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DESCRIBING AMOEBAS
MOUNIR NISSE AND FRANK SOTTILE

ABSTRACT. An amoeba is the image of a subvariety of an algebraic torus under the loga-
rithmic moment map. We consider some qualitative aspects of amoebas, establishing results
and posing problems for further study. These problems include determining the dimension
of an amoeba, describing an amoeba as a semi-algebraic set, and identifying varieties whose
amoebas are a finite intersection of amoebas of hypersurfaces. We show that an amoeba
which is not of full dimension is not such a finite intersection if its variety is nondegenerate
and we describe amoebas of lines as explicit semi-algebraic sets.

1. INTRODUCTION

Hilbert’s basis theorem implies that an algebraic variety is the intersection of finitely
many hypersurfaces. A tropical variety is the intersection of finitely many tropical hyper-
surfaces [5, 10]. These results not only provide a finite description of classical and tropical
varieties, but they are important algorithmically, for they allow these varieties to be repre-
sented and manipulated on a computer. Amoebas and coamoebas are other objects from
tropical geometry that are intermediate between classical and tropical varieties, but less is
known about how they may be represented.

The amoeba of a subvariety V' of a torus (C*)™ is its image under the logarithmic moment
map (C*)" — R [8, Ch. 6]. The coamoeba is the set of arguments in V. An early study
of amoebas [19] discussed their computation. Purbhoo [16] showed that the amoeba of a
variety V' is the intersection of amoebas of all hypersurfaces containing V' and that points in
the complement of its amoeba are witnessed by certain lopsided polynomials in its ideal. This
led to further work on approximating amoebas [20]. Schroeter and de Wolff [17], and then
Nisse [12] showed that the amoeba of zero-dimensional variety is an intersection of finitely
many hypersurface amoebas. More interestingly, Goucha and Gouveia [9] showed that the
amoeba of the variety of m xn matrices of rank less than min{m, n} is the (finite) intersection
of the hypersurface amoebas given by the maximal minors.

A subvariety of the torus has a finite amoeba basis if its amoeba is the intersection of
finitely many hypersurface amoebas. This property is preserved under finite union. We show
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that a complete intersection of polynomials whose Newton polytopes are affinely independent
has a finite amoeba basis. Despite this and the results in [9, 12, 17], we expect it is rare for
a variety to have a finite amoeba basis. Indeed, we show that if a subvariety V' C (C*)™ has
an amoeba of dimension less than n and a finite amoeba basis, then each component of V'
lies in some translated subtorus.

Determining which varieties admit a finite amoeba basis will require a better understand-
ing of amoebas, for which we suggest two problems. In Section 4, we identify a struc-
ture of a variety V' which implies that it has dimension smaller dimension than expected,
min{n,2dim¢ V'}. We originally conjectured that this condition was necessary, which was
subsequently proven by Draisma, Rau, and Yuen [6]. When the amoeba of V' has the mini-
mal possible dimension, we show that V' is a single orbit of a subtorus. It remains an open
problem to develop methods to recognize when a variety has this structure. The second
problem asks for a description of the coamoeba and algebraic amoeba (the projection of V'
to RZ) of a variety V' as semi-algebraic sets. Both questions, dimension and description
as semi-algebraic sets are open and interesting for linear subspaces [7]. We exhibit such a
description for amoebas of lines.

We give some background in Section 2. In Section 3 we observe that coamoebas and
algebraic amoebas are semi-algebraic sets and describe the algebraic amoeba of a line as
a semi-algebraic set. Section 4 considers the problem of determining the dimension of an
amoeba, and in Section 5 we study when a variety has a finite amoeba basis.

We thank Timo de Wolff, Avgust Tsikh, Ilya Tyomkin, Jan Draisma, and Joao Gouveia
for stimulating conversations. We also thank the Institute Mittag-Leffler for its hospitality
during the writing of this manuscript.

2. AMOEBAS AND COAMOEBAS

A point z in the group C* of nonzero complex numbers is determined by its absolute value
|z| and its argument arg(z). These are group homomorphisms that identify C* with the
product R x U, where R. C C* is its subgroup of positive real numbers and U C C* is its
subgroup of unit complex numbers. The decomposition C* ~ R, xU induces a decomposition
of the complex torus (C*)" ~ RZ x U". We consider the projections | - |: (C*)* — RZ and
Arg: (C*)" — U™ to each factor. Let Log: (C*)™ — R™ be the composition of the projection
| - | with the coordinatewise logarithm. This is called the logarithmic moment map.

A subvariety V' C (C*)™ of the torus is the set of zeroes of finitely many Laurent poly-
nomials. It is a hypersurface when it is given by a single polynomial, and a (set-theoretic)
complete intersection if it is given by r = n— dim V' polynomials. The amoeba <7 (V') C R"™ of
a subvariety V' C (C*)" of the torus is its image under Log and its coamoeba coo/ (V) C U"
is its image under Arg. Gelfand, Kapranov, and Zelevinsky defined amoebas [8, Ch. 6] and
coamoebas first appeared in a 2004 lecture of Passare. The algebraic amoeba |V| C RZ of
a subvariety V' is its image under the projection (C*)” — R?. Because R? ~ R" under the
logarithm and exponential maps, |V| ~ &/ (V') as analytic subsets of their respective spaces.
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As the map C* — R. is proper, the maps (C*)" — RZ and (C*)" — R" are proper,
and therefore algebraic amoebas and regular amoebas are closed subsets of RZ and R",
respectively. For a single Laurent polynomial f, write <7 (f) for the amoeba of the hypersur-
face V(f) given by f. This is a hypersurface amoeba. Each component of the complement
R"\.#7(f) of a hypersurface amoeba is an open convex set [8, Cor. 6.1.6].

The structure of (C*)™ is controlled by its group Z" ~ N := Hom(C*, (C*)") of cochar-
acters and dual group of characters Z" ~ M := Hom((C*)",C*). For example, Laurent
polynomials are linear combinations of characters. Both (C*)" and R" ~ N ®; R have re-
lated structures. A subtorus T C (C*)" corresponds to a saturated subgroup I C N (IT is
the set of cocharacters of T = I1®7C*), as well as to a rational linear subspace Ilg := IT®zR
of R™, which is the amoeba of T. All rational linear subspaces of R™ arise in this manner.

A translate aT of a subtorus T by an element a € (C*)™ is an affine subtorus. A rational
affine subspace is the amoeba of an affine subtorus, equivalently, it is a translate of a rational
linear subspace. A subvariety V' C (C*)" is degenerate if it lies in a proper affine subtorus.
Otherwise it is nondegenerate. In Section 5, we observe that a variety V' is degenerate if and
only if its amoeba lies in a proper rational affine subspace of R™.

The logarithmic limit set £>°(V') of a variety V' C (C*)" is the set of asymptotic directions
of its amoeba, that is, the set of accumulation points of sequences {”Z—m} C S ! where

zm|

{zZm | m € N} C &Z(V) is unbounded. Bergman [2| and Bieri-Groves [3] showed that when
V is irreducible £>°(V) is the intersection of the sphere S"~! with a rational polyhedral fan
of pure dimension equal to the dimension of V', called the tropical variety of V.

3. AMOEBAS AND COAMOEBAS AS SEMI-ALGEBRAIC SETS

Properties of semi-algebraic sets are developed throughout the books [1, 4]. A subset
X C R™ is semi-algebraic if it is defined by finitely many algebraic equations and algebraic
inequalities. By the Tarski-Seidenberg Theorem, the image of a semi-algebraic set under a
polynomial map is a semi-algebraic set.

The unit complex numbers U are a compact real form of C*: they are the fixed points
of the anti-holomorphic involution z — z=! on C*. This is realized concretely through the
unit circle ¢ 4+ s? = 1 in R?. Indeed, Clc, s]/(c* + s* — 1) ~ C[z, y]/(zy — 1) under the map
v =c+sy/—1and y = c—sv/—1, and Clx,y]/(zy — 1) ~ Clz,27'] , which is the coordinate
ring of C*.

The map (R*)" x U™ — (C*)"™ defined by (p1, ..., pn,01,...,0,) = (p161, ..., pn0,) is a 2"
to 1 cover, which is an isomorphism on (R.)™ x U". Given a complex algebraic subvariety
V. C (C*)™, its pullback to (R*)™ x U™ is a real algebraic subvariety. The intersection of
this pullback with (R.)™ x U™ is then a semi-algebraic set that is homeomorphic to V. Since
the maps | - | and Arg on (R.)™ x U™ are projection maps, the Tarski-Seidenberg Theorem
implies the following.

Proposition 3.1. The algebraic amoeba |V'| and the coamoeba co<? (V') of an algebraic sub-
variety V- C (C*)"™ are semi-algebraic subsets of RY and U™, respectively.



4 MOUNIR NISSE AND FRANK SOTTILE

While the amoeba &7 (V') of a variety is not semi-algebraic, it inherits finiteness and other
properties of semi-algebraic sets from the algebraic amoeba |V|.

This brings us to our first question. We believe that the semi-algebraic nature of amoebas
and coamoebas has been neglected.

Question 3.2. Given an algebraic subvariety V- C (C*)", produce a description of its alge-
braic amoeba |V | and coamoeba coa? (V') as semi-algebraic subsets of RZ and U™.

Later in this section, we will give a description of the algebraic amoeba of a line in (C*)".
Besides amoebas of lines, the coamoebas described in [13, §3], and those coming from discrim-
inants [7, 11, 15], we know of no other instances where such a semi-algebraic description has
been given. We expect that the description of the amoeba of the set of rectangular matrices
that do not have full rank as a finite intersection of hypersurface amoebas given in [9] will
lead to a description of these amoebas as semi-algebraic sets. Below, we show the algebraic
amoeba of the parabola y = (x—1)(z—2) and the hyperbola y = 1+ 1/(x—2).

|y Y|

7] 2]

These have easy descriptions as semi-algebraic sets. Observe that the boundaries of these
amoebas are the absolute values of the real points of the curves. This is not always the case.

The remainder of this section is devoted to providing a complete description of the algebraic
amoeba of lines. A line is a subvariety ¢ C (C*)" such that ¢ C P" is a linear subspace of
dimension 1. We first study lines in (C*)? and in (C*)?, and then use those results to describe
the algebraic amoeba of any line.

Ezample 3.3. We describe the algebraic amoeba of a nondegenerate affine line £ in (C*)?. As ¢
is nondegenerate, it is not a 1-dimensional affine subtorus, and thus there exists a,b,c € C*
such that ¢ is defined by the equation az + by + ¢ = 0. A point (|z|,|y|]) € RZ lies in
the algebraic amoeba of ¢ if and only if there is a triangle with sides |a||z|, |b||y|, and |¢]|.
Equivalently, if |z|, |y| > 0,

(3.1) lallz[ +[bllyl > lel,  and  allz[ = [Bllyl] < |e|.
This is the shaded polyhedron shown in Figure 1. o

The closure £ of a nondegenerate line £ C (C*)® C P3 meets each of the four coordinate
planes in P? in a distinct point. A line £ may be identified with CP*. A circle on CP! is any
image of RP! under a Mobius transformation.
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FIGURE 1. Algebraic amoeba of a line in the plane.

As explained in a discussion about coamoebas [14, §3], if the four points of £ . ¢ lie on
a circle, then after a reparameterization the line is real (defined or parameterized by real
polynomials), with points in the complement of the circle mapped two-to-one to the amoeba
and those on the circle mapped one-to-one to the relative boundary of the amoeba. If the
four points do not lie on a circle, then the map from ¢ to its amoeba has no critical points [14,
Lem. 7]. This description is independent of parameterization of ¢.

Lemma 3.4. The algebraic amoeba |f| of a nondegenerate real line ¢ C (C*)3 consists of the
points on a symmetric quadratic hypersurface @Q C R® of one sheet that lie in the positive
octant, x,y,z > 0, and that also satisfy the linear triangle inequalities (3.1) arising from the
projections of € to each of the three coordinate planes. An explicit description of Q) is given
in the proof below.

Proof. We prove this by a direct calculation. We may assume that a nondegenerate real line
¢ C (C*)3 is given by a map

t —> (t, Cbg(t — bg), ag(t — bg)) ,

where as, ag, by, by € R* with by # bs. If we set t = p + ¢v/—1 for (p,q) € R? then the
algebraic amoeba is a dense subset of the image of the map

R*> (p,q) +— (\/p2 +q?, \/Cbé(p2 + % = 20op + b3), \/a§(p2 +q° - 2bsp+b§)) :
Letting z,y, z be the coordinates for (R>)? and squaring gives
P =p"+ ¢, Y=a3(p*+ ¢ —2byp+0b3), and 2* =a3(p® +q* — 2bsp+ b3).
Eliminating p and ¢ gives the quadratic equation

(bg—bg)l’Q + b—zyQ — b—ZZQ + bgbg(bg—bg,) = O,
a3 as
that is satisfied by points on the algebraic amoeba. It is symmetric about the coordinate
planes, as it is linear in 22,42 2% Since projection to any coordinate ((x,y)-, (z,z)-, or
(y, 2)-) plane in (C*)3 gives a line, the corresponding inequalities (3.1) must also be satisfied.
Write Q% for the intersection of @) with the positive orthant. Let ¢,, be the closure of the

projection of ¢ to the (x,y)-plane; this closure adds the point (b3, as(bs — bs)). Let ST C QT
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be the points of @* whose projection to the (z,y)-plane lies in |¢,,|. Note that the map from
¢ — |ly,| may be factored through either |[¢| or ¢,,. Together with the observation that Q"
is homeomorphic to its image under the projection to the (z,y)-plane shows that ST = |¢|,
completing the proof. O

Ezxample 3.5. The algebraic amoeba of the real line with parameterization ¢ — (¢,t+1,t—1)
is displayed on the left in Figure 2. It is the set of shaded points on the quadric ) defined
by 222 — 4 — 22 + 2 = 0, which are those points satisfying z,y,z > 0,

lz+y| >1, and |z —y| <1.

These are the inequalities (3.1) from its projection to (z,y)-plane, which is the algebraic
amoeba of the projection of ¢ to the corresponding coordinate (C*)2. As in the proof of
Lemma 3.4, only one such coordinate projection is needed. (Note that the tangent to the
quadric at a = (1,2,0) is vertical, and that the line segments of its boundary lie along lines
in the two rulings of Q.) o

FIGURE 2. Algebraic amoebas of real and complex lines in (C*)3.

Lemma 3.6. The algebraic amoeba |¢| of a nondegenerate complex line { C (C*)3 consists
of the points on a quartic hypersurface in the positive octant. An explicit equation for the
quartic may be recovered from the proof below.

Proof. Let ¢ C (C*)3 be a nondegenerate complex line. Its closure ¢ in P? is identified with
P!. After a change of coordinates, we may assume that ¢~ £ = {0, 1, 00, a}, where « is not
real. Then ¢ has a parameterization
(3.2) t — (tye(t—1),d(t — ),
for some ¢,d € C*. Rescaling the last two coordinates (dividing by ¢ and d, respectively)
the parameterization for ¢ becomes t — (t,t—1,t—a). Writing « = —a—by/—1 with a,b € R
and b # 0, if (z,y, z) is the point on |¢| corresponding to t = p+q+/—1, then

=+, Y= (-1 +¢,  and 22 = (p+a)’+(g+b)*
Then we have

ay? + 22 — (a+1)2* —a*~b*—a = 2bg and 2*—y*+1 = 2p.
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It follows that
(3.3) (ay? + 22 — (a+1)z? —a® = b* —a)® + V(2® —9? +1)* — 4b%2* = 0.

Thus |¢| lies on the part of the quartic surface () C R™ defined by (3.3) in the positive octant.
Write Q* for this positive part.

We claim that Q* = |[¢|. As (3.3) contains only even powers of z, the projection of the
quartic @ to the (x,y)-plane factors through the map (z,v,2) — (z,¥, 2%). The image of Q
is a surface S on which w := 2? is a quadratic function of z and y with discriminant

A= AP rz—y-—Da—y+)(x+y—(+y+1).

In the quadrant where x,y > 0, this discriminant is nonnegative on the polyhedron P defined
by |z +y| > 1 and |z — y| < 1, which is the algebraic amoeba of the projection of ¢ to the
(z,y)-plane (this projection is defined by x —y —1 = 0). Thus the surface S has two branches
above points in the interior of P (where the discriminant is positive). Note that every point
of S with a positive third coordinate w gives two points ++/w on @ with exactly one on Q7.
We claim that w is nonnegative on both branches of S and thus that QT has two branches
(and @ has four branches) above P.

For this, we show that |¢/| C QT has two points over all interior points of P, except
(||, o = 1]). Then the composition ¢ — |¢| C QT — P, together with [14, Lem. 7] which
asserts that ¢ — |¢| has no critical points, shows that [(| = Q7.

Indeed, let t € C ~ R. Then ¢t = p + ¢v/—1 with ¢ # 0, and we have

= (Vr+e Vie- 17+, Via+ P+ b+ qP)
@ = (VP +@ Vo—17+ @ Vet b—a7) .

As the first two coordinates of both coincide, these have the same image in the interior of
P, but different third coordinates. When ¢t = « or t = @, one of these has third coordinate

0 and does not lie on |[¢|. (For t = o, @, both expressions have the same image (|af, |a — 1]).
Thus [¢] = Q7. O

The equation (3.3) describes the Zariski closure of |¢| when the last two coordinates in (3.2)
are rescaled. If we did not rescale these coordinates, the equation (3.3) becomes

1,2, 1.2 2 2 2 2 2,2 1,2 2 2.2
(azy™+ 52" —(at+l)z” —a” = b" —a)” + (2" — Zy" +1)° — 4b%2° = 0.
FExample 3.7. Let ¢ be a primitive third root of unity. The algebraic amoeba of the symmetric
complex line with parameterization ¢ — (t—1,t—(,t—C?) is
ot oyt 2t — (2% 22 PR - 3P+ P+ 2% + 9 = 0.
Its closure meets the coordinate planes in the (singular) points (v/3,v/3,0), (v/3,0,v/3), and
(0,4/3,v/3), and its projection to the (x,y)-plane is determined by the inequalities |z + y| >

2v/3 and |z — y| < 2v/3. Two views of this algebraic amoeba and its projection to the
(z,y)-plane are shown on the right in Figure 2. o
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We now describe the algebraic amoeba of an arbitrary line ¢ in (C*)™. Let & := £~ { be
the intersection of £ with the coordinate planes P . (C*)", this is its set of ends. Note that
|6,] > 2. Recall that a circle on P! is any image of RP! under a Mobius transformation. The
line ¢ is real if & C ¢ ~ P' lies on a circle and complex if & does not lie on a circle.

Lemma 3.8. A line ¢ C (C*)" lies on an affine subtorus aT, of dimension |&|—1 whose
closure is a linear subspace of P™.

Proof. Since P™ ~ (C*)" consists of n+1 coordinate planes and ¢ meets each coordinate plane
in a point of &, any difference n+1—|&;| comes from points of &; lying on more than one
coordinate plane.

Suppose that a point of & lies in two coordinate planes of P", say = 0 and y = 0. These
coordinates are characters of (C*)" and they give a coordinate projection to (C*)2. The
image of ¢ in the C? containing this (C*)? is a line ¢’ passing through the origin. Thus ¢
(and therefore /) satisfies an equation y = ax for some a € C*.

Given a point of & lying on two or more coordinate planes, let z;; = 0,...,2;. = 0 be
those coordinate planes. These characters z;, give a coordinate projection to (C*)"*'. The
image of ¢, and thus ¢ itself, satisfies an equation x;; = a;z;, for some a; € C*, for each
j=1,...,r. These equations for all ends &; of ¢ give n+1—|&;| independent linear equations
that define an affine subtorus aT, of dimension |&;|—1 that contains /. O

We describe the algebraic amoeba of a line ¢ as a semi-algebraic set.

Theorem 3.9. Let ¢ C (C*)" be a line with algebraic amoeba |€| and aT, the affine subtorus
containing { of Lemma 3.8. When |&| = 2, ¢ = aT, and |l| is a rational affine line. When
|&| = 3, € is a nondegenerate line in aTy ~ (C*)? and || is as described in Example 3.3.

Suppose that || > 4. If € is complex, then the map ¢ — |¢| is a bijection. If ¢ is real, then
this map is injective on the circle containing & and two-to-one on its complement.

When € is real, || lies on a surface that is the intersection of (‘i") quadratic hypersurfaces,
one for each projection from aTy to a coordinate (C*)3 and |¢| is the subset of that surface
satisfying inequalities (3.1) from each projection to a coordinate (C*)2.

When |l| is complex, |l| is the intersection of A quadratic hypersurfaces and B quartic
hypersurfaces, where A is the number of subsets of & of cardinality four that lie on a circle
and B is the number of those that do not lie on a circle.

The quadrics and quartics are described explicitly in Lemmas 3.4 and 3.6.

Proof. By Lemma 3.8, if we choose an isomorphism aT, ~ (C*)I¥I=1 and redefine n, we may
assume that |&;| = n+1 and thus ¢ meets the coordinate planes in n+1 distinct points. The
conclusions for |&;| < 4 are immediate. Suppose that |&;| > 4. Any equation or inequality
satisfied by the image of |¢| under a projection to a coordinate subspace is satisfied by |¢].
Thus the inequalities (3.1) obtained from projections to each coordinate (C*)? are valid on
|¢| as are any equations coming from a projection to a coordinate (C*)3. Lemmas 3.4 and 3.6
show that these equations from each coordinate (C*)? are quadratic and quartic as the image
of the line in that (C*)? is real or complex, respectively.
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We prove the assertions about the degree of the map ¢ — |¢|. If ¢ is complex, then it
is complex in a projection to some coordinate (C*)3. By Lemma 3.6, the map from ¢ to
the algebraic amoeba of such a projection is one-to-one, thus the map ¢ — |¢| is one-to-one.
When £ is real, we may assume that & C RP' C ¢ and complex conjugation on C C P! = /¢
is the usual conjugation. Then a point and its conjugate both have the same absolute value,
which shows that the map on ¢~ RP! is at least two-to-one. The projection to a coordinate
(C*)? is two-to-one on this set and one-to-one on the real points RP! \ &;. This proves the
assertion about the degree of ¢ — |¢| when / is real.

We show that the necessary inequalities and equations are sufficient to define |¢|. In
Lemma 3.4, the z-coordinate of |¢| is a function of the 2- and y- coordinates, as |¢| is a graph
over its projection to the (x,y)-plane. Thus when ¢ is real, the points of |¢| are determined by
the quadratic equations from these projections to each coordinate (C*)?, and the inequalities
from further projections to each coordinate (C*)2.

When ¢ is complex, at least one projection to a coordinate (C*)3 is a complex line. As
shown in the proof of Lemma 3.6, under the further projection to a coordinate (C*)?2, this
is the graph of two functions, coming from the branches of a quadratic in z2. When the
projection to a coordinate (C*)3 is real, the previous paragraph shows that the coordinate
functions may be recovered from the inequalities and the quadratic equation for this projec-
tion. Thus the points of |¢| are determined by the quadratic and quartic equations coming
from projections to each coordinate (C*)?. O

4. THE DIMENSION OF AN AMOEBA

The dimension of an amoeba may be understood in differential-geometric terms. At a
smooth point x of a variety V' C (C*)" of dimension k, the rank of the differential d, Log
of the map to the amoeba is 2k—I[, where [ is the dimension as a real vector space of the
intersection of 7,V with the tangent space of the fiber U at x. Since v/—1-T,U" = T,RZ? and
V' is complex, d Log and d Arg have the same rank on 7,,V. Thus the amoeba and coamoeba
of V' have the same dimension. We would like to understand the dimension of &7 (V') from
the geometry of V.

We have the bound dimg .2/ (V) < min{n,2dimcV} as &/(V) C R" and dimgV =
2dimc V', and we seek structures on V' that imply this inequality is strict. If a subvari-
ety V' C (C*)™ has an action by a subtorus T of dimension [, then the orbit space V/T is a
subvariety of the quotient torus (C*)"/T. The amoeba <7 (V') C R™ has a translation action
by the l-dimensional rational subspace </(T) with orbit space 7 (V/T). Taking this into
account, we conclude that dimg .27 (V') < min{n,2dim¢ V' —1}.

If V lies in an affine subtorus aT, then its amoeba lies in Log(a) + <7 (T), a rational affine
subspace of the same dimension as T. This further bounds dimg 27 (V).

We identify a structure on V' that generalizes these observations. We write dim X for the
dimension of a complex variety X and reserve dimg for dimension as a real analytic set.



10 MOUNIR NISSE AND FRANK SOTTILE

Definition 4.1. Let V' C (C*)™ be an irreducible subvariety and T C (C*)™ a subtorus. We
say that T has a diminishing action' on V if we have

(4.1) dimT < 2(dimV —dimW) and 2dimW < n — dimT,
where W := (T - V')/T is the image of V' in the quotient torus (C*)"/T. o

A general fiber I’ of the map V' — W lies in an affine subtorus aT. The first inequality
of (4.1) implies that F' has small codimension in aT and the second inequality of (4.1) implies
that W has large codimension in (C*)™/T. They together imply that

(4.2) 2dimW + dimT < min{n, 2dimV}.

Example 4.2. We give three examples of varieties with a diminishing action by a subtorus.
If a nontrivial proper torus T acts on V with n > 2dim V' —dim T, then T has a diminishing
action on V, as W = V/T has dimension dim V' — dim T.

If V-C (C*)" lies in a proper affine subtorus aT, then W = (T - V')/T is a point and has
dimension zero. If 2dim V' > dim T we have dimg &/ (V) < dim T < min{n,2dim V'} and so
T has a diminishing action on V.

Let P C T ~ (C*)3 be a hypersurface with a three-dimensional amoeba and ¢ C T’ ~
(C*)? be a nondegenerate line. If we set V := P x £ C T x T’, then T has a diminishing
action on V' as in this case W = ¢ and dimV = dimT = 3 but dimW =1 and n = 6
so that the inequalities in Definition 4.1 hold. Note that </ (V) = &/ (P) x </ ({), so that
dimg &/ (V) =5 < min{n,2dim V'}. o

Theorem 4.3. Let V- C (C*)™ be an irreducible subvariety. If a nontrivial proper subtorus
T has a diminishing action on V', then dimg o/ (V') < min{n,2dim V'}.

Proof. Let T C (C*)™ be a nontrivial a proper subtorus and let W = T - V/T c (C*)*/T.
Any fiber F of o/ (V) — o/ (W) lies in a translation of o/(T) and thus dimg F' < dim T.
Suppose that F'is a general fiber. Then

dimg &/ (V) = dimg /(W) + dimg ' < 2dimW +dim T.
If T has a diminishing action on V, then this is less than min{n, 2dimc V'}, by (4.2). O]
We believe the following is true.

Conjecture 4.4. For an irreducible subvariety V- C (C*)", if dimg o/ (V') < min{n,2dim V'},
then there is a nontrivial proper subtorus T of (C*)" having a diminishing action on V.

Remark 4.5. After posing Conjecture 4.4, Draisma, Rau, and Yuen [6] gave the following
formula for the dimension of an amoeba, which they showed implies Conjecture 4.4:

dimg &/ (V) = min{2dimT -V —dim T | T is a subtorus of (C*)"}.

This result suggests the problem of giving explicit methods to determine this dimension. For
example, what is the dimension of the amoeba of a linear subspace in C"? See [7] for a
refinement of this question. o

IThis was called a near action in the original version of this paper.
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We prove Conjecture 4.4 when the dimension of the amoeba is the minimum possible.

Theorem 4.6. Let V C (C*)" be an irreducible subvariety. If dimc¢V = dimg </ (V'), then
V' is an affine subtorus of (C*)™.

Proof. Suppose that V' is a hypersurface, so that dimV = n—1. Then dimg &/ (V) = n—1,
so that it is a hypersurface in R™. Since each component of R" \ &7 (V) is convex, o7 (V)
must be a hyperplane, as it bounds every such component. Since the logarithmic limit set of
V—the set of asymptotic directions of &7 (V')—is a rational polyhedron in S"~! of dimension
n—2, &/ (V) is a rational affine hyperplane, a + Ilg, for some subgroup II C Z" of rank n—1.

Let T := IT ®z C* be the corresponding subtorus and let W := (T - V))/T be the image of
Vin C* ~ (C*)"/T. Then /(W) is the image of </ (V') in R ~ R"/IIg. As this is a point
and W is irreducible, we conclude that W is a point and V' is a single orbit of T.

Now suppose that V' is not a hypersurface and set k := dimg &/ (V) = dim V. For ev-
ery surjective homomorphism ¢: (C*)" — (C*)* with ¢(V) a hypersurface, & (¢(V)) =
®(o7(V)), where ® is the corresponding linear surjection R" — R¥*1. By the previous ar-
guments, (V) is an affine subtorus of (C*)**! and therefore V lies in an affine subtorus of
dimension n—1. Doing this for sufficiently many independent homomorphisms ¢ and taking
the intersections of the affine subtori of dimension n—1 proves the theorem. (]

5. MOST AMOEBAS DO NOT HAVE A FINITE AMOEBA BASIS

As introduced by Schroeter and de Wolff [17], a subvariety V' C (C*)" has a finite amoeba
basis if there exist Laurent polynomials fi, ..., f, such that

AV) = ()N (f)0---Nd(fr).

Theorem 5.4 shows that an irreducible nondegenerate variety whose amoeba has dimension
less than n does not have a finite amoeba basis, and we expect that it is rare for a variety to
have a finite amoeba basis. We also exhibit some varieties with a finite amoeba basis.

By the distributivity of union over intersection, we have the following lemma.

Lemma 5.1. The class of varieties admitting a finite amoeba basis is closed under finite
UNLON.

The Newton polytope P(f) of a Laurent polynomial f is the convex hull of the set of
exponents of its non-zero monomials. A variety V' C (C*)™ is an independent complete
intersection if it is the set-theoretic complete intersection of polynomials fi,..., f, whose
Newton polytopes are affinely independent. Any affine subtorus is an independent complete
intersection, as subtori of codimension 7 are defined by r independent binomials.

Theorem 5.2. An independent complete intersection V' has a finite amoeba basis. If fi,..., f.
are polynomials defining V' set-theoretically with affinely independent Newton polytopes, then

AV) = d(f)Nnd(f) N0 (fr).
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Proof. For each i = 1,...,r, multiply f; by a monomial so that its Newton polytope P(f;)
contains the origin. Let M; be the saturated sublattice of the character lattice M spanned
by P(f;) and suppose that a; is the rank of M;. Let xgi), e ,x&? be independent characters
that generate M;. Then f; is a Laurent polynomial in these characters. That is, there
is a Laurent polynomial f; in a; variables y@, . ,y((l?, such that for x € (C*)", we have
filz) = ﬁ(ajgi), i), Write x( for this list (azgi), ..., zy of characters.

Consider the map

P (L) — (L) x (€ x o x (C)
defined by z — (x0,x® ... xM). As fi(z) = fi(z\”, ..., z{"), we observe that

(5.1) Vo= ¢ \V(f) x - x V()
the product of the hypersurfaces V(f;) in (C*)% for i = 1,...,7.

By our assumption on the Newton polytopes, the characters appearing in x(V, x® ... x(™
are independent. As the ideal of the image of ¢ is generated by binomials which arise from
integer linear relations among these characters [18, Ch. 4], ¢ is surjective.

Under the map Log, ¢ induces a surjective linear map

®: R" — R™ xR x ... xR,
We claim that o7 (V) = ®~1(a/(f)) x --- x & (f.)). That <7 (V) is contained in the inverse

image of the product of hypersurface amoebas is a consequence of (5.1). For the other
direction, suppose that z = (z(V), ..., 2(") with z() € R% for i = 1,...,7r is a point in the
product of the hypersurface amoebas. For each i = 1,...,r let y € (C*)* a point in the
hypersurface V(f;). Then y := (y"),...,4)) lies in the product of the hypersurfaces.

As ¢ is surjective, there is a point x € (C*)" with p(x) = y. By (5.1), ¢ '(y) C V.
Applying Log shows that ®~!(2) C &/ (V). This implies the other containment, so that
g (V)= <I>_1(d(ﬁ) X e X %(ﬁ)) Since

A(f;) = R x - x R x o (f;) x R4+ x - - x R
the conclusion of the theorem holds. 0

The original version of this paper conjectured that finite unions of independent complete
intersections were the only varieties with a finite amoeba basis. Goucha and Gouveia [9)]
showed this was too optimistic.

Proposition 5.3 (Corollary 6.3 of [9]). For positive integers m,n, let M,,, = (C*)™ be
the set of m x n matrices with nonzero complex entries. The set X,,,, C My, of matrices
of rank strictly less than min{m,n} has a finite amoeba basis given by the mazimal minors
of matrices in M,, .

While the set Xy, is a subtorus of (C*)?", and thus an independent complete intersection,
when 3 <m <n, X,,, is not a set-theoretic complete intersection of any subset of maximal
minors. For example, X3, is one of two ten-dimensional components of the variety defined



DESCRIBING AMOEBAS 13

by any two maximal minors of the generic 3 x 4 matrix. It is possible that some X,,,
with 3 < m < n is an independent complete intersection, but we think that is unlikely. The
structure of amoebas of independent complete intersections shown in the proof of Theorem 5.2
(they are intersections of cylinders over hypersurface amoebas) is quite restrictive.

Irreducible nondegenerate independent complete intersections in (C*)™ have amoebas of
dimension n, and the amoeba of X, ,, is also full-dimensional in R™". This is no coincidence,
as we show in the following result.

Theorem 5.4. A nondegenerate irreducible variety V- C (C*)™ with an amoeba of dimension
less than n does not have a finite amoeba basis.

For example, a nondegenerate irreducible curve in (C*)" for n > 3 does not have a finite
amoeba basis. Theorem 5.4 is a consequence of the following lemma, which is stronger as it
shows that a nondegenerate variety cannot be an irreducible component of a variety with a
finite amoeba basis.

Lemma 5.5. Let V C (C*)"™ be a variety with amoeba of dimension d < n. If V has a finite
amoeba basis, then each irreducible component of V' lies in an affine subtorus of dimension
at most d.

Our proof of Lemma 5.5 uses the convexity of each component of the complement of a
hypersurface amoeba, along with stratifications of amoebas induced by stratifications of the
corresponding algebraic amoebas given by their structure as semi-algebraic sets. Let us first
recall some results about semi-algebraic sets, these are discussed in Chapters 2 and 9 of [4].
These will be used throughout the proof.

The intersection or union of finitely many semi-algebraic sets is semi-algebraic. A semi-
algebraic set X C R” has a decomposition into pairwise disjoint semi-algebraic subsets,

(5.2) X = XoU XU - UX,,

where each X is a locally closed C*° manifold (in fact it is an analytic manifold) of dimension
j. The maximum d with X; # ) is the dimension of X. This decomposition may be chosen
so that each connected component of X; is homeomorphic to the product (0,1)7 of open
intervals, which we call a box.

The local dimension dim, X of a point x € X is the maximum j such that x € Y] Let Xgm
be the (open) subset consisting of points x € X with a neighborhood in X that is a manifold.
It is the set of smooth points of X and its complement X, := X \ X, is the singular locus
of X. We have X, = X and dim X < dim X. Both X, and X, are semi-algebraic, and
we may (and hence will) assume that (the connected components of) any decomposition of
X into semi-algebraic sets refines the decomposition X = Xg, L X,.

For z € R™ and € > 0, let B(z,¢) be the open ball in R centered at z of radius €. For a
submanifold M C R™ and x € M, let T,,M be the tangent space of M at x, which we regard
as an affine subspace of R" containing .



14 MOUNIR NISSE AND FRANK SOTTILE

Proof of Lemma 5.5. Suppose that V' has a finite amoeba basis given by Laurent polynomials
fi,--., fr. Then

(5.3) dV) = d(fi) N d(f) 00 A(fr).

For each 7, the decomposition (5.2) of the algebraic amoeba |V(f;)| induces a decomposition
of the hypersurface amoeba <7 (f;),

(5.4) A (fi) = A (fi)o U A (fi)hi U - U F(fi)n,

where o7(f;); is a locally closed analytic manifold of dimension j.
For a smooth point x € & (V)gn, let J, = (j1,...,Jr) be defined by where z lies in the
decompositions (5.4), that is, z € &7(f;);, fori=1,...,r. For alist J = (j1,..., ), let

Uy = {eed(V)g|Jo=J} = W(V)smﬂnd(fi)ji-

This is the image of a semi-algebraic subset of |V, and may be further decomposed into
boxes. The collection U of these for all J give a finite decomposition of &7 (V)g, into boxes.

Let y € @ (V)qn. Then there is a box U € U of dimension dim, o7 (V) with y € U. As
our decomposition refines the decomposition of .27 (V') into smooth and singular points and
y € U, U C & (V)am and all points of U have the same local dimension as y. Let x € U
and set J := J,, so that U C U;. Let ¢ € {1,...,r}. Let C' be a connected component of
R"™ ~\ @7 (f;). This is an open convex subset of R" disjoint from the manifold <7(f;);,. As
x € 4 (f;);,, we claim that there is some € > 0 such that B(z,e) N1,/ (f;);, is disjoint from
C. Indeed, if ¢ C, then there is a ball B(z, ¢) disjoint from C, and hence from C. If x € C,
then the manifold .27 (f;),, lies in the boundary of C'. Let H be a supporting hyperplane to C
through z. Then C, and hence <7 ( f;) j;» lies on one side of H, which implies that H contains
the tangent space 1,27 (f;);,- As H is disjoint from the open convex set C', we may chose any
e > 0 in this case.

As there are only finitely many components in the complement of <7( f;), we may assume
that e has been chosen so that B(z,e) N1,/ (f;);, is disjoint from every component, that is,

(5.5) B(z,e) N T, (fi);, < Y (fi)-

Shrinking e if necessary, we may assume that (5.5) holds for all ¢ = 1,...,r, and also
that B(z,e) N &/(V) C U (as U is disjoint from the closed set 7 (V) ~ U). The finite

intersection (5.3) implies that
(5.6) B(z,e)NA (V) = B(r,e)NA(f1) N A (fa) N -0 A(f) C U.

As for each ¢« = 1,...,r, U C (f;);,, we have the inclusion of tangent spaces T,U C
T,</(fi);, and thus

B(z,e)NT, U C B(x,e)NT,d(fi);, C Blzx,e)N(fi).

Taking the intersection over i = 1,...,r and invoking (5.6), this implies that B(z,¢)NT,U C
U. As U is an analytic manifold that contains an open subset B(z,¢) NT,U of a linear space
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T, U of the same dimension, we have that U is an open subset of T,U. As y € U is a smooth
point of &7 (V), y also has a neighborhood in 27 (V') that is an open subset of the affine space
T.U.

Let W C V be an irreducible component. Suppose that </ (1¥) is not a subset of the
closure of the difference &7 (V') \ o/ (W). If y is a smooth point of & (W) not lying in this
closure, then y is a smooth point of 7 (V). We have just shown that y has a neighborhood in
2/ (V') and hence in &7 (W) that is an open subset of an affine space. By Lemma 5.6 below,
W lies in an affine subtorus of dimension equal to dim, /(W) < dim @ (V) =d < n.

Let U be the union of all components W of V' such that /(W) is not a subset of the
closure of the difference &7 (V) \ o/ (W). Then the o/ (U) = </ (V) and every irreducible
component of U lies in an affine subtorus of dimension at most d = dim &7 (V).

Let W be a component of V' that is not a component of U. Since &/ (W) C </ (V), it
lies in a union of finitely many rational affine subspaces of dimension at most dim.c7 (V)
The irreducibility of W implies that .7 (W) lies in one such rational affine subspace and by
Lemma 5.7 below, W lies in an affine subtorus of dimension at most d < n. O

Lemma 5.6. Let V' C (C*)" be an irreducible subvariety such that </ (V') has a point x
having a neighborhood in </ (V') that is an open subset of a d-dimensional plane. Then V lies
in a d-dimensional affine subtorus.

Proof. Translating V' (and thus &7 (V)) if necessary, we may assume that = 0. There is a
rational d-dimensional plane Ilg such that the projection of T,47 (V) to Ilg is surjective.
Taking a subtorus complementary to IT @z C* ~ (C*)¢ we have coordinates (C*)" =
(C*)® x (C*)"? and a decomposition of R" = R? & R into rational linear subspaces
such that T,/ (V) is the graph of a linear map A: R? — R"™? (here, [Ig = R?). That is,
points of 7,47 (V') are of the form

(5.7) {1, ya (), laa(y)) | y € R},

where ¢; are the coordinate functions of A, which are linear forms. By our assumption, 7 (V')
agrees with 7,27 (V) in a neighborhood of z, so there is a neighborhood U of the origin in
R? such that this set (5.7) restricted to y € U lies in &7 (V).

The exponential map on R" sends &7 (V') to the algebraic amoeba |V/|. Thus the set

(5.8) {(e¥,... e%, eél(y)7 o ,eg"—d(y)) |y e U}

is a neighborhood of the point 1 in |[V/|. In particular, it is an open subset of a semi-algebraic
set.
If we set z; := e¥, then the exponential of a linear form becomes

eél(y) — Zl i,1 . Zdz, = Z(ll ,

where (;(y) = a;1y1 + -+ - + @ qYa = «; - y. In particular, each monomial z* is an algebraic
function of 21, ..., zg. This implies that the coefficients/exponents «; ; are rational numbers.

If we let 0 be their common denominator and set ¢; := zil /S fori = 1, ..., d—this is well-defined
as each z; > 0—then we may assume that each a; ; is an integer.
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Let T be the d-dimensional subtorus of (C*)" whose algebraic amoeba is the Zariski closure
of the set (5.8). That is, T is defined in (C*)" by s = 27" -+ - 25" foreachi = 1,...,n—d.
Then the image of V' in (C*)"/T is contained in the compact subtorus of (C*)"/T, which
implies that the image of V' is a single point as V' is irreducible. This completes the proof. [J

We close with a simple characterization of degenerate varieties.

Lemma 5.7. An irreducible subvariety V of (C*)" lies in an affine subtorus of dimension d
if and only is its amoeba lies in a rational affine subspace of R™ of dimension d.

Proof. Suppose that o7 (V') lies in a proper affine subspace z+.47(T), for a subtorus T of (C*)"
and z € &/ (V). Then the amoeba of the irreducible variety (T-V")/T is a point, which implies
that T - V' is a single orbit of T. Noting that V' C aT implies that o7 (V) C Log(a) + </(T),
which is a rational affine subspace of R™ of dimension dim T, completes the proof. O
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