all translated toric varieties is naturally compactified by the set of all regular control
surfaces in A. Thus some subsequence of {XA,wi} converges to a regular control surface
in A, whose image must coincide with Y , implying that Y is a regular control surface.
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