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A LITTLEWOOD-RICHARDSON RULE FOR GRASSMANNIAN

PERMUTATIONS

KEVIN PURBHOO AND FRANK SOTTILE

Abstract. We give a combinatorial rule for computing intersection numbers on a flag
manifold which come from products of Schubert classes pulled back from Grassmannian
projections. This rule generalizes the known rule for Grassmannians.

Introduction

One of the main open problems in Schubert calculus is to find an analog of the Little-
wood-Richardson rule for flag manifolds [Sta00, Problem 11], and more generally to find
combinatorial formulae for intersection numbers of Schubert varieties. This problem was
recently solved by Coskun for two-step flag manifolds [Co07].

We give such a combinatorial interpretation for intersection numbers of Grassmannian
Schubert problems on any type A flag manifold. This number counts certain objects
that we call filtered tableaux which satisfy conditions coming from the Schubert problem.
When the flag manifold is a Grassmannian this coincides with a standard interpretation
of these numbers obtained from the Littlewood-Richardson rule. Grassmannian Schubert
problems on the flag manifold were studied in [RSSS06]; they are exactly the Schubert
problems which appear in the generalization of the Shapiro conjecture to flag manifolds
given there.

In Section 1 we define filtered tableaux, give an example, and state our formula, which
we prove in Section 2. Our proof uses some identities of [BS98] which were established
using geometry, and is thus not completely combinatorial. In Section 3 we explain how
our formula relates to one coming from Monk’s formula [Mon59] and discuss how to give
a purely combinatorial proof based on the rule of Kogan [Kog01].

We thank the Centre de recherches mathématiques in Montréal and the organizers of
the workshop on Combinatorial Hopf Algebras and Macdonald Polynomials in May 2007
where this collaboration was begun. We also thank Hugh Thomas for helpful discussions,
and Chris Hillar for comments on the manuscript.

1. A Littlewood-Richardson rule for Grassmannian Schubert problems

For background on flag manifolds and Schubert calculus, see [Ful97]. We fix a posi-
tive integer n throughout. Let α = {α1, α2, . . . , αm} be a non-empty subset of [n−1] :=
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{1, 2, . . . , n−1}, which we write in increasing order

α : 0 = α0 < α1 < · · · < αm < αm+1 = n .

A partial flag of type α is a sequence F• of linear subspaces in Cn

F• : {0} ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fm ⊂ Cn ,

where dim Fi = αi. The set Fℓα of all flags of type α is a complex manifold of dimension

dim(α) :=
m∑

i=1

(n − αi)(αi − αi−1) .

Schubert varieties and classes in Fℓα are indexed by permutations w of {1, 2, . . . , n} whose
descent set is contained in α. For a permutation w, let σw be the class of the Schubert
variety corresponding to w, following the conventions in [Ful97]. Its cohomological degree
is 2ℓ(w), where ℓ(w) counts the number of inversions {i < j | w(i) > w(j)} of w.

If β ⊂ α is another subset then there is a projection πα,β : Fℓα → Fℓβ whose fibres are
products of flag varieties. When β = {b} is a singleton, Fℓβ is the Grassmannian Gr(b, n)
of b-planes in Cn. In this case, we write πb for πα,β. We note that π∗

α,βσw is just the
Schubert class σw ∈ H∗(Fℓβ).

Schubert classes in Gr(b, n) are also indexed by partitions λ, which are northwest-justified
arrays of boxes in a b × (n − b) rectangle, b. Associated to a partition λ is the Grass-

mannian permutation w with shape λ and descent at b. This permutation has a unique
descent at b, and its first b values are

w(i) = i + λ(b + 1 − i) for i = 1, . . . , b .

Here, λ(i) denotes the number of boxes in row i of λ. We write σλ for the Grassmannian
Schubert class σw. Here are three partitions with b = 3 and n = 7; the third is also drawn
inside 3. They correspond to the Grassmannian permutations 1352467, 1372456, and
2471356.

Let |λ| be the number of boxes in λ. This is half the cohomological degree of the Schubert
class σλ and is the complex codimension of the associated Schubert variety.

The Littlewood-Richardson rule for the Grassmannian expresses a product σλ ·σµ of two
Schubert classes as a sum of classes σν where λ, µ ⊂ ν with |ν| = |µ| + |λ|. In this rule,

the coefficient c
ν/µ
λ of σν is the number of Littlewood-Richardson tableaux of skew shape

ν/µ := ν − µ and content λ. These are fillings of the boxes in ν/µ with positive integers
such that

(i) The entries weakly increase left-to-right across each row and strictly increase down
each column.

(ii) The number of js in the filling is equal to λ(j), the number of boxes in row j of λ.
(iii) If we read the entries right-to-left across each row and from the top row to the bot-

tom row, then at every step we will have encountered at least as many occurrences
of i as of i+1 for each positive integer i.
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For example, here are some Littlewood-Richardson tableaux.

(1.1)
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1
2

1
1

2
1 3

1 2

1
1

2 2
1 3

1
1

1 2
2 3

A Grassmannian Schubert class in the cohomology ring of Fℓα is the pullback of a
Schubert class along a projection to a Grassmannian. That is, it has the form π∗

bσλ where
b ∈ α and λ ⊂ b. These are indexed by pairs (b, λ) with λ ⊂ b.

A Grassmannian Schubert problem is a list ((a1, λ1), . . . , (as, λs)) with a1 ≤ · · · ≤ as.
We require that for every i = 1, . . . , s we have ai ∈ α and λi ⊂ ai

, and also

(1.2) |λ1| + |λ2| + · · · + |λs| = dim(α) .

By the dimension condition (1.2), we have

s∏

i=1

π∗
ai

σλi
∈ H2 dim(α)(Fℓα) = Z · [pt]α ,

where [pt]α is the class of a point in Fℓα. The problem that we solve is to give a combi-
natorial formula for the coefficient of [pt]α in this product. Note that if α ) {a1, . . . , as}
this coefficient is zero (e.g. by [Knu00, Lemma 1]), and so we will generally assume that
α = {a1, . . . , as}.

Write α for the union of all rectangles a for each a ∈ α, where the rectangles all
share the same upper right corner. Here are three such shapes when n = 7.

235 = 145 = [6] =

A shape µ ⊂ α is a subset of boxes which are northwest justified. For example, when
n = 6, the shaded boxes are four shapes in 234.

Definition 1.1. Let Λ = ((a1, λ1), . . . , (as, λs)) be a Grassmannian Schubert problem. Set
α = {a1, a2, . . . , as} and fix a shape µ ⊂ α. A filtered tableau T• with shape µ and content

Λ is a sequence

µ• : ∅ = µ0 ⊂ µ1 ⊂ µ2 ⊂ · · · ⊂ µs+1 ⊂ µs = µ

of shapes together with fillings T1, . . . , Ts of the skew shapes µi/µi−1 by positive integers
which satisfy the following properties.

(1) The skew shape µi/µi−1 must fit entirely within the rectangle ai
⊂ α.

(2) The filling Ti is a Littlewood-Richardson tableau of content λi.

Note that we must have |µ| = |λ1| + · · · + |λs|.
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An induction shows that the coefficient of [pt]b = σ
b

in a product σλ1
· · ·σλs

in
H∗(Gr(b, n)) is the number of filtered tableaux with shape b whose content is the se-
quence ((b, λ1), . . . , (b, λs)). We generalize this to any flag manifold.

Theorem 1.2. Let Λ = ((a1, λ1), . . . , (as, λs)) be a Grassmannian Schubert problem on

Fℓα. Then the coefficient of [pt]α in the product
∏

i π
∗
ai

σλi
is the number of filtered tableaux

with shape α and content Λ.

Example 1.3. We use this formula to compute the intersection number N , defined by

N [pt]α = π∗
1(σ ) · π∗

2(σ ) · π∗
3(σ ) · π∗

4(σ ) · π∗
5(σ ) .

Here, α = [4] and α is the full staircase shape. There are exactly three sequences of
shapes µ• which satisfy the condition (1) in the definition of filtered tableaux.

⊂ ⊂ ⊂ ⊂

⊂ ⊂ ⊂ ⊂

⊂ ⊂ ⊂ ⊂

Each of the first two sequences support a unique filtered tableau satisfying condition (2),
while the third supports two; thus the required intersection number is 4, which may be
verified by direct computation using the Pieri formula for flag manifolds [Sot96]. Indeed,
there is a unique Littlewood-Richardson tableau of shape ν/µ and content λ when λ is
a single row or column and also when the shapes of ν/µ and λ are the same or rotated
by 180◦. The only skew shape here which admits more than one Littlewood-Richardson
tableau is when λ = and ν/µ = . There are two such Littlewood-Richardson tableaux,
given in (1.1), and this occurs in the middle of the third chain.

2. Proof of Theorem 1.2

Let Fℓ := Fℓ[n−1] be the manifold of complete flags in Cn, which has dimension
(

n
2

)
.

Its Schubert classes are indexed by all permutations w of the numbers {1, 2, . . . , n}. We
prove a strengthening of Theorem 1.2 for the full flag manifold and use this to deduce
Theorem 1.2 for all partial flag manifolds. We give the key definition of this section.

Definition 2.1. A permutation w is a valley permutation with floor at a if

w(1) > w(2) > · · · > w(a) and w(a+1) < w(a+2) < · · · < w(n) .
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For example, 531246 and 643125 are valley permutations with floor at 3. We associate
a shape µ = µ(w) to any valley permutation w. If w has floor at a, then µ(w) is the shape
whose rows are

w(1) − 1 > w(2) − 1 > · · · > w(a) − 1 ≥ 0 .

This has either a or a−1 rows. Observe that w is determined by µ(w) and that ℓ(w) =
|µ(w)| where ℓ(w) counts the inversions in w. For example,

µ(531246) = and µ(643125) = .

Theorem 2.2. Let Λ = ((a1, λ1), . . . , (at, λt)) with a1 ≤ a2 ≤ · · · ≤ at and suppose that w
is a valley permutation with shape µ. Then the coefficient of σw in the product

∏t
i=1 π∗

ai
σλi

in the cohomology ring of Fℓ is the number of filtered tableau with shape µ and content Λ.

Since the class [pt] of a point in H∗(Fℓ) is indexed by the longest permutation, which is
a valley permutation with shape [n−1], Theorem 2.2 implies Theorem 1.2 for Fℓ[n−1]. We
deduce Theorem 1.2 for general flag manifolds Fℓα from the case for Fℓ[n−1].

Proof of Theorem 1.2. Suppose that b /∈ α, say αi < b < αi+1, and set α′ := α ∪ {b}. We
assume that the theorem holds for Fℓα′ , and deduce it for Fℓα.

Let κ be the rectangular partition with b−αi rows and αi+1−b columns. Set Λ′ :=
((a1, λ1), . . . , (b, κ), . . . , (as, λs)). Note that π∗

α′,bσκ is dual to π∗
α′,α[pt]α in H∗(Fℓα′) under

the Poincaré pairing. Thus, for any τ ∈ H∗(Fℓα) we have
[
[pt]α′

]
π∗

α′,bσκ · π
∗
α′,ατ =

[
[pt]α

]
τ ,

where
[
[pt]α

]
τ denotes the coefficient of [pt]α in τ . In particular,

(2.1)
[
[pt]α′

] ∏

(a,λ)∈Λ

π∗
aσλ =

[
[pt]α

] ∏

(a′,λ′)∈Λ′

π∗
a′σλ′ .

There is a bijection between filtered tableaux with shape α and content Λ and those with
shape α′ and content Λ′, obtained by inserting the unique Littlewood-Richardson tableau
of shape and content κ into the filtration. Thus counting either set of filtered tableaux
gives the coefficient (2.1).

A Schubert class σw appears in a product σu · · ·σv of Schubert classes if, when we expand
the product in the basis of Schubert classes, σw appears with a positive coefficient.

We will prove Theorem 2.2 by induction on the number of terms t in the product.
Important for this is the following proposition which summarizes some discussion at the
beginning of Section 1 in [BS98].

Proposition 2.3. If a Schubert class σw appears in the product σv ·π
∗
aσλ, then the following

conditions hold.

(1) Whenever i ≤ a < j, we have w(i) ≥ v(i) and w(j) ≤ v(j).
(2) If i < j ≤ a and v(i) < v(j), then w(i) < w(j). If a < i < j and v(i) < v(j), then

w(i) < w(j).

In [BS98], it is shown that the conditions in Proposition 2.3 define an order relation
v ≤a w, which is a suborder of the Bruhat order. We deduce an important lemma.
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Lemma 2.4. If σw appears in
∏t

i=1 π∗
ai

σλi
then w has no descents after position at.

Proof. We prove this by induction on t. It holds when t = 0, as the multiplicative identity
in cohomology is the Schubert class indexed by the identity permutation.

Suppose that σw appears in the product
∏t

i=1 π∗
ai

σλi
. Then there is some permutation v

such that σv appears in the product
∏t−1

i=1 π∗
ai

σλi
and σw appears in the product σv ·π

∗
at

σλt
.

Hence v ≤at
w. Since v has no descents after position at−1 and at−1 ≤ at, condition (2) of

Proposition 2.3 implies that w has no descents after position at.

For permutations v, w and a partition λ ⊂ a, let cw
v,a,λ be the coefficient of σw in the

product σv · π
∗
aσλ. One of the main results in [BS98] is the following identity.

Proposition 2.5. Suppose that v ≤a w and x ≤a z with wv−1 = zx−1. Then for every

λ ⊂ a we have cw
v,a,λ = cz

x,a,λ.

Suppose that a shape ν ⊂ [n−1] has either b−1 or b rows. We define ν|b to be the
intersection of the shape ν with b.

Proof of Theorem 2.2. We proceed by induction on t. The theorem holds (trivially) for
t = 0; assume that t > 0 and that it holds for t − 1.

Let w be a valley permutation with shape µ, and suppose that w appears in the product∏t
i=1 π∗

ai
σλi

. Then by Lemma 2.4, w has a floor at at. Let us expand the product

t−1∏

i=1

π∗
ai

σλi
=

∑

v

cvσv .

Then the coefficient of σw in the product
∏t

i=1 π∗
ai

σλi
is the sum

∑

v≤atw

cv · cw
v,at,λt

.

Suppose that v ≤at
w. Since w has a floor at at, Proposition 2.3(2) implies that

v(1) > v(2) > · · · > v(at) .

If the coefficient cv 6= 0, so that v can contribute to this sum, then Lemma 2.4 implies
that v has no descents after position at−1. Since at−1 ≤ at−1 ≤ at, this implies that v is a
valley permutation with a floor at at.

Let ν be the shape of v. Since both w and v have floor at at, both µ and ν have either
at−1 or at rows, and thus µ/ν ⊂ at

. The theorem would follow if we knew that

(2.2) cw
v,at,λt

= c
µ/ν
λt

.

To see this, note that there is a bijection between filtered tableaux on µ with content
((a1, λ1), . . . , (at, λt)) and triples (ν, T•, T ) where ν ⊂ µ, T• is a filtered tableau of shape ν
and content ((a1, λ1), . . . , (at−1, λt−1)), and T is a Littlewood-Richardson tableau of shape
µ/ν and content λ; hence the number of these is

∑

v≤atw

cv · c
µ/ν
λt

.
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But (2.2) follows from Proposition 2.5. Let x (respectively z) be the permutation ob-
tained from v (respectively from w) by reversing the first at values, i.e.

x(i) =

{
v(at + 1 − i) if 1 ≤ i ≤ at

v(i) otherwise.

Then x and z are Grassmannian permutations with descent at, and shapes ν|at
and µ|at

,
respectively, and µ/ν = (µ|at

)/(ν|at
). Furthermore, x ≤at

z and wv−1 = zx−1, from which
we deduce (2.2).

3. Further Remarks

When all the classes σλi
have degree 2 (λi = , a single box), the multiplication formula

σw · π∗
ai

is due to Monk [Mon59]. Monk’s formula states that

(3.1) σw · π∗
ai

=
∑

j≤i<k
ℓ(wrjk)=ℓ(w)+1

σwrjk
,

where rjk ∈ Sn is the transposition swapping j and k. Iterating Monk’s formula one sees

that the coefficient of [pt]α in a product
∏dim(α)

i=1 π∗
ai

is obtained by counting certain chains
in the Bruhat order. It is not hard to see directly from (3.1) that each permutation w in
such a chain corresponds to a shape µ in α such that the number of boxes in the column
j of µ equals #{k ∈ [j] | w(k) > w(j + 1)}, for all j ∈ {min(α), . . . , n − 1}. Indeed, if
the permutation w does not correspond to a shape, then no term on the right hand side
of (3.1) corresponds to a shape. It follows that the coefficient is the number of chains of
shapes in α where the ith step involves adding a box in ai

, which is the answer given
by our formula.

For example, we have

2[pt][3] = π∗
1 · π∗

1 · π∗
2 · π∗

2 · π∗
3 · π∗

3 ,

as there are two chains of shapes which satisfy this condition.

⊂ ⊂ ⊂ ⊂ ⊂

⊂ ⊂ ⊂ ⊂ ⊂

It is possible to give a purely combinatorial proof of Theorem 1.2 using Kogan’s for-
mula [Kog01, Theorem 2.4]. This rule is based on insertion of RC-graphs and gives the
coefficient cw

v,a,λ, when v(a+1) < v(a+2) < · · · < v(n). In particular, this gives a formula
for the product when v and w are a valley permutations with a floor at a, and so we may
use this in a formula for the intersection numbers of Theorem 1.2 to give a combinatorial
proof.

The conventions in [Kog01] for Schubert classes differ from those used in this article.
To compare conventions, it is necessary to replace our permutations w by w̃ = w0ww0

throughout. In particular, a cohomology class indexed by w in this article is the class
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indexed by w̃ in [Kog01]. Thus our condition on v becomes ṽ(1) < ṽ(2) < · · · < ṽ(a),
which is the condition found in [Kog01].

To deduce Theorem 1.2 from this formula, we would need to show that, for valley
permutations w, v with floor at a, Kogan’s rule for cw

v,a,λ coincides with the Littlewood-

Richardson rule for c
µ/ν
λ , where ν = µ(v)|a and µ = µ(w)|a. Here, µ(v) is the shape of v

and µ(w) is the shape of w. While this is certainly possible, we chose not to pursue this.

Appendix A. More examples

Example A.1. Consider the following product in Fℓ235,

π∗
2(σ ) · π∗

2(σ ) · π∗
3(σ ) · π∗

3(σ ) · π∗
5(σ ) · π∗

5(σ ) · π∗
5(σ ) .

By Theorem 1.2, the coefficient of [pt] is the number of filtered tableau with content

((2, ), (2, ), (3, ), (3, ), (5, ), (5, ), (5, )), which is 18:

2
1

1

1
2

1

2
1

1

1
2

1

2
1

1

1
2

1

2
1

1

1
2

1
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Example A.2. We remarked
in Section 3 that, when ev-
ery partition is a single box
(λi = ), a filtered tableau is
a particular saturated chain of
shapes in α. When n = 6 we
look at this for the problem

(π∗
2 )4 · (π∗

3 )5 · (π∗
4 )4

in Fℓ234.
To the right is the poset of

shapes µ in 234, where at level
t (from the top) the shape has
at most at and at least at−1
rows.

Further to the right, we
count the number of chains in
this poset, which shows that
the intersection number is 262.

1

1 1

2 1

2 3

2 5 3

7 5 8

12 15 13

12 40 13

52 53

52 105

157 105

262

262
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