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NONTRIVIAL LINEAR PROJECTIONS
ON THE GRASSMANNIAN Gr;(C%)

YANHE HUANG, GEORGE PETROULAKIS, FRANK SOTTILE, AND IGOR ZELENKO

ABSTRACT. A typical linear projection of the Grassmannian in its Pliicker embedding
is injective, unless its image is a projective space. A notable exception are self-adjoint
linear projections, which have even degree. We consider linear projections of Gr3C® with
low-dimensional centers of projection. When the center has dimension less than five,
we show that the projection has degree 1. When the center has dimension five and the
projection has degree greater than 1, we show that it is self-adjoint.

1. INTRODUCTION
Consider a linear ordinary differential operator (ODO) of order n
(1.1) Lz(t) = ™) + an ()™ V(@) + -+ ao(t)z(t),

where ag, ..., a,_1 are complex-valued continuous functions on an interval I C R. Let V,
be the space of complex-valued solutions of the homogeneous equation Lx = 0.
The Wronskian of m smooth functions fi(t),..., fm(t) on I is the determinant

TN
1(t 5 (t Tt
Wr(fl(t),fg(t),...,fm(t)) = det : . :

FU@) A e

The Wronskian Wr(fi(¢),. .., fiu(t)) is not identically zero when fi(t),..., fm(t) form a
basis of an m-dimensional subspace A in Vy. If g1(%),..., gm(t) is another basis, then

Wr(gl(t),gg(t), o ,gm(t)) = cWr(fl(t), fa(t), ..., fm(t)) ,

where ¢ is the determinant of the transition matrix between the bases. Therefore, the
one-dimensional linear subspace of C*(I) spanned by the Wronskian Wr(f1(t), ..., fim(t))
depends only upon A. This element of the projective space PC*°(I) is called the Wronskian
of the subspace A. This defines the Wronski map Wry, ., from the Grassmannian Gr,,V},
of m-dimensional subspaces of V, to PC*([I).
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For complex algebraic varieties X,Y of the same dimension and a dominant map
F: X — Y, the number of points in a preimage F~!(y) for y € Y is constant over
an open dense subset of Y. This constant number is the degree of the map F' [6].

Consider this for the Wronski map Wry ,, when the image of Gr,,V; has the same
dimension as Gr,,Vy. For generic linear ODO L of order n and any m € {2,...,n—1} the
Wronski map Wry, ,, is injective (see Remark [[I]) and so Wry, ,,, has degree 1. For any L,
is it injective when m = 1 or m = n—1. We are interested in the following question.

Question 1. Under what conditions on a linear ODO L of order n and on 1 < m < n—1
does the Wronski map Wry, ., have degree greater than 17

The classical Wronski map is when V' is the space of polynomials of degree n—1. This
corresponds to the ODO Lg x(t) = 2™ (¢). Work of Schubert in 1886 [J], combined with a
result of Eisenbud and Harris in 1983 [4] shows that the Wronski map Wry, ,, has degree
12 (n—=m—1)"! (m(n—m))!

ml(m+ 1) (n—1)!
The degree exceeds 1 except in the trivial cases of m =1 or m = n—1.

Three of us addressed Question 1 in a previous paper [7]. The operator

(1.2)

n—1
(1.3) La(t) = (=)™ () + Y (=1)(a2)(t)
i=1
is (formally) adjoint to the operator L (LI). An operator L is a (formally) self-adjoint
differential operator if L* = L. When L is self-adjoint, its order n is even.
Two linear ODOs L and L on [ are equivalent if there exists a smooth nonvanishing
function p on I such that

~ 1
Lxr = —L(ux).
1 )
We paraphrase two results from [7]. For both, L is a linear ODO of order n.

Theorem 2.9 of [7] If L is equivalent to a self-adjoint operator and n = 2m, then the
Wronski map Wry, ,,, has even degree.

Corollary 1.8 of [7] If the Wronski map Wry, ,, has degree 2, then n = 2m and L is
equivalent to a self-adjoint linear operator.

The proof of [7, Thm. 2.9] is based on two observations. First, if L is equivalent to
a self-adjoint operator then the space Vj, is endowed with a canonical (up to a nonzero
scaling) symplectic structure op. Second, if A“ is the skew-orthogonal complement of an
m-~dimensional subspace A of V;, with respect to the form o, then

(1.4) Wrpn(A9) = Wi, (A),

so that the Wronskian is preserved under taking skew-orthogonal complement.

From (L2) it follows that for the ODO Lo x(t) = ™ (¢) with n > 5 and m ¢ {1,n—1}
the Wronski map Wryz, ,,, has degree greater than 2. Thus n = 2m is not necessary for
the degree of the Wronski map to exceed 1.
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Question 2. When n = 2m, does the statement of [0, Cor. 1.8] generalize as follows: If
the Wronski map Wry, ., of a 2m-th order linear ODO L has degree greater than 2, is L
equivalent to a self-adjoint operator?

We address a generalization of Question 2. The Grassmannian Gr,,V}, is a subvariety
of Pliicker space PA\"V. Given a linear subspace PZ C PA™V,, (Z is a linear subspace
of A™V1), the linear projection with center PZ is the map PA"V, N\ PZ — P(AN"V.)/Z
induced by the map A"V, — (A"V5)/Z. When PZ is disjoint from the Grassmannian,
it induces the linear projection wz: Gr,, Vi, — P(N"V.)/Z.

Proposition 2.3 of [7] identifies the Wronski map with a linear projection. We explain
that. Given a basis f1,..., f, for V, let f;',... f» € V" be its dual basis and set

(1.5) c(t) == > filt)ff eVy, fortel.

i=1
Fix m € {1,...,n—1} and define the following subspace of A"V},
(1.6) Xy = (c®)ANLE) ANV [ted),
where

() = YW eV
i=1
By [7, Prop. 2.3], the Wronski map takes values in the space X} dual to X, which is
(A"™V)/Xi, where
Xi = {we N"Vp |wl) =0 Vve X}
is the annihilator of X, (for details see [, pp. 755-6]).

Remark 1.1. For generic linear ODO L, X; = A"V}, which implies that the Wronski
map is injective (this is a consequence of Proposition B below, as X7 = 0). o

Remark 1.2. As a consequence of [7, Sect. 2.3], a linear ODO of order 2m is self-adjoint
if and only if there exists a symplectic form o on V;* such that

X}t D ConN"?V,.

Moreover, the canonical symplectic form on V7 is induced by the form o through the
identification of Vi, with V}* via o. This inclusion implies that

2
dim X+ > dim A"V = ( m2>,
m_

with equality for a generic self-adjoint linear ODO of order 2m. When m = 3 and L is
self-adjoint, the minimal possible dimension of X7 is 6. o

Let V be an even-dimensional complex vector space and 1 < m < dimV. A linear
subspace Z C A"V is self-adjoint if there exists a symplectic form o on V* such that

Z D Co A /\’”‘QV.

We state our main results.
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Theorem When m =2 and n = 4, if PZ is a linear subspace disjoint from GroC*,
then Z is self-adjoint.

When m = 3 and n = 6, we consider centers Z of projective dimensions four or five.

Proposition 1.3. Suppose that m = 3 and n = 6. Let Z C /\?’C6 be a linear subspace
with PZ disjoint from GrsCS.
(1) [Corollary BT If dimPZ < 4, then 7z has degree 1.
(2) [Theorem BI]| If dimPZ = 5, then 7z has degree greater than 1 if and only if Z
18 self-adjoint.

We deduce our main results concerning Question 2.

Theorem 1.4. Let L be a linear ODO of order 4. Then the degree of the Wronski map
Wrp o exceeds 1 if and only if L is equivalent to a self-adjoint linear ODO.

Theorem 1.5. Let L be a linear ODO of order 6. Then the following statements hold.

(1) If dim Xi < 5, then the degree of the Wronski map Wry 3 is equal to 1.
(2) If dim Xi = 6, then the degree of the Wronski map Wry, 3 exceeds 1 if and only if
L is equivalent to a self-adjoint linear ODO.

In the next section, we discuss an application of Theorems[[.4] and [[.5] to pole placement
in linear systems theory. We prove our main results in Section Bl

2. APPLICATION TO POLE PLACEMENT FOR CONSTANT OUTPUT FEEDBACK

For a background on linear systems theory, see [2]. A state-space realization of a
(strictly proper) m-input p-output linear system is a triple ¥ = (A, B, C') of matrices of
sizes N X N, N x m, and p x N. This defines a system of first order constant coefficient
linear differential equations,

(2.1) & = Ax + Bu and y = Cux,
d

where z € CV, v € C™, and y € CP are functions of ¢t € C (and & = ). Applying

Laplace transform (u(t) — u(s)) and assuming that z(0) = 0, we eliminate Z to obtain
y(s) = C(sI — A)"'Bi(s) = G(s)u(s),

where G(s) := C(sI — A)™'B is the transfer function of ([Z1). This p x m matrix of
rational functions has poles at the eigenvalues of A.

A linear system may be controlled with output feedback, setting u = Ky, where K is a
constant m X p matrix. Substitution in (ZT]) and elimination gives the closed loop system,

i = (A+ BKC)z,

whose transfer function has poles at the zeroes of the characteristic polynomial

(2.2) Ps(K) = Py = det(s] — (A+ BKC)).
The map K — Ps(K) is called the pole placement map. Given a system (2.1 with
state-space realization ¥ and poles z = {z1,...,2x} C C, the pole placement problem

asks for a matrix K such that Py(K') vanishes at the points of z. This is only possible for
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general z if N < mp [I]. We are interested when N > mp and the pole placement map is
a nontrivial branched cover of its image.

Using the injection Mat,,», C — Gr,C™*" where K is sent to the column space of
the matrix (g ), standard manipulations show that the pole placement map is a linear
projection of Gr,C™”. The map that sends s € P! to the column space of (GIE)) defines
the Hermann-Martin curve s : P! — Gr,,C™ [§]. Tts degree is the McMillan degree,
which is the minimal number N in a state-space realization giving the transfer function
G(s). Such a minimal representation is observable and controllable [2].

If Xy € A"C™7 is the linear span of the image of the curve s and Z := X§ is
its annihilator in A’C™*?_ then the pole placement map Py is the linear projection 7,
and we may identify the quotient X3 = (A’C™*?)/Z with the space of polynomials of
degree at most N. The pole placement map is proper if () # PZ is disjoint from the
Grassmannian Gr,C™*?. This terminology is not standard in systems theory.

Consider the following change of coordinates in the state, input, and output spaces

(2.3) r = Rx, u=Qy+Wu, and y = Ty,

where R, W, and T are invertible matrices and () is a m X p matrix. The transformation
of the space CV x C™ x CP given by (Z3) is a state-feedback transformation. Substituting
(23) into (2.1]), we obtain a new state-space realization in (z,u, ),

T = AF+Bu and § = C7,
given by the triple of matrices & = (;L B, 6’), where
(2.4) A= RYA+BQT'C)R, B = R'BW, and C = T 'CR.

Two realizations are state-feedback equivalent if one is a state-feedback transformation of
the other. The following is standard.

Proposition 2.1. FEquivalent state-space realizations have equivalent Hermann-Martin
curves, where the equivalence is induced by an element of GL(C™*?).

A state-space realization (1)) is symmetric [5] if A7 = A and C' = BT.

Proposition 2.2. [7, Sect. 3.2] For a controllable and observable linear system with state-
space realization ¥ (211), the corresponding center Z is self-adjoint if and only if the
realization ¥ is state-feedback equivalent to a symmetric realization.

The degree of the pole placement map of a symmetric state-space realization is at least
2, because Pg(KT) = Pg(K). The following corollaries are consequences of Theorem 3.0,
of Corollary 317, and of Theorem BI8

Corollary 2.3. If a controllable and observable linear system with m = p = 2 has a proper
pole placement map, then any state-space realization (2Z1)) is state-feedback equivalent to
a symmetric realization.

Corollary 2.4. Suppose that 3 is a state-space realization 2.1I) of a controllable and
observable linear system with m = p = 3 whose pole placement map is proper and has
degree greater than 1. If the center Z of the pole placement map has dimension at most
siz, then dim Z = 6, and X is state-feedback equivalent to a symmetric realization.
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3. LINEAR PROJECTIONS OF THE (GRASSMANNIAN

For a finite-dimensional vector space W, let W* be its linear dual. Write PW for its
projective space of one-dimensional linear subspaces. Then PW* is identified with the set
of hyperplanes in W. For a vector subspace Z C W, PZ is a linear subspace of PIW. We
will often write Z for PZ, and « for a nonzero vector in W, for the linear subspace (),
and for the corresponding point of PIWW. Context will determine which we intend.

Let m, n be positive integers with m < n and let V' be an n-dimensional complex vector
space. For a proper linear subspace Z C PA™V | the projection with center Z,

(3.1) PA"V ~ Z — P(\™V)/Z,

is induced by the quotient map A"V — (A"V)/Z. This projection is a rational map on
PA™V as it is not defined on Z.

The Grassmannian Gr,,V of m-dimensional subspaces of V' is embedded into PA™V
via the Pliicker embedding which sends an m-dimensional space A with basis vy, ..., v,
to the span of its Pliicker vector v; A - -+ A vy, written A. Elements of A\™V representing
points of Gr,,V are decomposable. Whether we intend A € Gr,,,V to be a point of PA"™V
or a linear subspace of V' will often be determined by context.

Let Z C PA™V be a linear subspace disjoint from Gr,,V. Write 7 for the restriction
of the corresponding linear projection (Bl to Gr,,V. In [7] such a linear projection was
called a generalized Wronski map, a terminology motivated by the following result.

Proposition 3.1 ([7, Prop. 2.3]). The Wronski map Wry, ., of an nth order linear ODO
L is the projection w7 with center Z = Xi, where Xy, is defined by (LG).

Remark 3.2. Note that X7 is disjoint from the Grassmannian Gr,,Vy. This is because
Wronskians are not identically zero and the formulation (LH). ©

Assume that dim V = 2m. A 2-form ¢ € AV is an element of the tensor space V @ V.
It is a linear map V* — V which is given by contraction, v — vJo. The rank of o is its
rank as a linear map, and this is an even integer. When o has rank 2m, it is a symplectic
form on V*. Then corresponding map V* — V is an isomorphism and ¢ induces a
symplectic form o* € /\QV* on V. The skew-orthogonal complement to A € Gr,,,V is the
linear subspace

A = {fweV|o*(w,v)=0 YveA}.
This also has dimension m, so A“ € Gr,,V.

A linear subspace Z C PA\™V is self-adjoint if there exists a symplectic form o on V*
such that

(3.2) Z 2 P(CaAN"?V).
By [7, Cor. 1.5,
(33) Wz(AZ) = 7T2(A) , VA e Gr,V,

Thus when Z is self-adjoint, the degree of 75 is even and hence exceeds 1. We address
the converse: Does degree of w5 exceeding 1 imply that the center Z is self-adjoint?
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3.1. Projection from a point. Let 7, be the linear projection with center w € PA™V.

Lemma 3.3. Suppose that Z C PN"V is a linear subspace disjoint from the Grassman-
nian Gr,,V. For AN € Gr,,V, we have 7z(\) = 7wz(N\') if and only if there exists a
point w € Z such that m,(A) = m,(N') if and only if Z meets the line (A, \') in PA"V
containing the points A, .

Proof. 1f m,(A) = 7,(A’), then for any subspace Z containing w, mz(A) = mz(A’). For
the other direction, suppose that mz(A) = mz(A’) with A # A’ in Gr,,,V. Then the line
(A, A') they span meets Z. If w € (A, A') N Z, then 7, (A) = 7, (A'). O

For a center Z C PA\™V disjoint from the Grassmannian Gr,,V, define
(3.4) Sz = {A € Gr,(V) | 3A" # A such that 7z(A) = 7z(A)},
and for w € PNV, similarly define S,. Lemma B3] is equivalent to

(3.5) Sz = |JS..

weZ

Remark 3.4. Lemma motivates our approach to study the degree of the map 7.
First, for each w € Z, describe all A € Gr,,V such that there exist A’ # A in Gr,,V with
Tw(A) = m,(A"). Then take a union of all such A for w € Z. If this union does not contain
an open dense set of Gr,,V then 7wz has degree 1.

The group GL(V) of invertible linear transformations on V' acts on Gr,,V and PA"V,
and for w € PA"V, A, A € Gr,,,V, and g € GL(V'), we have

To(A) = 7, (A) if and only if  7,,(9.A) = myw(g.A).

Therefore, to find the set of pairs A, A" € Gr,,(V) with the same image under 7, it is
enough to find this set for one representative of the GL(V')-orbit of w. o

Remark 3.5. Suppose that dim V' = 4. The Grassmannian GryV C IP’/\QV ~ P5is a
quadratic hypersurface. Thus, if w € PA*V ~ Gr,V, then m,: Gr,V — P(A*V)/w ~ P*
has degree two. In particular, S,, C GryV is dense and therefore has dimension four.
This will be relevant in Section B2, where we show that for w € IP’/\3C6 ~ Gr3C¢,
either S, is either zero-dimensional, empty, or four-dimensional, and the last case may be
understood to be a consequence of the projection map on GryV . o

This degree two projection GroV — P* is intrinsically related to symplectic structures.

Theorem 3.6. When dimV =4, any o € IP’/\2V N GroV'ois a symplectic form on V*.
For A, A" € GryV with A # A, we have that 7,(A) = 7, (A") if and only if N' = A*, the
skew-orthogonal complement of A with respect to the symplectic form o*.

3.2. Projection from a point when m = 3 and n = 6. Assume that dimV' = 6. When
convenient, we identify V' with C® with the standard basis {e1, ..., e} and let {e3, ..., ei}
be the dual basis for V*. Following Remark B.4 we first study the action of GL(V') on
]P’/\?’V. The orbits under this action were described by Segre in 1918 [10]. For i, j, k, write
eijr for e; Ae; Aep and e;; for e; A e;. Then egog is the Pliicker vector of (eq, e, e3).
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Theorem 3.7 (Segre [10], see also [3]). The action of GL(V) on PA*V has four orbits
Oy, 01, Os5, and Oyg, where O; has codimension i. A normal form for an element w; € O;
of each orbit is as follows.

(1) wo = €193 + €456, a point on the line between e1s3 and e456.

(2) wy = €196 — €153 + €234, a general point in the tangent space to Gr3V at eja3.

(3) ws = ey A (ea3 + €45), a point on the line between eja3 and e;ys.

(4) wip = €123, a point on the Grassmannian GrzV .

Remark 3.8. For a 3-plane A € Gr3V/, the tangent space ThGrsV to the Grassmannian is
Hom(A, V/A). A general point of TyGrsV corresponds to an isomorphism A = V/A. The
normal form in Theorem B.7)(2) is the point of T,,,,GrsV corresponding to the isomorphism
that sends e; to ;13 mod (eq, ey, e3). It is the tangent vector at ¢ = 0 to the curve

(3.6) A(t) = e(t) Nea(t) Aes(t),
where e;(t) = e; + te; 3 for i = 1,2, 3. o
Remark 3.9. The tangent variety 7 X of a projective variety X C PV is the union of all
lines tangent to X. The orbits from Theorem B.7] are described geometrically as follows.
(1) The orbit Oy is the complement of the tangent variety 7GrsV of GrsV C PA®V.
(2) Let 7; be the union of all lines in IP’/\?’V connecting two points in GrzV" whose
corresponding subspaces in V' have nonzero intersection. Then
GI‘gV C 71 C TGI‘gV,

and O is the complement of 77 in 7 Gr3V.

(3) The orbit Oj is the complement of Gr3V in 7Tj.
(4) The orbit 010 is Gr3V. <

We describe S,, for w € PA’V ~ Gr3V.

Proposition 3.10. Let w € PA’V ~ Gr3V. Then
(1) If w € Oy, then S, is finite and dim S, = 0
(2) If w € Oy, then m, is injective, so that S, = 0.
(3) If w € Os, then dim S, = 4.

Proof. By Lemma B3, A € S, if and only if there is a A’ € GrzV with A # A’ such that
w € (A, A"), the line in PA*V spanned by the Pliicker vectors of A and A'.

Let A # A’ be distinct 3-planes in GrgV and w € (A, A’) \ Gr3V. By Remark B.9(2),
w ¢ Oy, which proves (2). We argue by the dimension of AN A’. If dimANA =0,
then w € Oy, by Theorem B7(1). Since dim GrgV = 9 and dim PA3V = 19, dimension-
counting shows that for a point w € Oy, S, is zero-dimensional and hence finite, proving
(1). If dimA N A’ =1, then w € Os, by Theorem B.7(3). Statement (3) is Lemma B4

below. If dim AN A" =2, then (A, A') C Gr3V. O
An element w € A’V defines two linear maps
Ao =V — AWV Jwos VE— NV

vV — VAW UV —> VW
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Lemma 3.11. If w € Os, then both Aw and sw have one-dimensional kernels.

Proof. Computations using the normal form of w € Oj given by Theorem B.7(3) show
that the kernel of Awj; is (e;) and the kernel of Jws is (€f). O

For w € Os, write o, € PV for the kernel of Aw and A, € PV* for the kernel of Jw.
We regard o, as a 1-dimensional linear subspace of V' and A, as a hyperplane in V.

Corollary 3.12. Let w € Os. Then o, C A,, A, is the smallest subspace W of V
such that w € N*W, and if m,(A) = m,(A) for A # N € GrsV, then o, = AN A and
A, = (NN (their span in V). Finally, there is an indecomposable 2-form o € N*A.,
such that w = a,, A o, with o, and o well-defined up to scalars.

Proof. By the normal form of Theorem B(3) and the proof of Proposition B0l «,, =
ANA’; so that (A, A’) is a hyperplane in V. Since w, A, A" are collinear in ]P’/\SV, wE /\3Aw.
For any four dimensional subspace W of V/, /\3W C Gr3V, which shows the minimality
of A,. The last statement follows from these identifications and Theorem [B.7](3). O

By Corollary B2 if w € Os, then w € Ca, A A*A, ~ A’(Au/ay). Notice that
A — A/ay, identifies the Schubert variety
(3.7) Q, = {AeGr3V]a,e AC A}
with Gray(A, /) ~ GraC*,

Let F1(1,5;V) C PV x PV* be the flag variety whose points are pairs («, A) with
a C A; the one-dimensional linear subspace « lies in the hyperplane A. The projection
of F1(1,5; V) to each projective space factor is a P* bundle. Let L — F1(1,5;V) be the
subbundle of PA*V x F1(1, 5; V) whose fiber over (a, A) is P(a AA*A) ~ P°. The Schubert
variety Q,, (37) depends only upon the flag o, C A, and it lies in P(a, A A*A,,). Write
Q(a, A) for the Schubert variety corresponding to the flag « C A. A consequence of this
definition and Corollary is the following.

Corollary 3.13. Forw € Os, the map w — (ay,, Ay) € FI(1,5; V) realizes Os as a bundle
over F1(1,5; V'), which is a dense open subset of L. The points in the fiber above (c, A)
consist of points in P(a A N*A) in the complement of Q(a, A).

Lemma 3.14. Forw € Os, S, is a dense subset of €, and therefore has dimension four.

Proof. In the proof of Corollary B2 we observed that if A # A’ are 3-planes in Gr3V
with 7, (A) = m,(A’), then o, C A C A,. This implies that S, C €.

Consider the restriction of 7, to €, C GrsV. Both w and €, lie in P(a,, A /\QAW)7
which is identified with PA*(A,/a,). Write w = a, Ao with o € \*(A,/a,). Identifying
Q,, with Gra(A,/ay,), the map 7, on Q, becomes 7, which has degree 2, by Remark 3.5
This completes the proof. O

Theorem and the proof of Lemma B.14] imply the following corollary.

Corollary 3.15. Let w =a Ao € Os. If A # A\ are 3-planes then m,(A) = m,(\') if and
only if A, N € Q, and N'/a = (A/(x)l".
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3.3. The center has dimension less than five. By Proposition BI0 and (B.3), if
Z C IF’/\SV is a linear subspace that does not meet the Grassmannian GrsV, then

(3.8) Sz= U s.u U s,

w€eZN0g weZNOs
and it follows that

(3.9) dimSz; < max{dim(Z NOy),dim(Z N Os5) +4}.
Since dim GrgV =9, the last relation implies the following result.

Theorem 3.16. If Z C IP’/\3V 15 a linear subspace that does not meet the Grassmannian
Gr3V, dimZ < 9, and dim Z N O5 < 4, then 7z has degree 1 on GrzV.

Proof. From the assumptions and ([B3), we have that dimS; < 8. Thus Gr3V \ Sz
contains a nonempty Zariski open set and therefore 75 has degree 1. (]

Corollary 3.17. If Z does not meet the Grassmannian Gr3V and dim Z < 4, then 7y
has degree 1.

3.4. Five-dimensional center. Let Z C P/\3V be a linear subspace such that the fol-
lowing three conditions hold,
(i) dim Z = 5,
(#) dim Z N O3 > 5, which together with (i) is equivalent to dim Z N O5 = 5, and
(#4i) Z does not meet the Grassmannian GrsV', so that Z C Os.
We establish the following result.

Theorem 3.18. If Z C ]ID/\3V 15 a linear subspace that does not meet the Grassmannian
Gr3V, dim Z = 5, and the degree of wz exceeds 1, then Z is self-adjoint.

The hypotheses imply that Z C Os;. We begin with a lemma about lines in Oj. For
this, w;, 0y, pi, i, v;, w; for i = 1,2, and v are vectors and not points in projective space.

Lemma 3.19. Assume that wi,ws € Os and the line they span lies in Os. If w; = a; N\ o
fori=1,2 as in CorollaryB.I2], then one of the following cases holds.
(1) {ar) = (az).
(2) a1 and s are linearly independent and (o) = (02) mod (ay,az). There is a
2-form o € /\2V such that, up to a scalar factor, w; = a; Ao fori=1,2.
(3) There exist v, wy, ws,v1,v2 € V where ay, ag, v,v1, vy are linearly independent with
(v,v1,v2) = (v, v1,w1) = (v, V9, wq) such that

w = g Alag Awy +v Awvp) and wy = ag Aoy ANwg+vAvg).
Proof. Suppose that (1) does not hold, so that «; and ay are linearly independent. Let
us suppose that oy = e; and ay = eo. Let U := {ey, e5) and W = (es, ..., es) ~ C*, which
are transversal. We express 01,05 in terms of e; and e; respectively. We have

wi = et ANop = er A(ea Awy +p1),

Nl
(3.10) wy = eaNog = ex A (e Awa+ p2),



NONTRIVIAL LINEAR PROJECTIONS ON THE GRASSMANNIAN Gr3(C®) 11

where wy,wy € W, and py, ps € /\2W are the terms in oy, 09 that do not contain e, and
ey respectively. For ¢ = 1,2, since o; is indecomposable, neither p; nor w; A p; is zero.

Let A\, u € C be nonzero. Since \w; + pws € Os, it has the form a Ao, where 0 #a € V
is defined up to a scalar by a A (Aw; + pws) = 0. Let us write a = ae; + bey + v, where
v € W. The vector v and the coefficients a and b are functions of A and p, up to a
common scalar, and at least one of a, b, and v is nonzero. We use ([B.I0) to rewrite
a A (Awy + fuws) =0 as

(aeq + bey +v) A (Aejg Awy + Aeg A pp — pera A wy + pes A p) = 0.
Recall that e;5 = e; A es. Expanding gives
(3.11)  ega A (naps — Abpy +v A (Awy — pws)) — Aey AvAppr — pea AvApy = 0.

These summands lie in ejp A /\QI/V7 e1\ /\3W, and es A /\3W, respectively, and are therefore
linearly independent. This gives the following three equations,

(3.12) papy — Abpr = v A (pwy — Awy)
(3.13) vApr = 0, and
(3.14) vAps = 0.

The last two are linear equations for v € W. Note that each p; is either decomposable
(lies in GroW) or indecomposable, corresponding to having rank 2 or rank 4. If either p;
or ps is indecomposable and hence of rank 4, then v = 0 is the only solution.

Suppose first that v = 0 is a solution to ([BI3]) and ([BI4). Then ([BI2) implies that
(p1) = (p2). (We cannot have ab = 0, for then [BI2) and (a,b) # (0,0) implies that one
of p1 or py is zero.) Scaling w; and ws if necessary, p; = ps = p, and using (BI0) we may
set 0 = ey Awy + €3 A wg + p. Then Case (2) holds.

Suppose that [BI3) and (3I4) admit a nonzero solution, v. Thus p; and py are each
decomposable, and they have the form p; = v; A v, for nonzero vy,v, € W. Then

(3.15) Awi + piws = e19 A (Awy — pws) 4+ (Aep A vy + peg A vg) A w.

This is indecomposable for (A, ) # (0,0).

Suppose that (p1) = (p2), which corresponds to a 2-plane H C W. Then (BI2]) for all
A, p implies that wy,ws € H. In particular, p; = v A wq, for some v € H. But then
o1 = (e + V') A wy, which contradicts its being indecomposable.

Now suppose that p; and py are linearly independent. If H; € GryWW is the 2-plane
corresponding to p;, then (v) = H; N Hy, and thus v is independent of A, p (up to a
scalar), and we also see that v, vy, vy are linearly independent. We establish Case (3) by
showing that (v, vy, v9) = (v, vy, w1) = (v, Vg, Wa).

Consider the 2-forms paps — Abpy for all A, p. If these are all 0, then @ = b = 0 as
p1 and py are linearly independent. Then (BI2]) implies that v, wy,wy are proportional,
which implies that o, and oy are decomposable, a contradiction.

Thus, for general \, i, the 2-form paps — Abpy € \°(v, vy, v5) is nonzero. By BI3), for
all A,  we have that pws—Aw; € (v, v1,v9). Since oy is indecomposable, w; is independent
of v, vy, and the same holds for ws, v, vy, which completes the proof. O

A line in O; has type (4) if it satisfies condition (¢) of Lemma [3.19
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Corollary 3.20. Let ¢ C Oy be a line. If ¢ has type (1), then «, is the same point in PV
for every w € . If { has type (3), then A, € PV* is the same hyperplane for every w € (.

Proof. The claim about lines of type (1) follows from their definition and Lemma B.T9(1).
Suppose ¢ has type (3). Recall that for w € Os, A, is the unique hyperplane of V' with
w € N\*A,. By the normal form for points on a line of type (3) from Lemma BI%(3), we

see that A, = (a1, ag,v,v1,v9) for all w € £. O
Now let us define

(3.16) Ez; = {a, € PV | forwe Z}, and
' Fy; = {A, € PV*| forwe Z}.

Lemma 3.21. If Z is a linear subspace of IP’/\3V of dimension five with Z C Oy such
that the degree of m; exceeds 1, then E; =PV and Fy = PV*.

The proof we give uses the following fact about maps between projective spaces.
Proposition 3.22. If ¢: P" — P" is a nonconstant map, then it is onto.
Proof. Suppose that ¢(P") # P". Since the image is closed, we may compose ¢ with the
linear projection from a point x ¢ ¢(IP"), obtaining a map ¢: P" — P"~!. This is given by
r homogeneous forms fi,..., f. of the same degree d with no common zeroes; for z € P",
P(z) = [fi(2),..., fr(2)]. We must have d > 0, as ¢ and hence 1 is nonconstant. This

contradicts f1, ..., f, having no common zeroes, as r forms of degree d define a subvariety
in P” of codimension at most 7. 0]

Proof of LemmalZ21. Recall the map Os — FI(1,5; V) that sends w to the flag o, C A,
Then E7 is the image of Z under the further map to PV and F is its image under the
map to PV*. As Z, PV, and PV* are all projective spaces of dimension five, for each of
PV and PV*, the image of Z is either a point, or the map is surjective.

By Corollary BI2 if A € S, for w € Os, then o, C A C A,,. If E5 is a point «, then
Sz C {A € Gr3V | @« C A}, which is a proper subvariety of GrsV', and thus 77 has degree
1. Similarly, if F; is a point, then 7, has degree 1. O

We have another technical lemma.

Lemma 3.23. Given k+1 linearly independent elements {a;}¥! in 'V, if p € /\2V satis-
fies

(3.17) p = 0 mod (o, ake), Vie{l,....k},

then up to a nonzero constant,

_ a1 A ay mod agyq k=2,
p = 0 mod apy1 k>2.

Proof. From ([B.I7) it follows that for any i there exist (3;,7; in V' such that
p = a; \Bi+ g A

Therefore for any 1 <i# j <k

(3.19) a; ANBi —a; NBj+aga Ay —;) = 0.

(3.18)
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Since a;, aj, a4 are linearly independent, by the classical Cartan lemma we have
(3.20) Bi € (a,ay, ) .

If £ > 2, then for any i € {1,...,k}, as there is more than one choice of j € {1,...,k}\
{i} in (B20), we obtain that
(3.21) Bi € (i, apq1),
which implies that p =0 mod oy, 1.

If &k = 2 then again by ([B.20) and (BI9), we have that

1 = cas mod {(aq,as), fs = —ca; mod (ag, as),

for some constant ¢, which completes the proof. O

With these lemmas in place, we give the proof of Theorem B.I8

Proof of Theorem[318. For this proof, Z C /\3V is a linear subspace of dimension six
and PZ is its image in PA’V. By B2), to show that Z is self-adjoint, we must produce
a form o € A*V such that Z =V A Co.

By Lemma [B.21] the maps from PZ to each of PV and PV* are surjective. Thus we may
choose a basis {w; }$_, for Z whose images in each of PV and PV* are linearly independent.
For each i = 1,...,6, write w; = a; A 0y, so that a; is the image of w; in PV and let A;
be its image in PV*. Then {«a; | i = 1,...,6} form a basis for V and {4; | i =1,...,6}
form a basis for V*. These vectors w;, 0;, and «; are only defined up to scalar multiples,
so we may freely replace any by a scalar multiple.

By Corollary B.20, no line (w;,w;) for i # j has type (1) or (3), as o; and «; are
independent and A; # A;. Therefore, they all have type (2). By Lemma [B.19(2), there
exists o € A\*V such that a; Ao; = o Ao for i = 1,2. Applying Lemma BIH(2) to (wy,ws)
and to (we,ws), after replacing o and o3 (and possibly oy, as, a3) by scalar multiples,

oc—o3 = 0 mod (o, a3), for i=12.
By Lemma B.23 for p = 0 — 03 and k& = 2, we have
o—03 = cag ANag mod (ag)
for some constant c. Consequently, there exists § € V such that
o—cag Nay = o3+ag\f.
Setting 0 := 0 — cay; A ap we get
(3.22) a;No; = a; No, for 1=1,2,3.

Since the lines between wy = a4 Aoy and w; for i = 1,2, 3 have type (2), Lemma [3.19(2)
implies that after multiplying by scalars, we have

(3.23) 0 = o4 mod (o, ay), for i=1,23.
Then, by Lemma .23 with p = ¢ — 04 and k = 3 we have

o = o4 mod ay,



14

YANHE HUANG, GEORGE PETROULAKIS, FRANK SOTTILE, AND IGOR ZELENKO

which implies that in addition to ([B:22]) we have ay A 04 = a4 A o. The same arguments
applied to a5 and ag imply that for all 1 < i < 6, we have w; = a; Ag. As aq,...,q4
form a basis for V', we have that Z = V A Cog, which implies that it is self-adjoint, and

completes the proof of Theorem [3.18 O
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